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Abstract of the Thesis
ON THE COHOMOLOGY OF MODULES OVER THE
KLEIN GROUP
by
David Bruce Heisler
Doctor of Philosophy
in
; Mathematics

State University of New York at Stony Brook

1973

In this paper we calculate the first and second

cohomology groups for a certain family of modules over

the Klein group ¢ = Z, X Z,. This is done by first

.finding the structure of these modules when restricted
to the cyclic subgroups of 2. fhen, by the Hochschild-
Serre spectral sequence, it becomes evident that the
cohomology groups are imbedded in exact seguences. In
order to eliminate the indeterminacy of the exact se~-

quences, we must do the following. For K cyclic in ¢,

we first must determine which elements of H2(K,M) can

be lifted under the restriction map

resK: Hz (¢o,M) —> :' H2 (K,M) (br

o
e
-




(where resy is induced by the inclusion K C &. We then

must decide whether H2(¢,M) has any elements of order
four.

The former question is answered more generally, for
any group ¢ of the form K X L where K is arbitrary and L

is finite cyclic. This is done by associating a family

of obstructions to each element o, of HZ(K,M)¢. Then the

1lifting of a under res, is equivalent to the vanishing of

K

one of these obstructions. Returning to ¢ = Z, X Z

9 the

2'
guestion of the existence of elements of order 4 is

answered by analyzing the "antispecial cohgmology classes"
-~ those elements of Hz(i,M) that wvanish when restricted

to Hz(K,M) for all cyclic K < 9.
In addition, the notion of "supernormalized cocycles"

is discussed. This provides a canonical form for repre-

sentatives of elements of HZ(K x L,M) and motivates much

of the theory in this paper.
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INTRODUCTION

In general, the problem of computing the cohomology

of groups for arbitrary groups is difficult. This is

made even more so, because the structure of modules is

known only for a small family of groups. These include

the cyclic p~groups [11], dihedral groups of order 2p
[5,6], cyclic groups of square free order [4], Z4 {41,
and the Klein group Z, X 2,5,

Calculating the cohomology of cyclic groups is easy

and the cohomology of the dihedral group case was done

by Parr [10]. The only one of the above groups for which
there is an infinite number of non-isomorphic modules is

the Klein group, and it is to this case that we address

ourselves in this paper.

Heller and Reiner [2] have shown that the number of

indecomposable isomorphism classes of modules over Z[G]
‘is infinite if G is a non-cyclic p-group. Nazarova [8]
ghas'provide& a description in terms of two lists of re-

presentation types for the indecomposable modules over

Z2[®] where ¢ = Zo X Ty, of rank n > 5. The first list

1as an infinite number of representation types, while the

econd has a finite number of types. In this paper we

sonsider those modules describeable in terms of the first
.1st and as we indicate in the final section, we intend

0 carry out a similar analysis of the second list in a




subsequent paper. .

In section 3 we analyze the structure of these modules
with respect to each of the three cyclic subgroups of

x 2 and we summarize the corresponding first and

Zy 27

second cohomology groups. In sectioﬁrﬁ we use the results
of section 3 and apély the Hochschild-Serre [ 31 spectral
sequence to realize H (6,m) as one of the terms in an
exact sequence. Section 5 is a dlscu331on of "supernorm-—
alized 2-cocycles" for arbitrary groups having a proper
normal subgroup, which provides us with a type of canoni-
cal form for a cocycle in which the_restriction of that
cocycle to a normal subgroup appears. This provides a
key to deciding (in section 6), whether the corresponding
restriction map in cohomology can be lifted, in the case
' where the group G = H x K with-K cyclic. As a result of
section 6, the group Hz(é,m) is usually seen to be the‘
middle term’ef a short exact sequence with the end terms

having exponent 2. In section 7 we discuss antispecial
cohomology classes and in section 8, we show how the form
of these classes can help decide whethe; Hz(@,m) has any
elements of order 4. In section 9 we apply the results
of sections 5 through 8 to calculate Hl(¢,m) and H2(®,m).

In the last section, we remark on an application of

‘these results to flat manifolds.




§1. BRIEF SUMMARY OF NAZAROVA PAPER

In her paper, Nazavova describes canonical forms for
representations of the Klein group, in the group of in-
tegral n x n matrices, n > 5. A representation is des-

cribed by giving a pair of matrices A and B, such that

A2 B2 ='E = identity matrix, and AB = BA. A Z-basis
for the kernal of the operator A-B is supplemented to
form a Z-basis for the free abelian group of rank n upon

which ¢ operates. Then, with respect to this basis, the

matrices A and B will have the form

B11{212 ) A11] Byg
A= o B .y
22 22

where a blank indicates a zero submatrix.

The matrices Ay q and Boor pfoviding representations

of the cyclic group of order two, can then be decomposed

into diagonal blocks of the forms (+1), (-1}, and

(g%). Nazavova then distinguishes two families of re-

‘presentations where Aq and A22 can be decbmposed into

,only {+1) and (~1) blocks. The second family of repre-

sentations has the property that A,y or A,, has a single

4

If a representation is in the first family it can be

"into the form




Hence any representation of the first family can be des-

cribed by giving the matrix

D
D

D4 |
D3 |

1
2

On the other hand, any representation belonging to
the second family, (i.e., ker (A-B) or cok (A-B) does not
split up into (+1)'s and (-1)'s.) can be put into the ‘ @

general form . _ .

E 0 Ajg Ag |
e | By, 0 Ay
911 Byg Bys O
A= - B and
01
10
E Byy 0 Byg
~E 0 Bys Bag ’
01 | By, Bys O
5 - 10
- -E
E
0-1
-1 0

Any indecomposable module has a representation in one
he above canonical forms depending on which family

‘belongs to.



Nazarova describes those indecomposable representa-
tions in the first family by giving their D-matrix, and
those belonging to the second family in terms of the

matrlges Bl4' AlS' BlG’ AlG’ ete. ?P? first family has

four equivalence classes of representatioﬂé for n = 1,2
or 3 {(mod 4) where n is the rank of the module. However,

m/d

when n = 0 (mod 4), there are 3 + 1 T2 classes

4'd|~m
of representations where m = n/4 andl¢ is the Euler phi
function.
The second family, however, has only a finite number
of classes of representatibns,withih each equivalence
class (mod 4), (actually, there are four each for n = 1

and n = 3 (mod 4), two each for n = 2 (mod 4), n = 0

(mod 8) and n = 4 (mod 8), and one for n = 0 (mod 4)).




§2. REPRESENTATIONS AND NOTATION

In this section we list the representations in

Nazavova's first family by giving the matrix

D = 4 .

ILet n = rank of module M as a free abelian group

(listed in order of Nazavova's description).

{1} ( °1\1' .o
1l n 0 (mod 4) D= :
| \\\\g \\\\1 ’ |
, In 7
| \\\\]. \\\\l
{2a} n = 1 (mod 4) {2b} n = 3 (mod 4)
1 o 1\\\ o 50 1
\\\*15 1 \\\\1 \\\\\1
ot 1\\\ 1 1
o i 1 ' \\\1 \\\\‘ i
o---0 i

{3a} n = 2 (mod 4) {3a} n = 2 (mod 4)




{4a} n = 1 (mod 4) {4b} n = 3 (mod 4)
O- .- Dl1 1 Cjo 1
1\ \ 1
1 1 \
1 1 1 1 '
|
{5} n=0 (mod 4) D = [T 1\ |
1 1
O 1
1\
Mo 1 _ : a
{6a} n = 1 (mod 4) {6b} n = 3 (mod 4) - . .
1 1 1 1 |
' 1 1 ’
1 o - -0 1 1 :
\ 1 o1 :L\ 2
1 . \ ) _
Q.- - 0 1 Q 1 1o

7a} n = 2 (mod 4) {7b} n = 2 (mod 4)




{8} n

0 (mod 4)

1

[y

1

\1

O

{9a}

1 (mod 4)

1 1o

o1
O
1

-

i

is an indecomposable

{9b} n = 3 (mod 4)
1 T
1
: 1o - -5
1 ?---O
Y

=3
It

of

matrix over %,




Remark. D, may be varied up teo conjugation without

changing the equivalence class of the representation.




§3. ZZ—STRUCTURE

The reader may omit the details of this section until

they are refered to later.

Each module over ¢ can be regarded as a module over

the group ring F[Zz] in three ways according to the action
of the three generators o¢,T and o1. In this section we

describe these induced 22 module structures, and give the

‘cohomology of F[ZZI with coefficients in each module.
‘As is well known, every module over Z, is isomorphic
to a direct sum of indecomposeable modules of three types,

denoted as follows;

 <+1> is & with trivial action

<=1> is & with action given by y(n) = -n, vy ¢ Zz.




§3. Z,-STRUCTURE .

The reader may omit the details of this section until

they are refered to later.

Each module over ¢ can be regarded as a module over

the group ring P[Zz} in three ways according to the action

of the three generators o¢,T and ot. In this section we

describe these induced zZ, module structures, and give the

cohomology of P[Zzl with coefficients in each module.
‘As is well known, every module over z, is isomorphic

_to a direct sum of indecomposeable modules of three types,

denoted as follows;

L <+1> 1is E with trivial action

<-1> is & with action given by y(n) = -n, v ¢ Lo

I' is thérgroup ring F[ZZ] regarded as a module

ver itself.

The matrix representations for these modules were

tioned in §1; they are (+1), {-1) and (g%) respectively.

The cohomology of the indecomposeable modules over

s trivial to calculate;
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if n odd
Hn(Zz, <+1>) = Z2 if n > 0 and even
Z ifn=20
22 if n odd
Hn(zz, <=1>) = 0 if n even
and
ifn#0
Hn(ZZ,I') = n=0

Since cohomology is additive, the cohomology of any
module over Z, is the direct sum of the cohomology of each

indecomposeable summand. .

For most of the modules, one can read the 22 structure

ith respect to 0 and 17 by simple inspection of the A and

f;matrix representations. However, the structure with re-
ect to o1 is less transparent and we give several examples

. show how to see through the representation into its

/

odule structure.

Before proceding, we would like to establish some
t_tion which will be helpful in the sequel. Each repre-
itation has four + E blocks down the diagonal where E

ds for the identity matrix. Let Vi V2, V3,_V4 be the

subgroups of M corresponding to each of these blocks.

a2 free abelian group, M = Vl +.V2 + V3 + v4 and each

l,..,4 is also a free abelian group on bases
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{al,...,a },'{bl,...,bn }, (e

'} and {d.,...,d_}
1 2 17°°"""n

,---,C
1 n, ‘ 4

n

respectively. Hence ny + n, + n, + n, =n= rank M,

.

We will describe modules {1} and {2a} in greater

detail than the rest, as an illustration.

-[o1 1
{1} " D= \\\\ \\\\\
, \1
o 1
1\¥\\\ 1\\\\\
1 1
Here ¢ is given by
E E :
A = ~E | E

—E

is clearly seen to be (Vl.+ V4) ® (V2 + V3). Each of

he'submodules(_V:L +avé)and(V2 + V3)is a direct sum of

pies of the group ring T. So, with respect to o, M is

;'ect sum of copies of I'. I.e., M 3 EP. 1T is given by

.
E NN
\\\\é
B = -E E
-E
fE

+ V3) ® (V2 + V4). {Vz +-V4)15 a direct sum
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of T''s whereas(vl + V3)has a representation

cC
4

1

There is a <+1> summand generated by ay, and a <-1> sum-
1

mand generated by c;. The rest of the module breaks up

into a number of copies of I'. Hence with respect to T,
' this module M z T & <+1> & <-1>.

Now we view M as a F(Zz) module with respect to 67

:by means of the representation

]
' rO
AB = E ~E -E
_ -E
-E

If we cohjugate the above matrix by one of the form

' -
, then the resulting matrix (AB) still has the form
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operations on the right hand half of AB, without changing
the isomorphism class of the representation.

Now if we add the second set of rows, (D2D3) of D
to the corresponding rows in the first set (DlD4), this

'changes D as follows;

(M\\%) 3 + -1{\_1) °
-E I -E j_—_&gE I -E

D

- Now substract the second set of columns (D4) from the
: : 3

D

first set of columns D1> of D, this gives -

2
.+
R q‘\,...
'11\ 0
\\\\1
-1
0 : -E

"D

w by adding the first column in |~ | to the second, and

2

>

|

1
=

jhe representation AB is equivalent to
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and M is seen to be a direct sum of I''s. So, with respect to

or,M = )I'. Summarizing, we have

3T with respect to ¢

M =< JT @ <+1> ® <-1> with respect to T

T with respect to ot

For modules of type {2a} we will shorten the explana-




M is seen to be a sum of copies of T along with a <+1>

summand; M % )JT ® <+1>, where <+1> is generated by CHp

is given by : .

is a sum of copies of T along with a <~1> summand gener-

ted by the basis element c_ ; M 3 IJI' & <~=1>, o1 is given




O

17

Adding (DlD4) to (D,D;) gives :

‘ AR

to the third etc. gives

1- | .
\\H O |

Now adding the first column to the second, then the second

& . @ <-1>. so the

T, and o1 is

o |1l & <+1>

It ® <-1>

D' = 1 -
1 %
I 10
. ¥
n .
. /e N
1 L0
~ \ T
AB ~ E 10
-F .
g

structure of M with respect
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{2b} Por these modules and the following, we will com-
press the discussion further by just i'ndicating how to

read the appropriate matrices.

_ 0.-...011 1
D= |1 A= FE
., \1 N,
l\ IE -E 1\
| O\ 1
-0 1 O----0 bn<—
E -B A
M = JT' & <-1> with <-1> generated by b_ .
.o n, ,
0.0 +~ 3
i
B= E| \_
‘ 1
i
-F \
_ i
R “E
) ,
Ir @ <+1> with <+l> = <a;>
' g;_q\subtra'ct
z" 014 2 o 1 1 .1.
1 E \
\1 \1 . NN, O \1 O 1
-1 -1 -1 . e Q- 0
N \ AN O MAERN O Bl O
0.5 4 ~1 el % Ny
~E °E TE_-E

his last picture we can read M z T @ <+1>
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and we have o |<-1> @ Jr
T [<+1> @ JT -

oT|<+l> & )T| ,

It
[y

D \\\\ A= E
NN s |

i
&
00

1
. =E T E

ei:e, there are two <+1> summands. M 2 T @ <+1> & <+1>.

O -0} a--r0l1 1
1 1 -1 - ¢ add
_ O :
\1 \1 . \:L \-11 . ST
-1 -1 ° -1 + -1
AN \l;' O add | O\
-16
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So M S ZI‘ , and we have

o {JT
{3a} T I e <+1> & <+1>|,
ot |}l | S

1, ~oll 1
NG\ a=c= AN
. 10| 1) 1
1 20 —Ei
A .
E -E
5 LT ,
, .
°n
1 °
TN
» B ?----obl,e-
-E .
\\\\1
“E E

there are two <-1> summands M 2 JT & <-1> & <-1> with

's generated by h and bl.

3
E 1 . 1
\15) Ny 0 \1 0 \1
-1 ?1- 0l — [J 0....0| +) —> [
U NN N 1 0
-1 :

—_—
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So M = JT, and we have

o | IT

{3b} T | T e <-1> @ <-1>

ot| )T
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So M = IT @ <+1>, and we have

o |IT & <+1>
{4a} 1 |JT & <+1>

ot |}l & <+1>

)
: _ dy \
1 ojo1 01
{ap} b= | N\l A= E :
dojo 1 0 1
1 1 1
-E
1 1 1 .
E “E
JT ® <-1> with <-1> = <d,;> .
- ¥
Cc
’ Il
_ 1 -
B= E :
: »
1
-F .
| N
-E E

JT @ <=1> with <-1> ='<cn >
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¥
1 O
10
-1
E O |
-1
So M = JT ® <-1>, and we have
7 o |Jr & <-1>
{4b} T ()T ® <=1>]|.
ot |}l & <-1>
n
¥y .
1 1 1 '
D = A = E
1 1 1
O 1 - |0
’ 1\ E i -(—b].
10 1 | Do
. E -k
T & <+1> © <=1> with <+1> = <¢_ >, <-1> = <b,>
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¥\
1 1 1 1L , 1
NN . N Ny N 1
O -1 1 i
-1 o .
-10 1 -11 =11
Yy
add
. 1\
E
) 1
1\ _
E .
1
-5 -B
0'2'1.' ZI‘ , and we have
o |IT ® <+1> & <-1>
{5} T |IT ;
ot |}T
A= E 1
\1
~E l\
1
Q-0 +b
E -E n

—_—
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M= JT @ <-1> with <-1> = <b,>
1 1 |
4 fi---o .
\\21 \\\
OG-0 -1

By row operations, this can obviously be transformed to the

AB matrix of module {4a}.

Hence AB ~ E|

2

o |JT & <-1>

ot|}l & <+1>

@ <+1>, <+1> = <C,>




26

Yy
4n
B = L
E
1
ﬂx\\ o
-E . +
10
-E E
= YT @ <41>, <+1> = <d, >
4
1 1
AB =
E \\\
1 1
o1 |1 © -
£l : .
o - -10 ’

-E -
'his can be transformed by row and column operations to

B of the module {4b}. Therefore 4

AB v E = | 3
\16 1
y ry ' -
E AN
A
“E  -E
T ® <-1>, and we have .
o |IT & <+1>
{6b} T {IT & <+1>| . A ' j

Il ® <-1>
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. c
+1
1 1 i
{7a} D = \ A= E \
1 1
1{0-.--0 Q.- -O«a,
o1 1 o1 1
E -El. |
o 1 \\\J_ o .\\\3. i
B -B |

M=z JT & <+1> & <+1>

1
B= E
1 |
1 1
-E
\\\1 . 1
-~k E .
n 1
AB =
E 1
1|00 '
c 9—1\ =)
o -4 -1
-E -E

. can be transformed by row and column operations to
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So M(;E:F, and we have

o |IT & <+1> & <+1>
{7a} ~t |JT . e
ot|)T




and we have o Zr ® <=1> @ <=1>

{7b} T )T . .

ot|})F | _ : . |
1 1 1
\1 \1 A= E \1 ‘
1 .C)i\\ 1\\\ ] |
~-E| ;
\1 \cla 1
' T ' -E )
IT | ;
- .
B = E .
TN l
-F 01\ |
1
oleb, )
-E a E TR
1
1.

Il & <+1> @ <-1> with <+1> = <d;>, <=1> = <b_ >,
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and we have o |}T
{8} T |IT @ <+1> @ <-1>},
ot|}T

| ‘11 .
A= E Ql
| o \\\1
1
-E
\\\1
E -E

{
a .

n

1
B= E
1
: 1 0
- . .
1o
-E E

I & <+1> with <+1> = <dn >. AB can be transformed
1 4

So M 2 ]JT & <-1>, and we have

o |IT @ <-1> |
{9a} T |IT & <+1>|, : _ :

& & <-1>
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{9b} . 1\ A 1
D = = E
1 \1
10...0 0..-0 «a
1 o---0 1 n
1
-E
4 \1 \1 ,
E -E
= JT & <+1> with <+1> = <a >.
ny
A
B= E \\\
1
o- --oq}-)l
-E i ,
N :
1 1 X ‘
-E E

IT ® <~1>, <~1> = <b,>. AB is equivelent to AB in

1

o [IT & <+1>

' {9b} T {JT & <-1>|,

T & <#1>
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d
n
+ _
? M
A= E
\ io
1 -
-E
1 . .
E -E

M = T ® <+1> & <-1> <+1> = gal>, <=1 = <dn4>

iT. AB is equivelent to AB of module {5}. So M‘;IXP;

- |
‘we have [iT @ <+1> & <-1> 3
{10} T{)T . | .
ot |}T

We now consider the modules with representations of

S an indecomposeable matrix over Z,- Obviously
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module {10} is included in this case.
Since D, may be varied up to conjugation, we may

assume D, is of the form

4

= 0...--.....0 ao
4 l L] L]

0 G2

1 On—1

where p(x) = "+ am_lxm"I + ... + 05 is the minimal
polynomial for D, over Zz.

We consider two cases:

ase 1, D, is not invertible over z,.
‘This is equivelent to ab = .0, since for the above

rix the minimal and characteristic polynomials are the

ame and ao'is thus the determinant of D4. Moreover,

ce D, is indecomposeable, the polynomial p(x) is ir-

ucible or is a power of an irreducible polynomial, and

:éforé since ay = 0, we must have p(x) = x™. So

o if D, is not invertible over Ly, the representation

is type of module is given by
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o \\\\1 \\\10

and M is a module of type {10}. - ‘

Case 2. D4 is invertible over Zz.

We must have ao =1,
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elementary column operations independently.

Since

D4= 0 ® & % 9" s 01
o

if 0qy # 0 we can add a multiple of the first column to the
last column so that the new entry in that position is zero.

Continuing the same way, D, may be reduced to the form

0.-.----- 01 . -

-
=]

o
(= -

and then a column permutation brings this into the form i
the identity matrix. Hence 7 _ W‘

|

|

n




we see M = JT also, L T

T

;

Finally we consider the structure of M with respect

to ot

E E D4

AB = E{-E =E
v B :

~R

Recalling that we can perform elementary row and column

operations on D, i.e., conjugate by (¥*§

. 4
AB "~ E| E ,
-E '
-E .
00%.- 0 C!o
D4-E = D4+E = 1 : : i
0 .
1 S ‘ .
1 am~l+l - 5

{(mod 2) and then the
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1 0 ag

010 .. 0 a0+a1

? 01 .. ? agtagta,
1'ao+..:+cxm_2

0 cvvvee O apteiota .+l

Now by addfng multiples of the EE,...,m—IEE columns to

the last column, the matrix becomes:

10..00
0

-
[T L =
T O
)

‘Recall that p(x) = minimal polynomial for D, = the

+ql+...+a _1+l = p(x) 1 = det(Dé—E).

-We now must consider two subcases:

(D4-E) is not invertible.
2b. (D4—E) is invertible.

(D4—E) is not invertible, then 8 = 0 and
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¥
1\ 0
E ‘ Oa..lo: -
AB N E E
B "E .
-E

and M = JT & <+1> @ <-1>,

On the other hand if (D4—E) is invertible, then

E E

and hence M o ir.
So for these two cases, we have that the induced

structures are:

=D4 invertible and (D#—E) not invertible

o |JD
T |7
T @ <+1> & <-1> i
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D, invertible and (D4*E) alsc invertible

o |}r ‘
T |JT
ot |}T .

Summary gzlgz—structure and cohomology.

For convenience we list the representations along with'
their Z, structures and the corresponding first and second

22~cohomology groups.

2

D Z,-structure Hl(ZZ,M) HZ(ZZ,M)
°§b . co |Ir 0 0
1
— T | JTe<+1>®<-1> z, %,
B E ot |JT | 0 0
T o :
\\ | g ¢ [IT @ <+1> 0 Z,

10 - |
- T [}l & <-1> Z, 0
E
. oT}|)T & <-1> Z, 0
[2)
R o [JT @& <=-1> Z., 0 |
2 T |} ® <+1> 0 1 - Zy
E 1
1 ot} @ <+1> 0 Z, _ !
. o |Ir 0 0 }
< T | ITe<+l>e<+1> 0 %97,

)T
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D Zz—strﬁcture Hl(Zz,M) H2 (ZZ'M)
{3b} 1\‘-_’ . o |IT \ 0 0
105’" — T [Ir@<-1>@<-1> 2,07, 0
E N\ 1 or|JT Ty 6
‘1,-_ o 1\ G ZI- ® <+1> 0 Z2
\1 o- --(15 T ZI' & <+1> . 0 Zz
E E ot|)T & <+1> 0 Z,
1\ ool\ o [IT @& <-1> Z, 0
Bl E ot{JT ® <-1> 7., 0
E - o |)}Te<+i>@<-1> Z, Z,
= t )T - 0 0 .
! | | |
\ME ot|Jr 0 0
e | E o [IT & <~1> Z, 0
1\ oS T |IT & <-1> Z, 0
... 1 \1 oT|)T @ <+1> 0 Z,
E - o [JT & <+1> 0 -z,
4, 1 ? T ZF @ <+l>!\ 0 Zz
\1 \1; ot |}l & <-1> Z, 0
1\ o |[ITe<+1>e<+1> | -~ 0 Z,9%,
0. .5 T |IT ' 0 0
T
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D zz-strﬁcture Hl(Zz,M) HZ(ZZ,M)
o1
{70} | ¢ : \\1 o |)IT@<=-1>@<-1> 7,02, 0
1_\ T Zr 0 ) 0
1 E otT|)l 0 0
Q.- O
{8} E B o [IT | 0 0
01\\ T |IP@<+1>8<-1> z, -z,
E \10 ot|)l 0 0
o1
{9a} | 4 N\ o |}T & <~-1> Z, 0
°o 1
n : T |JT & <+1> 0 | Z,
E : :
\\\16 ot|)T ® <=1> Z, 0
1
B \\\1 o {}T & <+1> 0 Z, |
;_, 2 T [T & <-1> Z, 0 |
E \\\1 ot{)I' & <+1> 0 Z,
_ |
B 1Q:\ o [}Te<+1>@<~1> Z, Z,
M v [Jr - 0 0
E| E ot |JT 0 0
D, invertible a) (D, - E) not invertible:
E | D, o [}T | | ..o | 0
T |JT ‘ 0 0
ITO<+1>9<~1>




:b) (D; - E) invertible:

' 1 2
Zz-structure H (ZZ,M) H (Zz,M)

o [T 0 0

T |Jr | 0 0




§4. APPLICATION OF HOCHSCHILD-SERRE SPECTRAL SEQUENCE

For the above list of modules we use the Hochschild
Serre spectral sequence to get information about the co-~

homology of these modules over Zy X ZZ'

The Hochschild Serre spectrai sequence applies to
modules, A, over a group G where K is a normal subgroup
of G. This spectral sequence yields én exact seqguence

under certain circumstances.

I. Letm > 1. If H'(K,A) = 0 for 0 < n < m then there

]

is an exact sequence =

-

- r
0 —> B™(c/k,aF) — H'(e,a) £ ®x,n)¢ —

—s> B ek, 2%) — 1 (c,a)

Let m > 1. if H® (X,A) = 0 for 1 < n < m then for

n < m there is an exact sequence

e —> P (¢/k,2%) —> mc,n) —> g1 (G/K,Hl (K,A)) —>

— Hn+1(G/K,AK) — Hn+l(G,A) N

L

ticular if we take m = 2 in I, we get;

 HY(X,A) = 0 then HY (G;A) = HY{G/K,AY) and we have
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an exact sequence

.
0 —> m2(/k,25) —> u?(6,a) -5 u?(x,n)C

—> w3 (e/k,a5) —> 13 (c,a)

"

Taking m = 3 gives:

Ib. If H'(K,A) = H2(K,A) = 0 then H2(G,A) = H2(c/k,aK).
And, taking m = 3 in the sequence II yields:

. ITa. If HZ(K,A) = 0 then the follﬁwing is exact

—> B (6/K,2%) — ml(e,a) —> wO(c/k,ul (k,2)) —>

-

—> w2 (e/k,2%) — 82(6,8) —> wl(e/x,mt(K,A)) —>

—> 1 (¢/k,2%) —> m3(c,a) —>

2 X%

Now let M be a module over‘the group ¢ = 2 o

D = as follows.

et (W,X,Y,%Z) be the coordinates of an arbitrary




element of M in terms of the basis for

M= Vl & V2 ® V3 & V4

as free abelian group.

2x}

Lemma 4.1. M° {(w,x,Y,0) |D,Y

2x}

M' = {(W,X,0,2) D42
M= {(w,x,0,0)}

Proof.

ust calculate Mo.

14
]
]

uH(2/<0> M%)

B (3/<0> M%)

This is a straightforward verification.

0 -b
W 4 W
% _ 2E —D2 X
Y 0 X
Z
Z , 2E
Z 0
0 i
= iff Z2 =0 and D
o
0
2-
{
If D2 = B then
)

Y = 2X

45

We will




46

{b} 1f Dy = E then

n

ul(o/<t>,m7) = z22
’ n
H2(¢/<r>,MT) = z21

{c} With no hypothesis on D, or D,

nt (8/<o1> ,M%T)

n
w2 (e/<ot> M%7y = g1

1’

{a} 1f D, = E then MY = {(W,X,2x%,0)}, so we can choose

as a basis for M° the set

"2
{a ,.l.'a }U U {b-+ 2'00}-
S § ny j=1 j 3

en the action of &/<o> on M° is that of <Tt> = §/<0> on MY,

effect of T on this chosen basis for M° can be seen by

rst two sets of columns of C afe the. coordinates of

& , el . : ‘ .
sen basis vectors for M'. C is non singular and if
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we conjugate by this change of basis matrix, we get

E 2D, | D 0
0 -E 0 D,
o o |- -2, -
0o o 0 E

E 2D,

The upper left block 0 provides a representation

=-E

of the action of T on M°. Furthermore, such a matrix is

E 0
always congruent to | g -E);

E D E 2D E =D

1 1 0
Q0 E O -E/\NO E O g

o

ut this representation tells us that M~ is isomorphic to

direct sum of <+1> and <-1> summands, and keeping track
the ranks of the E and -E blocks, we see that E has

nk n, (corresponding to the basis subset {al,...,an H,
1

~FE has rank Ny

n n

1 P <-=1>

o] 2

- 5o M % <+1> and hence

H1(®/<U>,MU) = Z

o
[
L A~
A
i
A\
-
=
Q
Ao
It

2 (8/<0> ,1°)
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Proof of {b}: o

Mt = {(w,X,0,2X)} in this case. Analogously
to the proof of {a}l we would conjugate the matrix A by

the change of basis matrix

E

There is an analogous result for the modules on the
:@3list. We include it here but do not give a proof

we are not going to study the éohomology of these
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Proposition 4.3. If D2 = E then

1 gy . 2
H (¢/<o§,M ) = 22 ] Ul
and
2 c ny
B (¢/<0>,M") = Z ® U,
N 2 2 '
where

if there is é I'~summand in coker (o-71)

=
0

BN

o

0 otherwise
and
U2 = Z2 if there is a T~summand in ker (o-t)

0 otherwise

We now return to the application of the Hochschild-

D = o1\\~ 1
\é \1
1 1\\\\\
\1 1
. . 1 2 _ n
~earlier calculations H™ (<g>,M) = H™ (<o>,M) = 0.

ba 1
[
=
g
R
o
et
)
™~
A
Q
v
=
Q
13
[

by IB and the corollary

ny

o (¢,M) = B (8/<0>,M%) = z,t.
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{2a} D

1 ol1

NGO\

io
o1 3

o 1

il

Here we have H1(<o>,M) 0. So by Ia ' S

1]

wt o, Hl @ /<o> M)

and we have an exact sequence

0 —> B2 (0/<0> M%) —> B2 (2,M) —> HZ (o>,

—_ H3(@/<U>,Mg) —> H2(®;M)
. i, g, i o .
determine H (¢/<¢>,M' ) = H (<1>,M ) we must go through

me direct calculations.

Pirst we calculate MCI = ker (A-E).

W 0 : E\ /W A 0
X _ -2 D2 X _ —2X+D2Y _ 0
Y 0 Y 0 1o
A -2E/\ % -27 0
d only if Z = 0 and D, Y = 2%,
We can calculate D2Y
01 Yy Y7 2x
=t =22 =
1 Yy Yy 2xr—l
Y = [Y1I"°Iyr] = [ylylepzxzp...,zxr_l].
: ] ' ' U . '
(W 'X 'Y ,0) |X = [Xl,.-..,xr_l] ,Y_ = [yl,le,...,ZXr_l]}

‘0lumns of the following n x (nl + n, + 1) matrix,

a Z~basis for MO.




.

=3
.00

»
B = { o T el Ty K=

This matrix constitutes the first n., + n, + 1 columns of

1

E. with inverse =
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So <t> has a representation in M% of the form

e
E DT} 1\ 5 s
] . .
~E {: = 1 \206
-1 _1
\-—1
-1
This matrix is congruent to the matrix
1
1 .
-1
-1
11
o-1
1 1 0 1
summand is congruent to . Hence
0 -1 . - 1 ©

nl-l n

<+1> o <-1> 1

& I'.  So

2
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n -
ul (o,M) = ul(e/<o>,m%) = zz2
and we have the exact sequence
n.-1 r . n
0 — 2,0 — wiem Loz, — 2.2 — me,m.

In order for this sequence to yield any further in-
‘formation about HZ(Q,M) we need to know whether

2, . . 2
: H°(9,M) —> Z, is onto and whether H” (¢,M) has any

elements of order four. In order to do this systematically

fbr all the modules, we delay this until later and continue

o calculate HZ(Q,M) for the other modules, "up to exact

+

tese modules, Hl(<1>,M) = 0. So

I,

ul(o,m) = nl(e/<>, MYy = z,

corollary, since Dy = E. We also have the exact
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r

0 —> B2 (a/<1>,MY) —> 82(e,M) —> B2 (<t>,M)® —>
— H3(8/<t> M%) —> B3 (0,M)
2 & _ 0 _
From the corollary, and because H” (<1>,M) = 22 = Zz,
this sequence becomes
. n r n
0 —> z’l —_ H2(¢,M) 2>z, — b4 2 —_— HB(Q,M)
‘ 2 2 2
= o --0Ol 1L
{3a} D = R\\
1 1 .
4 1\ o
\1 10 .

ere H1(<o>,M) = H2(<c>,M) = 0. 8o

114

m (¢,) = uwl(e/<0>,u°)

R

u?(e,M) = B2 (0/<0>,m%).

ce D, = E in this case, by the corollary we have

ul (o,M)




H

Again Hl(<o>,M) = H2(<U>,MT = 0 and D, = E, so as before

ut(e,M) = z22 '
n
B (o,M) = z,° —
{4a} a ot
| . AN \\\‘1
te . - o
1\ 1
1 1
H;(<0>,M) = 0, H2(<c>,M) = 22 and D2 = BE., Thus, we have

-

B (o,M) = HY(0/<o>,M) = 7

d the exact sequence

—> 52 (0/<0>,4%) —> B2 (0,m) —> B (<o>,M)° —>

H3(®/<0>,M0) —_ H3(<I>,M) '

becomes o ;

n |
—_> H2(®,M) —> 7, —> 222 —_ H3{¢,M)

ny

Z,
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Here HZ(<0>,M) = H2(<1>,M) = HZ(<g1>,M) = 0.

By IIa we have an exact sequence
—> ul(e/<0>,m%) —> ' (o,m) —> #O(6/<0>, B (<o>,M)) —>
—> H2(<1>/<0>,M°) —> HZ(G,M) — Hl’(<b/<c>,Hl(<cr>,M})_>

H3(®/<0>,M°) — H3(®,M).
. We also have the usual exact sequence

0 —> Hl(@/<c>,MU) —_ Hl(Q,M) —_— H1(<c>,M)® —
—_— H2(¢/<U>,MU) *--?IHZ((I),M). |

n,

- 1 o -2 o n
since D2 = E, H (d/<o>,M") = 22 and H™ (&/<o>,M") = Zz .
1so u'(<o>,M) = 2z,, so HO(d/<0>,m (<05, M) = 2 = 7,

ker{(t+l) :22-—->zz}

‘B (8/<0> 1 (o>, 1)) W (D 2,577 °

nce T must act trivially on Zé, then (‘r+l)Z2 = (l+l)Z2 =

So ker{(r+l):22_—>z = Zz. Also (T-l)z2 = (l—l)z2 = 0,

o]
m(t~-1) = 0. Hence Hl(@/€0>,Hl(<o>,M) & Zz. So the above

xact sequences become

n 'n '
2 1 1 2/
—> 22 —>H" ($,M) —> Zz - Z2 —> H" (¢ ,M) —> 22 —
n L
—> 222 —_— HB(Q,M)

- n
—_ Hl(¢,M) —> I, —> zzl —_— H2(®,M).
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Remark: This module will require special treatment later
on, in order to eliminate the indeteriminacy of the exact

sequences.

{5} D=

1\\\1 1
N

10 1

For these modules Hl(<r>,M) = H2(<T>,M) = 0 and D3 = g,

so we have

B (e,) = B (8/<1>, M) = 2,2 '
’ n
B2 (9,M) = H2(8/<1>,M7) = zzl
T T
D = '
\1 \1
| 1
1\\\\ T
AN
O ---0 1

-dT>,M) = 0 and H2(<0T>,M) = ZZ' 50 we have

= Hl(®/<GT>,M0T). By the corollary}Hl(®/<UT>,MUT)

n
Hence Hl(Q,M) = 2

o e We also have the exact




0 —> H2(®/<0T>,M°T) _— HZ(Q,M) —_ H2(<UT>,M)¢———>

—> w3 (8/<0t>,M°Ty —> B (o,M)
which becomes

n r n
1 —_— Hz(Q,M) —21> G —> 7 2

0 —> 2,

{éb} ' D= {1 1,
1

1 1
O 1\\\ o
S P 10

1

H (<g>,M) = 0. So we have Hl(®/<c>,M) o H1(¢,M) and the

exact sequence

0 —> HZ(8/<0>,M°) —> H(8,M) —> H?(<1>,M)7 —>

—> w3 (8/<0> ,M0) —> 3 (o,M).

Since the corollary does not apply here, we compute

ectly HY (¢/<0>,M%).

] L] ] '
tw ,x,Y,0 by = 2x}
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& ]
so M7 = {(w IXgpennnX _l},[yl,le,zxz,...,zxn3_l],0)}

3

Mo = an+n2+1 as a free abelian group and the first

nl+n2+l columns of the nonsingular matrix

o
= 0---0 generate M

Conjugating the representation for <1> = o/<a> gives,




This representation is equivalent to

4 i
o)
1 o
-1
_ -1
- -1
which is in turn equivalent to
1
1
-1
-1
o1
10
o ny-1 1o
2 <+1> ® <-1> © & T. Therefore by

n
2

mlo,m) = mt(e/<o>, M%) = 7.2

the exact sequence becomes

n,-1 r n
17 s E%(e,m) —> B, —> Z

—> Zz

b
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the corollary




{7a} D =

i=1,2. Since Dy = B

ml(e,M)

u2 (o,M)

1

1 o1
\\\1_6 \\\1
1 1

i
O:+-0 1

[

h

Here H! (<t>,M) = H2(<7>,M) = 0. So HY(3,M)

n
2
Zy
n
1
:
1 1
ilo. .}
o1 1\\\
b'\\\‘i 1

6l

= Hl(¢/<T>,MT).




al (o,M)
and

12 (o,M)
{9a} D

mh (<>, 1)

ut (<o>,M) = HZ(<o>,M) = 0 and D

14

0 and H2(<T>,M) = Z

must compute H1(®/<T>,MT) i

1
_'{ (W t{xlf'--rxn4_lll 0,

ul(o/<o>,M) = z

52 (3/<0>,M) = 7

62

E. SO

2

n,
2

n
2

1

|

AN

1

g

5 We have Hl(Q,M)

0 —> H2(o/<t>,M) —> HE(8;M) —> B2 (e<tym) ¥ —>

—> B3 (8/<T>,M) —> HO(3,M).

1,2, directly,

| I . | L
M' = {w ,x ,0,2 ){pyz = 2x}
o (A %\ A %1 !
10/ \z z_ _ 2%
Ny ny~l 4
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T

M" is spanned by the first n,+n, and the last column of

the nonsingular matrix

e
=

where T is the matrix
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So MU % <+1> & <=1> ®@ I', Hence

n
ut (2/<a> M%) = 222
and
: n,-1 )
n? (3/<a> M%) = 221 .

n
So Hl(é,M) = 222 and the exact seguence we had becomes

n,-1 ’ r

n
0 —> 2 1 —> H2(®,M) X9 —> g 2 __ H3(®,M}.
2 2 2
{9b} | 1\ 1\ )
1o %
NS
1 \\\\1

1(<q>,M) = 0, H2(<d>,M) = Z,. 8ince D, = E,

)

gl (o,M) = HL(3/<0>,M%) = Z,

@ the exact sequence in this case

Fl

— H2(®/<c?,M0) —_— H2(®,M) —_— H2(<c>,M)¢

—> 13 (2/<0> M%) —> B> (0,M)



65

Il
21 —> B2 (8,M) —> 7., —> 7

0 —> 2 2

{10}N .D = 1\\\ ?:ib\ ‘ |

1 10

1 1

Here H1(<T>,M) = H2(<T>,M) = 0 and b, = E. So

3
at(e,m) = 5t (o/<>,MT) = 222
and .
n
52 (o,M) = H2(®/<T>_~,MT) = 222.

~Turning now to the modules of the form

re D4 is invertible and is indecomposeable as a matrix

22, there were two cases, depending on whether or not

i
\

was indecomposeable.

For both of these cases, by a previous calculation

gl (<t>,M) = HZ(<T>,M) = 0
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and since D3 = E, we have
n
wte,m = ml(s/<t>,M7) = 222
and
2 2 T y
H (¢,M) = H (¢/<T>,M") = Zz .
Remark., Although one may feel that HZ(Q,M) will always

n.

be isomorphic to Zzl, this turns out not to be the case,

as subsequent work will show.

Summary of Cohomology and Exact Sequences

-

'For H1(¢,M)

and H2(¢,M)

5L (o,M) |52 (8,M)
1} 222 zzl
zzz 0 —> zzl-l —> 52 o,m) s Z, —> 222
an 0 —> zzl —> H2(,M) 1, 7, —> 22'2

ny

2
5 — H™ (¢,M)

0 —> 2

n .
2
0 —> 2,° —> Hlm,m —> 2, —>
n n.
—> Z 1 —_ HZ(Q,M) _> Z, —> Z 2

5 2 . 2
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Type Hl(Q,M) H2(®,M)

{5} zzz zzl ’

{6a} 21212 0 —> zzl —_ Hz(tIJ,M) f—‘lfa Z, —> zzz —_—
{6b)} 222; 0 —> z-zl-l s B (oM S Z, —> Z]rz12
{7a} 222 zzl |

tro3| 2.2 zzl |

{8} zzz zzl

{9al Zzz 0 —> ZZJ_“-l — Hz(cp,M) El> 2,2' SN zzz
{9b} 222 0 —> '221 —_— H2(=I>,M) £9_> Z, —> zzz




§5. SUPERNORMALIZED COCYCLES

The next stage in unravelling the second cohomology

groups of these modules, is to analyze the restriction

maps: ST

"2 (0,M) ~—> 12 (<y>,M)

where Y is a generator of o. -

.Suppose we are in the category of G modules with K
a normal subgroup of G.

In cohomology, it is convenient to work with normalized
cochains. 1In the situation of K< G, we give a definition,
suggested by H. Sah, of a more restrictive type of 2-cochain
which can be used to define the second cohomology group and

which has some useful properties.

=

efinition. Let 7: G-* G/K be the natural propection map.

_ét F e CZ(G,M) be a normalized cochain. Then F is a

upernormalized cochain if there exists a section T: G/XK » K

not necessarily a homomorphism) of the natural projection

P T such that

F(k,t(g)) = o, :

all k € K, § € G/K, (F(k,7(3)) = 1 in multiplicative

iWe will say that in the above situation, F ii super-
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normalized relative to Ta .

Notation. Let Cy(G,M), Bg(G,M) and Zg(G,M) be the super-

normalized cochains, coboundaries and cocycles.

Clearly Cg(G,M), Bg(G,M) and Z%{G,M) are all subgroups

of c2(c,M).

/s

Remark. Supernormalized cocycles have the following use-
_ful property.
If F is a supernormalized cocycle relative to

T: G/K + G, we can evaluate F(k,g) for all g ¢ G as follows,

g has a unique expression (relative to T) of the form

= k -7{g) where k_ ¢ K.
g g (g) g
Now apply the cocycle condition‘to F.

0 = kF(kg,'c(E)) - Fckkg,‘T(E)) + F(k,kg-r@) - Flk/ky)

Since F is supernormalized, the first two terms are zero.

0= F(k,kgT(g)) - F(k,kg) = F(k,g) -~ F(k,kg}

,F(k'g) = F(k,}::g). .

\

v

e F depends only on F

KXG RKxK*
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n

In fact, if PfG + X is thé function given by pr(g)

then we have a commutative diagram:

Gx G- spn
]' F o ﬁ_ﬁ_———::;:
K X G 1"sz x K

Now if Zg(G,M) — Zz(G,M) is the inclusion map,

then we have a natural induced ﬁap

. "2
22 (6,1 —> LG - y2 \
B™(G,M) )
L3 2
with kernal, BO(G,M).
: . ) 2 " Zg (G,M) }
Lemma 5.1. H®(G,M) = 5 -
BO(G,M) . .
72 (c, M)

Proof: We show that ZE(G,M) —_> is onto by proving

B (G, M)
he following slightly stronéer result:

Let T:G/K + G be a section such that ©(I) = 1, then

ny cocycle F € Z?(G,M)'is cohomologous to a superncormalized
cycle relative to T.

Let F be represented by any extension 1 » M+ E + G + 1

1

th corresponding set of representatives {rg} (We use

geG*

tiplicative notation in M,'rqgarded as a subgroup of E).
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We assume that ry = leE (i.e., that F is normalized in

the usual sense).
The elements of E can be expressed uniquely in the

form xrg, with x € M, g ¢ G, Then the group structure in

E follows from the equations

where x9 indicates the module action ¢ x M =+ M and

r = F ' ‘
rg g' (g,g9 )rggl

‘Let T:G/K + K be any section of 7 such tha£ (1) = 1. We
-modify the family of representatives as follows.

~For each g € G, g can be written uniquély as

g = kg 1(g), kg £ K, E £ G/K. Now define

L. . —
rg rk rT (g)

qte that ri = I for all k é K, since k = kel =ke«1 (1)

L Y = . = '—- = -
nd_therefore Ty Ty £y r Also rT( rr(g) by a

k* g}

Modifying the set of representatives {r results

g}geG

\

. ]
hanging F to a cohomologous cocycle F  where
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and

' ' a — '. . L] 1 — _l

- - » —-— —1—
Ty rT(E) (rk rT(g)) = 1.

] .
So the new cocycle F 1is supernormalized relative to the

. 1
.section 1. (Note however that F g = Fg since ry =r

-

.

Proposition 5.2. Let G = K x L. and let z ¢ HZ(G,M) be

represented by a supernormalized cocycle F relative to

the canonical section T:L + K X T,. Let F g = f and

F L= 9 then F is given explicitly by the formula

%
FlkoL. ok L) = 1
Fkylyikyt,) = klmkz tElkyrky) + kikog(8,8,)

L : .
where mkl = F(ﬂl,kz). " (So ¥ is expressible in terms of
2 R

-

ts restrictions and a mixed term F(Ql,kz)).

roof: The ideas and notation for much of this proof are
rom MacLane-Homology. Hence, additive notation is used

lthough the group extensions considered are not assumed

Let E be the extension of M by G of the form

5.{(x,g)[x £ M, g € G} with addition given by

(x,9) + x',g') = (x+gx"+F{g,g9'},gg")
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Then E, = {(x,k) |k € K} forms a normal subgroup of E as

it is the kernal of the composition

E —> G —> G/K.

»

Ex can then be regarded as the extension of M by K cor- ] |

responding to F K= f.

E can also be regarded as an extension of the non-

abelian group Eyx by the group G/K = L. We have then, a

commutative diagram of groups with exact rows and columns.

0 0
_ ¥ +

0 — M —> M — 1 .
+ + +

0 —> EK —_—3> B —> I, —> 1
¥ + ¥

l —> K —> @G —> I, —> 1
¥ + +
1 -1 1

f

‘

et 6: E —> Aut Ep be the homomorphism that associates

Hence, there 1s an induced homomorphism

Aut E

K
InnEK

= Out E., called the"conjugation class" of

extension, making the following diagram commute.

0 —> Ep —> E —> IL, —> 1
u 6 P
1 —> InpE, —> Aut E, —> Out B, —> 1

K K K
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So in MacLane's terminology, E is an extension of the

abstract kernal (L,EK,w).

Now according to MacLane [ 7], Lemma 8.2, p. 125,

if we choose ¢(2%) € ¢(2) for all 2 e L, {with ¢(1) = 1),

then the extension

0——5EK-QC—>E-€—>L——~>1

is congruent to a "crossed product extension" [EK,¢,h,L].

Moreover, MacLane shows in his proof how to construct the
proper crossed product extension and the congruence.

First we choose a family of representatives {ug} (i.e.,

Lel’
~a section of B). In our case, we define uy by letting
g = (0,%) for all % € L. Then we select a ¢ € ¥ by the

d(L¥IX = u, + x - u, for all £ ¢ L, x ¢ EK'

o
[
=]
=
=
I

1. Now define a function h: L x L > Ey by

h(2,2)=u +u = u T e
1772 T S S

31,22) e E, since Bh(ﬂl,lz) = Pu,

K

=g ¢ )& 0R) T = 1)
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1

- - -1 -1 -
= (g{Lys85),892,) + (=(8y%,) 9(2122f(21”2) ) (21250 7)

= (9{21112)11)- |

Then, as MacLane mentions, the following two identities

hold:

[¢(21)h(22,23)] + h(21,3223) = hg%l,ﬂz) f h(2122,£3)

(from associativity on u “ou, +u ), and
TS SRS

300900 (£)) = ulh(2y, 2,010 (L) 2,)

Also h: L x L —+ EK

itions: : !

satisfies the normalization con-

h(%,1) = 0 = h(1,2),

= l. Hence [EK,¢,h,L] defines a crossed product

tension of Eyx by L given by

[

By = [Egr¢,h,L] = {(x,%)]x € B, 2 & L}

0 K’

h addition defined by S
(x,2) + (x',2") = (x+o(L)}x" + h(L,2"),88").

rer, by MacLane's [7] lemma 8.2, our original

sion of the abstract kernal (L,Ex,¥) is con-
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¢

gruent to the crossed product extension [EK,¢,h,L}.

0—->EK'—-->E--—> L — 1

PP

0 — Ep —> By —> L —> 1

I' is defined as follows{ each element of E is uniquely

expressible in the form v + u, with v e Ep, & € L. Then

if we let"T(v + u,) = (v,%}, T is a congruence.
Now we calculate T in our extension situation. An
-arbitrary element of E is of the form (x,k%). 8Since F is

supernormalized we have

(x,k2) = (x,k) + (0,%) = (x,k) + My

Note (x,k) ¢ Ey so this is the required decomposition).

then T(x,k2) = I{(x,k) + ug} = [(x,k),2].

-

Now since I is a homomorphism we have on the one

r{(x,k2) + (y,k'2")}
=P{ (x+kLy+F (k%,k'2") ,kk' 22"/}

= (x+k2y+F (k2,k'2") ,kk'),22"]
he other hand we have

I'(x,k2) + T(y,k'%")
[(x,k),2} + [({y,k"),2']

[0, k) + ¢(2) (y,k') + h{(g,2"),227].
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To evaluate the last expression recall that

u, + (y,kf) - u,

(OJ'Q') + (Y_rk') - (sz)

$(2) (v, k")

1 -1

(L +F(2,%"),k'8) + (=2 Yr(e,2 L), 0L

1

(Ly+F (2,%") - k'F(2,2°Y) + (Fek'2,0” Yy k).

Since F is a cocycle we have
i

kP, Yy Pk, = P, - Pk,

Since F is normalized, and in fact supernormalized, the

right side above is zero. Hence .

¢ () (v, k') = (Ry+F(2,k"),k').

Now aefinewni, = F{%,k'}) and then (2} becomes

Tlk) + (ByHme k') 4 (g(8,20),1),88"]

hich becomes .

[ (et fy+kmy, +F (k k) kk') + (g(2,27),1),28"]

[x+kLy+km> +F (k, k') + Kk'g (&,8') ,kk') ,88"] .

nally, equating (1) and (2) and using F K = f we have

A
k!

F{k2,k'L') = km~, + £(k,k') + kk'g(2,2"),

éh is the desired formula.
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Remark. The propositioﬁ géneralizes for the assumption
that K ¢ G, but the correspondingly more complicated

formula and proof do not seem particularly useful.

Let ry: H2(K x L,M) —> H>(K,M) and

s H2(K x L,M) —> HZ(L,M) be the restriction

maps induced by the inclusions K &> K x L, L &> K X L.

Corollary 5.3. Let z € H”(K x L,M), and let r,(z) = [f]
T

i

and r; (z) = [g) where f and g are cocycles on M. Then

z has a cocycle representative F such that

~

-

F(kR,k'2") = kmy, + £(k,k') + kk'g(%,2")
P .
- where m_, = F(&,k")

k

' : ' .
Proof. Let F be an arbitrary representative of z then

£f + §.8 : -
K 1 1
where s € C (X,M) and t ¢ C" (L,M).

g + GLt

-

et w ¢ Cl(G,M) be given by

w(g) = 0 if g £ K and g £ L.

. 1t
cV¥ € ZZ(G,M) and F has the property that
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F |, =fand F L= 9. Finally, by the proof of Lemma 5.1,

"
F 1is cohomologous to a supernormalized cocycle, F, rela-

. . |
tive to the natural section L —> G = K X L with FIK = F |K

and FIL = F IL. Now, applying the previous proposition

gives us the required formula for F in terms of its re-
strictions.

| At this stage, we would like to "turn this formuia
around” and use it to investigate the cocycle F in terms
of its restrictions and to find some condition on these
restrictions which would éllow us to lift to Hz(G,M) in

the case where G = K X L. (As might be expected, the key

lies entirely in the'termlni, [or, in fact, the element

‘m € CO(L x K,M) defined byjni,E).



§6. LIFTING THE RESTRICTION MAP

Notation. In this section, ¢ will stand for a group of
the form ¢ = A X B where B is cyclic of finite order n,

generated by the element 1. M is a module over the group

ring of 9.
The main result of this section is that given a pos-

sible value of the restriction map; we can associate to
"N it, a family of obstruction cocycles; such that the
vanishiﬁg of the‘cohomology class of one of these cocycles
allows us to construct a 1iftingrof the restriction map.
[L. Charlap and H. Sah have communicated that the lifting
of res: H2(G,M) —_— Hz(K,M), for the more general situation

of K«d G, involves two cohomology class obstructions].
Let Tpt H2(¢,M) —_ H2(A,M) be the restriction map
induced by A € ¢. Since A is normal in ¢, Hz(A}M) is a ¢

‘module with action defined (on the cocycle level) by

(gf)t = g(f(g-lt)), g € T(?), t € B{a), (B(A) stands for

the standard bar resolution) and f € HomA(B(A),M), Now if
[f] € ImkA, then £ = F a + GAs where F ¢ Zz(¢,M) and
fe Cl(A,M). In particulaﬁ F € HomQ(B(Q),M). fherefore

(F(g"1e)) = F(t) and so B

gf = gF A + gaAs = ? A + 6Ags n F AN £
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So [gf]l = [f] and hence the image of

b o H2(®,M) —_ Hz(A,M) for A € ¢, lies always in H2(A,M)@.

%
Moreover, the elements of Hz(A,M) are fixed under the
action of A itself (by an analogous argument to the above,
using the fact that cocycles are in particular,

A-homomorphisms). Hence Hz(A,M)Q = HZ(A,M)B.

So it appears that a necessary condition for there
_ . o ~2 2 .
to exist a 1ift of a ¢ H"(A,M) to H (9,M) is that

o € HZ(A;M)B-
Let o € H2(A,M)B and suppose f € a. Since o is in- '

variant under B,

[(r-1)f] =(-1) [£f] = (t~1)a =0

and therefore there exists a U € Cl(A,M) such that

It
o2

(-1 £ = §,u.

iow consider NT(u) = (1+T+...+Tn-1)p > Cl(A,MB). Applying

= - - 1 B, -
NTSAu = NT(T 1)f = 0. So NT‘u) e 27 (A,M7).

nition: Let a € HZ(A;M)B. An obstruction cocycle for
an element of the form NT(M), where | &€ Cl(A,M), and

h that §pu = (t-1)f for some £ e a. In this situation

rill sometimes refer to NT(u) as an obstruction cocycle
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for o corresponding to £. Obviously, there will generally

be a whole family of such objects corresponding to a

given o ¢ HZ{A,M)B.,

The following theorem gives a constructive proof, on
the cocycle level, that the vanishing of the cohomology
class of '‘an obstruction cocycle for o is equivalent to the

existence of a lifting of a under the restriction map.

.

Theorem 6.1. Let a € HZ(A,M)B. Then

o € Im{rA:'HZ(Q;M) S HZ(A,M)B}

if and only if there exists an obstruction cocycle.NTu

for o such that [NTu} = 0 € Hl(A,MB).

Proof: Suppose a = rA([F]) where [F] ¢ H2(¢,M). Let

£f=PF

A’ then f € a. Let Ep be the extension of M by A
orresponding to £ and let E be the extension of M by ¢
orresponding to F. Then as in the previous section, E

‘an be regarded as an extension of EA by /A = B and we

ave the commutative diagram:

0 1

4 -

E, —> A —> 1

¥ v '
B  —> 1

¥ +

B B —> 1

¥ ¥

1 1
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As before, we use additive notation in our group ex-
tensions., We also remark, as before, that the elements
of E operating by conjugation, act as automorphisms of the

normal subgroup EA‘ We now use the fact that B is cyclic

to define a particularly nice element;mﬁf /A - Aut EA of

the conjugation class y: $/A + Out(E,) = Aut EA/Inn E, of

a)
the extension

)

a) 0 —> E, —> E—>B —> 1
For k = 0,1,...,n-1 define ¢(Tk) to be conjugation
of EA by the element k-« (0,7) of E. .Note, ¢ is not a homo-

morphism from /A = B —> Aut Eps

but the extent to which
it fails is "captured" in the term {®(T)}n, in the sense
. . k k _ -

-

(O # ¢(x™) = ¢(1) = 1.

If (x,0) ¢ EA then clearly

$(t) (x,0) = (0,1) + (x,0) - (0,7) is of the form

~

{Tx+u0,rornl) = (Tx+ud,0) where Mg is some element of M.

ﬁe function ¢ > My defines an element p ¢ Cl(A,M). If

‘let i ‘

i

u = (1+T+...+Tk-1)uc, for k=1,...,n-1

My and it is easily seen inductively that




Moreover,

6 (™) (x,0)

¢ (15) (0 = (K 4 (rree o)

x+u§ ,0) for k =1,...,n-1.

= 6 4™ 1) x,0) = §(1) (P e (543 1, 0)

At this point in the proof some technical lemmas are

needed.

Lenma 6.2.

(F(Ter

for k > 1.

k.(0,1) ,T) 4. AF (12, 1) 4P (T, 1) ,1F) =

—l)+TF(T,T YheaatT F(T,T2)+T F(T,T),Tk)

1 because F(1,T1) F(t,1).

Proof. This is true for k

i

' Assuming true for k = m, withm > 1 then (m+l)-(0,1) =

me(0,7) + (0,7) = { ¥ P(c%, 1), 7™ + (0,7)
g=1 :

i

F(TR,T);T

lso (m+1)+{0,T)

(0,7) + m(0,7)

(0,7) + e, edy, ™

i+j=m-1

(1) e (1,73 + P, ™, ™
i+j=m-1 '

(7 tiF(r, )0
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k-1 .
Definition: Let F,_ = J F(t",1)

X tlF(T,TJ), then
i=]1 it+i=k-1

]
il t~2

Lemma 6.2 becomes k- (0,1) = (Fk,Tk)Ik > 1l. In particular

we have n-(0,t1) = (Fn,l).

Lemma 6.3. Fn £ MB.

Proof. We show TFn =F, by applying T to the right hand

v .
side in the above definition and comparing the result with

the left hand side. Since F(T,Tn) = 0 we can write

1

]

TFn F(T,Tn)+TFn = F(T,Tn)+TF(T,Tn_

Ytew .+t IE (1, 1)

n;i

= Z TlF{T,TJ) = Fn+1 = F(Tn,T)+F(T r T+ 4P (T, T)
i+j=n
- F(Tn-l

rT)+e e HF(T,T) = Fn"'

Now returning to the proof, we have (¢(T))n(x,cl =

(XN g, 0) = ne(0,T)+(x,0)-n (0,1) = (Fprl)+(x,0)=(F ,1) =

(x+(1-c)Fn,q) for all (x,0) € E,. So N.u, = (1-0)F_

'0r all ¢ € A and since Fn £ MB, if we regard Fn £ CO(A,MB),

e have NTu = SAFn £ Bl(A,MB). Hence, [NTu] = 0 e Hl(A,MB).

-

It remains to show that NTu is an obstruction cocycle

¥ a. Applying the automorphism ¢ (1)} to (x,0)+(y,0) gives

p(t){(x,0)+(y,c")} = ¢(T)(x+0y%f(c,cﬁ),cc')

= (Tx+rcy+rf(c,c')+uoc},cc')
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(2) and ¢ (1) (x,0)+¢ (1) (y,0") = (Tx+uc,c)+(1y+uo,,c')

=(Tx+u0+cfy+cu0,+f(0,0'),cc')
Equating (1) and (2) gives

(t~1)f(o,0") = Ol 41—l R (SAu)(U,U') .

go!

i.e., (T~1}f = GAu. Since £ ¢ «a, NTu is consequently an

obstfuction cocycle fdr o corresponding to £ and [NTu] = 0.
To prove the converse, we assume N_u is an obstruction

cocycle for o such that [NTu] = 0 g Hl(A,MB). fhen there

exists an f £ o such that (1-1)})f = éAu and there exists an

-

£ e CO(A,MB) such that NTu = GAR. Since & ¢ MB, using the

usual resolution for modules oVer a cyclic group, ¢ can be
viewed as an element of ZZ(B,M}~and hence defines a cohomo-
logy class [2] € Hz(B,M). ‘We can realize this class by a

?2—cocycle g, relative to the bar resolution as follows.

Definition. Let g: BxB —> M be defined by

. . 0 if i+j<n
g(tt,td) = |
£ if i+j>n - with i,j<n.

emma 6.4. For the cyclic group B, let [B;] be the stan-

dard bar resolution, and let [I'] be the simpler, cyclic

up resolution., Then with g defined as -above,
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a) g e zf([B;],M)
b) There exists a chain homomorphism 6:[I'] ~» [Bi]

such that Hj(e): HJ([Bi],M) —> HJ([P],M) is an isomorph-

ll
-
=
e
.
I

ism for all j, and Hz(e)([g])

c) g(Tn—lj"c)-l.o.o"—g(T,T) = 2;.
d) If g' is any other coéycle satisfying c¢) then

g' v og. | .

The above lemma is probably well known, hence we omit

its somewhat technical proof.

Now for each ¥ e Bk =20,...,n-1 define an element

u £ Cl(A,M) {i.e., an element of Cl(B,Cl(A,M)), as fol-

lows, Let u% = 0, u; = M4 for any ¢ € A, (so uT = u)and
* | k=1, T ) |
hen let uo, = (1+T+...+T )uo,. k = 2,...,1’1"1.
.. .. 0 if i+i<n
emma 6.5.a) 6Bu(T1,T3) = GAg(Tl,Tj) =
o | ' : : NTu if i+j>n
| ¥ K .o K
b) SAu = (1t7-1)f for all vt € B
a) We must show that for all i,j<n
' {
PR R S, R | L 0 if i+j<n
T N G A S I P

N.u if i+32n.
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(Here g(Tl,TJ) is regarded;as an element of CO(A,M)). if
i+j<n then the middle expression is zero. The left hand

expression is then

C 3 (i) i o
Tlu - uT + ]_lT -

-1

T (LhTH. . T 1+3-1 i-1

Y + (14T, ..+T

Yu + {(I+1+...+T

Yu

{(1+T+...+Tl-l) + (Tl+...+Tl+j-l)}U “41+T+.;.+Ti+j—l

Ju
= 0.

If i+j3p; the first expression is

R | i+j-n i -
™ -t +u'
= (4t o @ el TTITRL e ey
= Iy o @, PITRTLY,

{(1+T+...+T

(Ti+j~n+..-+ri+j-1

he coeficient of u is a sum of n successive powers of T,
d since the order of 7 is n, the coefficient must be

(1+T+...+1n_l)u

. So if i+j>n, the first expression

.

= 6Ag(T1,Tj), for in this case, by

s
for
r
=
~
=
|
(o]
Y

k=1, T

Of of b). 6,7 = &, (Ltrt.. 4Tt D)y =‘(l+T+..-+Tk_l)5Au

k-1

+TH. L o+T Y(t-1)f = (Tk—l)f. (Note, this says that
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GAu = éBf with £ regarded as an element of CO(B,ZZ(A,M)).

Finally, we can define a cocycle F ¢ Zz(Q,M) lifting
f (and therefore [F] lifts [f] = a) in terms of f,g and

k f
uT as follows, If ab,a'b' ¢ A x B = &, then let

F(ab,a'b') = aug. + f(a,a') + aa'g(b,b').

It is apparent that F = f and also,)in fact, that

AXA

o 1 _ _ b
F Bxg = 9 because My = 0 = My for all a ¢ A, b ¢ B, 8o

once F is seen to be a cocycle, the theorem will be proved.

The following lemma establishes this.
Lemma 6.6. With P defined as above,

alblF(azbz,aBbB) - F(ala2b1b2’a3b3)

+ F{albl,a2a3b2b3)'- F(albl,azbz)

= 0,
Proof. Evaluating, we have that the above expression

b .
_ 2 _
= albliazua3 + f(az,as) + a2a3g$b2,b3)] +
blb2
- [alazpa3 + f(alaz,a3) +_al§2a3g(blb2,b3)] +

\

by

+ [alua2a3

+ f(al,a2a3) + a1a2a3g(bl,b2b3)] +

+ £(ay,a,) + alazg(bl,bzi‘] =




920

b

= (upon adding and subtracting a,a,u l),
: 172 ajg

b, b.,b b b, b b

2_ 7172 1 s 1
(3) alaz(blua3 U ) al(azua3 i

a.a. M ) +

+q
283 9

a3 a3

{4) alblf(az,a3) + {-f(ala2,a3) + f(al,a2a3) - f(al;az)] + ‘
_

After applying Lemma 6.5 to line (3) above, and the
facts that £ anq g are cocycles to lines (4) and (5), the
above is equal to

.alazi(l-a3)g(bl,b2)] - a,[(by-1)f(ay,a5)] +
+ alblf(az,a3) - alf(az,aB) +
_+ alazasg(bl,bz) - alazg(bl,bz)_

[alaz(l—a3) + alaza3 - alaz]g(bl,bz) +

+

[-al(bl-l) + alb1 - ai]f(az,a3)

it

0. B V ) Q-E-D‘

rbllary 6.7. Let o ¢ H2(A,M)B. If there exists an f € a,

ch that £ ¢ CZ(A,MB) then

o ¢ Im{res,: H2(®,M) —> u2(a,M)>}.

A:

Let £ ¢ a with £ ¢ C2(A,MP). Then (t-1)f = 0 = 5,0

= 0 is an obstruction cocycle for o, and of course
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The above corollary will be very useful in the cal-

culations of the last section.

Now consider the map N;: Hl(A,M) — Hl(A,MB) induced

by the norm homomorphism Nz M —> MB. The conditions

needed to assure a lift of o & HZ(A,M)B can be weakened
somewhat and we ‘can say something more about where the
fanmily of obstruction cocycles for o lie by using the fol-

lowing proposition.

Proposition 6.8. o € Hz(A,M)B and let NTu be an obstruc-

tion cocycle for a, then there exists a lift of o under

-

r °'H2(¢,M) —_— H2(A,M)B if and only if

[NTu] £ Im{N#: Hl(A,M) -_— Hl(A,MB)}.

Proof. Suppose there exists an extension to o, then by
the previous theorem, there exists an £ £ o and an obstruc-
tion cocycle NTu for o such that {t-1)}f = 6Au where

1NTu] = 0 s'Hl(A,MB). If N{u' is another obstruction co-

cycle for o, then there exists an f' e o, p' € C1(A,M)

uch that (t-1)£' = §,u'. Since f noEY, £ = £+8,h for

ome h ¢ Cl(A,M). Then

(t=1)§,h = (1=1) (£'-£) = &, (n"-n).

GA{(T-l)h + u=-u'l =0,
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Hence{(r—l)h S TR u'je Zl(A,M). Tet v ={(T*l)h + U - u?,

then p' =ju + (1-7)h - v. Applying N_ we get
T

| S - - _ _ N l B
NTu = NTp + NT(1 T)h NTV = NTu NTv. So in H (A,M")
we have [NTu'] = INTu] - [NTv] = ~{NTv]. However, since
vV E Zl(A,M), we have that [NTu'} = -[NTv] = N:[—v] €

mi{N*: #(a,1) —> ut(a,uP)},
For the converse, suppose we are'given an obstruction
cocycle NTu for a corresponding to some £ e @, such that

: * - = =
[NTu] £ ImNT. Then we have (t-1)f SAu and NTu NTv + SAr

for some v ¢ Zl(A,M), r e CO(A,MB). Since NT(u-v) = GAr,

i

[N_(p-v)1 0 ¢ Hl(A,MB). Furthermore, §, (up-v) =
T A

M - Sav = 8,1 = (t-1)f. So N_(u-v) is an obstruction
cocycle for o which becomes 0 in Hl(A,MB). Therefore, o

has an extension.

Corollary 6.9.I£H1(A,M) = 0, then o has an extension in

HZ(Q,M) if and only if [NTu] = 0, for all obstruction co-

To further simplify the problem of lifting the re-

riction map we have the following proposition.

Oposition 6.10. If Hz(B,M) = 0, then o ¢ Hz(A,M)B ex-
ds if and only if 0 is an obstruction cocycle for a.
instead of NTu being just a coboundary we can assume

1s identically zero.)
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Proof. <Clearly if NTu =0 g Zl(A,MB),then [NTu] = 0.

On the other hand, if Hz(B,M) = 0, then the-diagram

_ ;. .
0 — gzl M-I N_(M) —> 0
[

. i
v
L mP )
i J
B
M- .2 .
nm - 0 (B -
T .
0
induces a diagram , l

1% (a, 8% (8,M))

—> gta,m -2 gl (3,N_M) > u%(a,z) —>
NX li*

wl (a,MB)

nt(a, 82 (B,M))
{

}

qh reduces to



94

— g am—2 vta,nn — e, —

woe |
T

'Hl(A,MB)

where Z = ker{NT: M—>N_(M)}, and 3 is the connecting

homomorphism.
Suppose o extends. Then let N u be an obstruction

cocycle for o corresponding to some £ € o such that

[NTU] =0 ¢ Hl(A,MB). Then 9 o iﬁn%[NT(u)I} =0 ¢ Hz(A,Z).

But § o i*—l[NT(u)]= 3[NT(H)} = [§,ul. So §u = aAu' for
some p' ¢ Cl(A,Z). But then (t~1)f = GAp - éAu'. ‘So
QNTu' is also an obstructioﬁ'cocycle for a. But u' € 2 =

. . So NTu' = 0, and hencé, o has 0 as an obstruction

L

Let NTu be an obstruction cocycle for

€ H2(A,M)B, then NTu corresponds to £ for all £ & ao.

By definition, there exists an £ € o such that

-1)f = §

; aMe If £' ¢ o then £' = £ + SAu' for some

(A,M). Then (t=-1)f' = (r-1)f + ﬁT-l)GAu'
+ (-1)ut = 8, (wt(t=1)u') . So N (n+(t-1)u') = :

-+ NT(T—l)u' = N_u which is therefore an obstruction




95

cocycle corresponding also to f'.

Corollary 6.12. Let f € o € HZ(A,M)B. If H2(B,M) = 0

then o extends to H°(¢,M) if and only if (t-1)f = &,

e

for some uy £ ker NT.

Proof. Assume o extends, then by Proposition 6.10 we can

assume there exists an f£f' & o such that (Tt-1)f' = GAu

with ¢ e ker NT. By the lemma, 0 = NTu, then, is an ob-

struction cocycle corresponding to all £ £ a.

The converse is clear from the proposition.

SQ by the above, if we want to see whether o lifts
.An the case where HZ(B,M) = 0, we are free to choose any
cocycle £ belonging to d; then a 1ift exists if and only

if we can, simultaneously solve the equations

(r-1) £ 8

U
(6) A

NTu = 0

n fact, this is the situation for practically all the

odules on Nazarova's list.



§7. ANTISPECIAL CLASSES

We would like to apply the results of the previous

section to the exact sequences of the type

r h—m
—> w2(o,m) L g2x,m? —> 25

t
0 —> 7 5

2

that recurred so frequently in section 4. If it turns

\-_/

out, for a particular module that r_, = 0, then we know

K

H2(¢,M).‘ However, usually it happens that Ty # 0 and

we get an exact sequence of the form

t 2
0 —f¢ 22 —> H"(?,M) —> Z2 —> 0.

In this situation, there are two possibilities; either

2 (8,m) =zttt
H2(®,M) = zg“l ® 7,.

o distinguish between these two possibilities, consider

he case where H2(¢,M) has an element z of order 4. . Since

must have 2 {

r (22) ='2rK(z) =0
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where Iyt H2(®,M) —> H2(K,M). Hence the element 2Z # 0

of H2(®,M) has the property that 2Z ¢ (\ ker ¢

where A
Keh ‘

K
is the set of cyclic subgroups of ¢. Such an element of

Hz(é,M) is called an "antispecial cohomology class.” This
terminology is suggested by L. Charlap's [1] definition

of "special classes." So a necessary condition for

—_
H2(©,M) to have a Z4 summand is the existence of a non-

-

zero antispecial class in the subgroup 2H2(¢,M) of HZ(Q,M).
In this séction, we use some results of section 4,

and a method suggested by H. Sah to study the antispecial

classes in H2(®,M), for ¢, the Kleinrgroup.

Let Y stand for an arbitrary element of

¢ = {o,1,p,1]p = o1 = 10, &% = ¢2 = 1}.

Now suppose Z is an antispecial cohomology class. Then,
taking K = <0>, L = <1>, and £ = 0 = g in the corollary on
‘page 78, there exists a cocycle representative F for z

such that F(k%,k'%') = kmg, = kF(%,k'). 1In particular,

KF(1,k') = 0, F(2,2') = F(2,1) = 0 and F(k,%) =

W
~
[

o |
——
=
-
[
!

0, so F is supernormalized relative to the canoni--
1l section t: L>K x L. (assuming a given isomorphism

K x L).

ation. Let Ol be the subgroup of HZ(Q,M) of antispecial
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classes, let M = ker{(1+y): M + M} for all y € & and

M = {l+y)M.
NY {1+y)

-T
M n N M

Theorem 7.1. ()Lz _Tp =

[(1-6)M "+(t-1)M

1

Proof. Using MacLane's [7 ] terminology, we define an

additive relation I': Ol—> M with image;

. j-‘l’
ImF=M "0 NM,

indeterminancy;

T a

Ind T = [(1-0)M ' + (t=1)M "]

-and-demain of definition; Def T =0,
‘Let z €0, then by the preceeding discussion, z has

~a cocycle representative F, such that F|KXK-= 0 =Ff

and F(k,%) = 0, for all k ¢ <o>, & £ <t>, It is more

convenient, in this proof, to change to multipligative

notation. There exists an extension
1—>M—>E—> ¢ —> 1

nd a set {r_} of representatives such that

. Because F(k,k) =1 =F(L,8) =




29

and

Define I': Ol — M by
'(z) = P{ot,01).

The relation 'c Olx M is closed under addition (multi-

plication) because if P(21{~= Fl(GT,UT) and P(zz)

F2(GT,0T), then the coceycle FlF2 has the requisite pro-

perties so that Fl(GT,GT)Fz(UT,OT) could be chosen as a

value of F(zl+zz). That 1is,

(Zl,Fl(UT,UT)) + (22,F2(0T,UT)) =

(zl+22,Fl(cT,GT)FZ(cT,cT)) e I.

Claim. Im T =M% pn N M.

Let £ ¢ Im I'.. Then £ = F(ot,01) = F{p,p) where

z2 = [F] eCﬂ. Then

I

L = F(p,p) = F(p,p)rp2 =Ty =T, o= (roxo)(rr)

S0 r tr - = rr . I.e.
- T£ T e 2 f

"[ .
= r . .
2 rTrUrT p |




T . - ' _
L L = (rUrTrUrT)(rTrchrc) =1,

2 -1 and hence £ ¢ M—T.

since (ro)2 = (r ) 1. so 8% =1

T

Now consider resp : H2(®,M) —_ H2(<p>,M). We have,

resp(z) = 0, but resp(z) = [F <p>><<p>]."“So F <p> €

B2(<p>,M) and therefore F(b.p) = £ € NpM. (F{p,p) =
(8G) (p,p) = pG(p) + G(p)).
s
To prove the opposite inclusion, let & e M_ ' N NpM.

Then define F: ¢ X ¢ —> M according to the table

a T
g |1 1

=T

(where, for example, the second line says F(t1,0) = 2-1,

F(t,t) =1, and F(1,p) = l—l). Thén it can be verified

‘that F is a cocycle. Moreover F has the properties that
F(k,k) = F(2,2) = FP(k,R) =1
or all (k,%) £ <o> x <1> and

T(IF} = F(p,p) = %.

: Ind T = [(o-1)M ' + (1-1)M°

].

I

By definition, Ind ' = {m € M| (0,m) ¢ Tl.
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Proof, Let m € Ind 0, then there exists a coboundary

F ¢ B%(3,M) such that

= F =

F <o>X<o> <T>XLTY> F COORLT>

1 and F(p,p) = M.

Let ¥ correspond to the extension
l1— M —> E —> ¢ —> 1

with associated set of representatives {rY}YEQ' Since F |

is a coboundary, this extension splits. Therefore, there

is another set of representatives {r;}YEQ, such that the
section r¥': ¢ + E given by r'(y) = r; is a homomorphism,

- So with respect to this new set of representatives, the i

extension corresponds to the trivial cocycle.

Now define ¢ ¢ Cl(Q,M), via the change of representa-

tives, by r; = cer for all ¥ e . Then for Yy € &,

1l = = (r\'f)2 = gcror =c cY(r )2.

rl
Y2 Y'Y Y'Y Y'Yy

)r Y = 0 or T, we have F{vy,y) 1, so that (rY)2 = 1, when

o]
G,T. Hence we have that 1 = CyCy = cTc:. Therefore

M and c. € M '. We also must have

i
\

_ _ 2 _ 2
1l = r'2 = (rg) = (rér%)
0
= {(cr cr )2 = (¢ Or r )2

6 o0 T T ot o T
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_ o 0.y _ o o, p.2
= (cocTrp)(chTrp) cUcT(cccT) rp
= ¢ ccPctm
Yot oot
Since c¢f = 97 = (cﬁl)T = ¢ T, and ¢¥ = ¢! and since the
o] g g ag '’ T -
¢y commute, this becomes
_ g -t -1 _ (1-1) _, _{o-1) .
1l = C€4CCq C¢ = C4 c. m.
—_ Ar=-1) ;. (1-0) . -T -g
So m= Co - \}% + Since Cy € M and C, € M-,
additively we have m £ [(t-1)M ° + (l-o)M '].

g

Now we show [(t-1)M = + (l-c)M?Tj € Ind T. Let

me (t-1)M° + (1-0)M ', then m = céT—l) . cil—c) for some
£ M"U, c. e MY, Analogously fo the proof that Im T =

T

N NpM we define a cocycle F: 0 x & + M by the table

4] T cT

TT mfl 1 nrl
T} m 1 m

len F has the usual propefties and F{p,p) = m. We will
ve that F is a coboundary by showing that F is co-
Ologous to the trivial cocycle. |

Suppose F corresponds to an extension of M by ¢ with
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respect to a set of representatives {rY} We change

Yed*

representatives by defining

| - | — ] ]
= r and r! =r!' ',
rT S D g T

o g’

To verify'that r' is a homomorphism we must show that

(r')2 2

5 (x!)

= (r')2 = 1 and thét r! = r'r', then the
T P

P g

other multiplicative properties easily follow.

2 A 4] 2 -1
1 = = = . =
_(rd) = Cy¥yCoty = cccg(rc) = Cc ¢, 1 1.

Similarly, (r{_)2 = 1,

(r%ré) = St C%s
=c.c rTfU= CTC;F(T'G)rp
= cTc;rflip = cTcgééle) . cT(G-l)rp
= C ccrp = cocgrp = cgc,c[’rcr,r
= crer, = r&r% = ré.

And finally we have

? = wpen? = rieirhr!

= Gy = wp? e

1.
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Since changing to the  set of representatives '

results in the section r' being a homomorphism, the re=
sulting cocycle is the trivial one, and this new cocycle

is cohomologous to the original cocycle F,

Clearly Def T =0l, so I' induces émhomomorphism

M ', N.M
I'O: o —> ? _Op ~
[(T=1)M "4 (1-0o)M

T

]

Moreover, the preceeding discussion showed that if

T(z) ¢ [('r---l)M—CI + (l—U)M_T] then z = 0, Hence ker To = 0,

We therefore have an isomorphism

0 M N .M )

r’': §l— po 0 =
[(t-1)M "+ 1-q)M ]

T

Q.E.D.

Remark. M—Tfﬂ NpM = M‘_CT n Mt NDM because if m e M ' n NpM'

then m € Mp, and then m = pm = otm = o{(~m) = ~om. SoOm = -m.

S (1~0)M-T] C.NpM because if c¢_ e M ° and

(t=1) . _(1-0) _ -1, 14p
o . = (e .c ™) .

Also, [(t-1)M

=T

e M then ¢




§8. APPLICATION OF ANTISPECIAL CLASSES:

In view of the isomorphism Fo, we shall refer to

elements of M ¥

N M as antispecial cocycles and to

C

elements of [(t-1)M ° + (l—c(M-T] as antispecial co-

boundaries, where og,T, and p are the three generators of
¢I>=Zz><22.
"It will be useful to describe the antispecial co-
) N
cycles and coboundaries in terms of Nazarova's representa-

tions. We assume the generators o¢,t and p =0T correspond

to the matrices A, B and AB respectively. PFirst we com-
pute M ' N N M = M%h u " A N M.
The action of o on M corresponds to the matrix A

acting on Zn; So MY = kexr (E+4) .

W 2F 1 o D) W 2W + D,2 0
(E+A) X _ 0 D2 0 X\ _ D2Y _{0

Y oF Y 2y 0

7 0 ] 0 0}
f and only if ¥ = 0 and D,z = -2W.

so M™% = {(W,X,0,2) D,z = -2W}. M ' = ker(E+B).
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W 2F 151 0\ /W 2W + DY
(E48) X _ 0 0 DyilX ) D42
Y 0 Y
% . 2E/\Z 22
-T o - -
SsoM = {(W,X,Y,0) |D1Y = -2W}. Therefore M N M =
{(0,%x,0,0}}.
] ’ 1 ] ] 1
W 2E Dy Dy\[W 2W + DY +D,7Z
[ ] 11 ] T | ]
. X N 2E | -D, -Dy{iX B 2% -D,Y -D,Z
1 I AN -
Ply 0 y! 0
' Ty ’
Z A 2kl \z \ 0
Setting ’
L] ? A
/2W +D,Y +D,Z 0
[ ] 1 [ ]
2X -D,Y -Dj% - | %],
0 0
0 0

] ] ]
we get X = 2X =~ D2Y - D3Z

L ]
where -DlY - D4Z is of the

] f L]
. Or, replacing Y and Z by -Y ,



L] L] ] 1 )
where X ={2X + D,¥ + Djz ]andKD1¥ +D

We now calculate [(o-1)M

H n ”
et (W ,X ,Y ,Z

So (o~1)M

(c-l) (Wll ’Xll 'YII '0)

so (t-1)M" % = {(0,-2%x '

T E1 ’
} Therefore

+ (T-1)M"

n 1}
{(07%,0,0) X =(-2X + D,Y Jand D

' '
we have Y

+ (o-1)M~

[(r-1)M

X =[~2x" - 2X

(=T = B N =]

—

"
Y -+ D



where

and

- ¥ 1
Since X and X are free variables we can rewrite

these defining conditions as

0 | ,_ .

X ) ‘ L . .
o || Such that x =[2x + DY + 932]

0

where

DlY = 2W

and

D4Z = 2W‘._

Summarizing we have:

(1) Antispecial cocycles:

— ' .. I
such that X =[2x + DY + D3z] -

o M o

o

where Y and Z must also satisfy a) [DlY + D4Z]='2W.

2) Antispecial coboundaries:

t ' .
such that X =12x + D,Y + D3Z] .

©C O M o



where Y and 2 satisfy

b} DlY = 2W

[} . ¥
with X ,W,W , + W free.

Note: Let Zgzbe the group of antispecial cocycles and

let Bglbe the group of antispecial coboundaries for a

given module under discussion.
Wef&ive as an example, the calculation of Q] for

modules of type {2b}.

nl-l nl ]
5 E.. - Ol1 C
= n \\\ ’
1 \\\\1 | ) |
1 1 ‘
s | \1 \
G -. -0 1

The ranks of Vl’ V2, V3 and V4 are Dy, Dy, N -1l, and n

1 1

respectively.

Y + D4 = 2W D

2

Zq: condition a), D Y+ 2 = 2w

1 1

which implies that Z = 2W - D;Y. Then evaluating X, we have

- ' . '
X =[2x + D,Y + 7D3Z]=[2X + D,Y + 7]

=[x’ + DY + (2W—Dl§{]= 2(X +W) + (D,~Dy) Y.

-1

Now (D2-D1) = 1::::}i . which has maximal



column rank (nl-l), so it spans a free abelian subgroup

[ §
V of V2 of rank n, . Morecver (Dz—Dl) is a submatrix of

1
?§g ; 1

O

the unimodular matrix -1
1

. .
and therefore V is a rank (nl—l) direct summand of Vz.

_ nl-l
Hence {X} =27 @ 2 = ZQe
N2 .
Finding By is easier: the conditions

o .. 0 5| o
2W &

. 1 .
( imply : :
n A \1 '\']Vl ‘jh .

Y

1
\e]
=

4
24
I
N
[42]

b) D4? = 2W

also D4Z-= 7 = 2W .l Then

X =[x + D,Y + D3z]=’[2x' + DY + 2]

=[2x' + D, (25) + 2 = 2(X +D,S+W ).

2

ny

1 l —
Since X is a free variable here, {X} = 2z *, and therefore

n
é = 27 l. Furthermore {X} can be spanned by the columns
220 -0 .
o2 . 5
of the matrix | - o |while Z'G is spanned by the
' 2
o 2
-1

So in evaluating



&3

2
Gl -~
-2 n

we can mod out within each "column summand’

n.-1 _
and get Cﬂﬁfzzl (i.e., if Li«; Ki i=1,...,n then |

n
iglKi a
m @ Ky/L).
o1, 71 ‘
i=1 t

-

Remark: In generél, the evaluation of Ol will not be neces~-
sary for our purposes, however, the characterization of . :

just the antispecial coboundaries will usually suffice,
Suppose that z ¢ Hz(Q,M), then if K is a cyclic
order 2 subgroup, HZ(K,M) has exponent 2. Therefore
drestzz) =.0, for all such K. Hence 2z e (] for all
Z € H2(®,M). ' - f
We now give a procedure, which will be useful later,

for constructing an antispecial cocycle representative

for 2z and the corresponding value of 3(22), and T0(2z).

Let K = <0> and L = <t> be two of the order 2 sub- |
| - | i

groups of ¢ then ¢ ~ K x L. Let f, and g be arbitrary co- |

cycle representatives of resK(Z) + resL(Z) respectively.

'hen by the corolliary of page 78, z has a cocycle repre~ “

ative F with the property that
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F(kf,k'2') = kF(2,k") + £(k,k') + kk'g(%,2').

In particular F(c,o) f(o,0), F(t,7) = g(t,T) and F(d,r}

= 0. We note that f and g are determined by the elements

fl = f(o,0) and g, = g(t,7) and the cocycle conditions

Amply that fl e M9

and g, € M (e.g., 0f(o,0) - £(1,0)
+ f(o,1) - £(o,0) = 0). If we let F(1,0) = m, then

F(GT,GT? = om + #l + gq-

We would like to find a wvalue for T0(22), and to that

end, we must modify the cocycle 2F € 2z so that it has cer-—

tain properties. Define h ¢ Cl(®,M) by h0'= -f,, b = -9y
and th = th + hc = _fl,” Ggl. Then the cocycle

oF +-6®h € 2z has the properties that

(2F+84h) (0,0) = 2F(0,0) + (l+o)h_

2f1 + (l+0)(—f1) = 2f1 - 2fl

= 0.

Similarly (2F+6¢h) crex<s = Q, and finally

(2F+6®h(G,T)

h!

2F (o, 1) + chT - hGT + hU

= 0,

associate a value to I'(2z) via this cocycle.
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We get £hat .

[(2z) = (2F+5@h)(GT,0T) = 2F(oT,o01) + (l+0'r)hOT

2(0m+fl+gl) + (l+0T)(-fl—cgl)

2om + (1-1)f; + (l-d)g,
so that | s |

r@z) = [20m+ (1-T) £; + (1-0)g,]

{

Remark. Suppose B%n= [(1-0)M "'

)

+ (1-T)M 7] = 2V, and

T

fl can be chosen in either M' or M"_ and that g, can be

chosen in M or M_U. Then[ZUm + (l*T)fl + (1—o)gi]€ 2V2.

Therefore FO(ZZ) = 0, and thus 2z = 0 ¢ ULE_HZ(Q,M). We
have therefore proven the following lemma (which is ap-

plicable in many of our cases) .

Lemma 8.1l. Suppose $ has two order 2 subgroups <o>, and
<t> such that the generators of H2(<G>,M)@ and H2(<T>,M)®

have representatives {f,}

igAJ’ {gj}jeA' with £, € M or

M T, and gj e M° or M %for all i ¢ A, 3 & A, Also sup-

2 T

;ﬁose B® = 2V2 where B2 = {(l~0)M = + (l—T)M-U}.- Then

_2(¢,M) has no elements of order 4.
As an application of the above lemma, we resolve the

uestion of the existence of elements of order 4 for modules
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of type {2b},

We calculated on page 109 that [(1-0)M T + (1-1)M~O]

2V2. Also for these modules, the discussion on page

showed that HZ(<o>,M) = 0, ang 02 (<15 ,M) = z, (=02 (<7>,m) %)

has generator {al]. Since a; e MT, (and of course 0 ¢ MU), |

H2(@,M) has exponent 2 for mbdules-of this type.
We will show in the next section that in fact, there

are no cohomology elements of order 4 for the other modules

as well.




§9, FINAL CALCULATIONS

In this chapter, we systematically take each module

type whose cohomology is in doubt, and apply the results of

section 6 on lifting the restriction map. If the re-

2

striction map in gquestion is non-trivial we then find B

and use Lemma 8.1 where it is applicable. We take these
modules up in the order: {2al}, {9a}, {2b}, {9b}, {s6al,
{6b}, {4a} and {4b}.

Notation. ¢ = {U,T,UT,IIGZ = 1% =1, g1 = T0}. |
A = <0>, B= <1>, AB = <0T1>.

For convenience we 1%st here the forms of GAM, SBM,

GABM, ker No’ ker NT, and ker N__, which can easily be

oT

calculated from the matrix representations

§ M = N.M = {(2W+D,%,D,Y,2Y,0)}
N 1
ker N = {(W,X,O,Z)|D4Z = -2W}
6pgM = N.M = {(2W+D1Y,D3z,o,2z)}
ker N_ = {(W,X,Y,0)|D1Y = ~2W}
GABM = Ny, = {(2W+D1Y+D4z,2x-D2Y—D3z,0,0)}
ker N = {(W,X,Y,Z)|D1Y+D4Z = -2W, D,Y¥+D,2 = 2X}
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and must decide whether or not r,t

I
o8
=

{t-1)f

'. NTm = 0 K

the equations (6) on page 9SQ

‘equations

(T—l)cl

Modules of type {2al. D = g\
10|
<1
AN
[»]
: ' We have an exact sequence
n.-1 r
0—>z.t > HZ(o,m) 2> 3

H? (2,M) —> B2 (a,M)B = g7

r, # 0) if and only if we can“solve the equations

116

is onto. For these modules H2(B,M) = 0, and Corollary 6.12

is applicable. So we may choose any cocycle representative

f for the generator o of HZ(A,M)B, and then o lifts (i.e.,

(Since every u € Cl(A,M) is completely determined by its

only possible non-zero value Uy =m, we write m for u in

For modules {2a} the generator o of HZ(A,M)B has the

basis element cy (see page 15), as a cocycle representa-

_tive. Then we claim that there is no solution to the

2
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0 then m = (W,X,Y,0) where

i

For suppose N _m

(Y = -2W. Then & m = (2W,D2Y,2.lY,0). But

0 D\ /0 (3 %
; -2E D 0 0
T =) "\
o/ \o 0

- 8o for a solution we must have (2W,D2Y,2Y,0)

([1,0,...,0],0,[-2,0,..;,0],0) which is impossible since 2W #

{1,0,...,0}. Hence r : H2(®,M) — Hz(A,M)B 18 the zero

map and the exact sequence becomes

0 — 2,5 T > B (e, —> 0.

{oal. we carry out the analogous calculations for modules
of type'{Qa} at this point, because the calculations are
very similar to {2a}.

Here we have the exact sequence

n,-1 r n
1 2 T 2
0 —> Z2 —> H ($,M) —> 22 —_ er —_—
and we examine rT: H2(¢,M) — Hz.(B,M)A o ZZ' H2(B,M)A

has a single generator for which we can select the basis

- element dn as a cocycle représentative. Moreover,
4

Hz(A,M) = 0 here so we can apply the same corollary as
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before. Therefore r. # 0 if and only if there exists a
solution to
(U--l)dn4 = § M

with Na(m) =0

Here too, there is no solution, for if Nc(m) =0,

z,0,22),

B

then m = (W,X,0,2) with D,2 = -2W. Then §zM = (2W,D,

but (o-1)d =
Ny

H

: oy [0
-2E | D, ol . [0 |
0 0 0 %

o :
) . -2E ﬂ (a)
. . "2
. 8ince there does not exist a W such that 2w = {0,...,0,1]1,

there is no solution. 8o, as before we have

nl—l

0 —> 22

—> H2(8,M) —> 0

{2b}. D=

s\

Turning to modules of type {2b} we have the exact

. Sequence
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n r _ n
21 —> B2 e,M 5>z —> 7.2

0 —> Z

2 2

Here L H2(®,M) —_ H2(B,M)A o Zz. The basis element

L a, (see page 18) is a cocycle representative for the gener-
ator of HZ(B,M)A. Since a; ¢ MA'Q:CZ(B,MA), Corollary 6.7

implies that o € Im{r 3 H2(®,M) — HZ(B,M)A}. So r_ is

onto and the exact sequence is

Ir
—> "2 (o,M) —L> z, —> 0. - .

ny

0 —> 22

Since we have shown previously that HZ(Q,M) has no

elements of order 4 for modules of this type,

nl+1

H?(6,M) = z,b .

The situation for modules of type {9b} is similar.
We have
n r

n
0 —> 2.1 —> g2 (6,M) > 7. —> 7.2 >

2 2 2

- Again, the element a, serves as cocycle representative

for the generator of H2(A,M)B (see page 31). Since

e

1€ MA,r the generator 1lifts and therefore we have the | :

exact segquence



n
0 —> Z21 — H2(¢,M) —> Zz —> 0.

A similar argument and calculation to the one for
case {2b}, shows that HZ(Q,M) has no order 4 elements.
Hence

n,+1
B2 (e,m) = 2,0 .
{6al. | b= [1 1
\\1 \\1
1 1-'0
\\1 ™~ ]
Q-0 1
T

Because of the form of the representations, {6a}

presents a special problem. We have the exact sequence

o r n
——— Hz(@,M) RSN 22 —_— 222 N,

n
1
0 —> Z,

and would like to find a representative for the generator

i

of H2(<UT>,M)A. The basis element a; = 0 is clearly a {
_ _ 0 ‘
0/ \

cocycle. We must show that it is not a coboundary.

¥-D

NGTM 6UTM = {(2W+D1Y+D4Z,2X—D2

3Z,O,O}. In this case .

GGTM

{2W+Y+Z,2X~D2Y—D3Z,0,0}. This submodule is spanned




by the columns of

2B 0 E | E

0 0 0 0

_ 0 0 0 0

Bv column operations this reduces to
2E E 0 \ 2F _ B 0
‘ 2E | =Dy | -D,+D3| = 2E '1\ -i\
o3 N\

from which it is clear that aj Z g‘o‘—cM'
So a; is a cocycle representative for the generator
of I—?l2 (-<c‘“c>,M)A. Moreover ay € MA-, soc Corollary 6.7 shows

that the generator can be lifted.

So we have a short exact sequence

ny 2 Y
0 ——>2z, —> 1 (3,M) =5 2, >0,

To determine whether Hz(é,M) has any elements of order

4, we compute Bc,zT_ .
The coboundary conditions
— '

4Z 20"

/
2

arl:e Y=2W' and Z=2W". Then Bo, =

b) D

OO MO
»s
]
]
»
-+
o
*)
R
+ .
=]
W
™
]
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X = 2% % 2DZW' +.2D3w" where Xe_znz.

]
DOXS

g 2 N . .
Hence Bg= 2Vé. To apply Lemma 8.1, note that we
can choose as representative for both HZ{A,M) andJHz(B.M)

the cocycle 0 ¢ Mﬁ%MT. Therefore H2(§,M) has exponEQE 2

and we have -

n_+]
B2 (p,M) = 2,1

\

Turning to modules of type {6b} where

1\\ 1\\
o 1 1
, D = E N E
5 4 \33
From section 5 we had t

he exact sequence
' nis I
0—~—+~z;l l*-a»H2(§,M) ~¥14-22 — g2,

For these modules H2(AB,M) = 0 and as in cases {2a} and

{?ai-we can apply Corollary 6.12 to the representative dn4 of

‘the generator of Hz(B,ﬁD§==22. S0 the generator of H2(B,M)

lifts if and only if we can solve the equations:

(0T-1) dny = Sgm

-1
02 (3,M) = zo1”




So, we recall that for {6a}] we had

' n.+1
#2 (o,M) = z,t -
and for {6b} we have —
o ’
H2(o,M) = 7 I,
| 2

{4a} ' D =

\

Al

Coming to the next to last case, that of modules {4a},

we have the exact sequence

|
n : I n |
1 2 o 2 |
0 —> 2," —> " (e,M) —> 7, —> Z,%. : | i

We can choose a, € MB as representative for the generator
1 )

I

of H2(A,M)B. So as before, the generator 1ifts, and we have

a short sequence

L2, Tr
0 —> 2,7 —> B (¢,M) —> Z, —> 0 : .

We calculate B%_= [(l-cr)l_\’l-T + (l-T)MhG].
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‘The antispecial coboundary’ conditions

] o .. Q 31 o
a) D, Y = 2w 1 . J1 .
imply : \ ' = | {= 2w
" ) - LN
1 Zq 24
d i oW
an 1 = = 2W . Both imply
© o 7. Zem

that Y_= 2Y , and 2 = 2Z for some Y ,Z E'Zm. Then

X = 2X+D2Y+DBZ with X freel}. Here

X
O o Ko

— ' ' ' '
X = 2X+D2(2Y )+D3(ZZ ) = 2(X+Y +Z ). Since X is free, we

see that 3&

= 2V,. We apply Lemma 8.1, noting that as re-

presentatives of HZ(A,M)B and H2(B,M)A we can choose the

-elements a, € MP and a; e mP respectively. Hence

2 ‘ 5 n, +1
H” (9,M) has exponent 2 and therefore H (®,M) = 7

2 -

*

Finally, we come to modules of type {4b}. The

Hochschild-Serre sequence yielded an exact sequence
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inf . .
—_— Hl (®/<0>1M0) —_— Hl (@:M) — H0(®/<U>1Hl(<0>rM)) —_

. inf - .
—> 12 (8/<05 M%) 5 52 (0.m) —> B (0/<0> 1Y (<o>,M)) —>

where inf is the inflation map .
To f£ind Hz(@,M), we take advantage of the fact that
HZ(K,M) = 0 for K = <0o>,<1t> and <o1>, So in this case

12 (2, M) =0 . We calculate (l for this case.

The antispecial cocycle conditions
1. o\f¥1

implies \\\ e

i0o ym

Then, recall
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X = 2X4D,Y4D,27 C Z". Here

[
o o X o

2X + ) + 2W +

]

X = 2X+Y+%

[1]

= 2(X+W ) + | .
Zm—l-zm
'Zm. +ym

1-1

= 2(X+W ) +

-1 O
14

Since the first m columns of the m x (m+l) matrix

1-1\ ° | |
\\\\:10 form a unimodular submatrix, the elements of
11 ’ :

Z,~Z {
172 -
the form : span all of ZM_and therefore, the elements

4 -z
m-1 "m

+
Zm Ym
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z,-2, .
" - M = M
2{(X+W ) + . generate Z . Hence {X} =& .
' z +2z :
m-1 "m
“n + Yy
Since m = rank V, = rank V, = rank v+l ;“nl+i, we have
n. +1
2 _ - 1
Za—Vz—Z .

Now to evaluate Bé; the coboundary conditions

DY = 24 251 . 2 "
imply ! = 2W and . = 2W .
" . *
Dyz = 2W Y-l : A2,
e 2
. 0 oM
Bo ¥ = - + .28 and Z = . + 2T for some S,T & & .
0 :(
Y 0/
Then
. _ Yy
X = 2X+D2Y+D3Z = 2X+¥+72 = 2X + Q .
0
z
. m
n.-1
so {X} = 7.2 @ 22072 = 52 g 3 17, mpo evaluate (0, then,
we note that B%lis the submodule of Z2 = V2 =

'{(0,[xl,...,xn +l],0,0} consisting of all elements of
1

the form (0,[xi,in,...,Zxél,x£+1],0,0). So




n, -1
Ol = z21 ~ H2(3,M) .

Hence the exact sequence becomes

"2 ing i, Y MY Ml

1
—> 2,° —= H (@,M) —> 2z, 2 —> I, —> %, —>

From this it follows that Y3 is not injective, thus

Im Yo # 0, but then Y, must be injective so that Yy = 0y
and inf is surjective.
n *
1 z,° |
So H™(0,M) = — ey — .
ker inf:{H (<t>,M")}+H"(¢,M)}
But from the usual exact sequence
0 —> mY (0/<0>,u%) irnf, al(o,M) —> HY (<o>,M) % —>
1 )
we have that ker(inf) = 0. Hence H (¢,M) ~ %

2

n,

1 o
H™(2,M) = 2,°.

We can summarize Hl(Q,M) and H2(®,M) for these modules as

follows. If n, = rank Vl’ n, = rank V2 then in all cases

n2'

1 .
H (@’M) - Zz Ld

H2(®,M) for each case is as follows.




Module type




Module type

. n,~-1
' 1

. : 9b Z2

. 10 22




§10. CONCLUSION

The computations of cohomology groups in this paper
have applications to compact flat Riemannian manifolds.

Charlap has shown [1 ] that given a group ¢ and:a
module M over Z[®], there is a one-one correspondence be-

tween "semi-linear equivalence classes" of "special classes"

in H2(¢,M) and diffeomorphism classes of flat manifolds
with ¢ as holonomy group and M maximal abelian in the

homotopy group of the manifold. In this paper we have

‘shown how to calculate_H2(®,M) for the modu;es on Nazarova's
first list, and have provided explicit formulas for lifting
cohomology classes under the restriction map. So given a
module M, it is possible, moéhlo combinatorial difficulties
to ascertain what are the special cohomology classes, and
-the corresponding fla£ manifolds.

The techniques developed hére can be applied to the
modulesAon Nazarova's second list. Howéver, since there
appears to be an error in that second list, we have not

studied those modules at thisg time.
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