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Abstract or the Dissertation
ANTI~HOLOMORPHIC INVOLUTIONS OF ANALYTIC
FAMILIES OF ABELIAN VARIETTES
by

Allan Russell Adler
Doctoxr or Philosophy
in
Mathematics
State University or New York at Stony Brook

1973

Tn this paper, we investigate anti-holomorphic involu-
ticons or certain analytic ramllies or abellan varieties para-
metrized by compact local Hermitian symmetric spaces. One
rirst observes that such an involution must be ribre preserving
and thererore induce an anti~holomorphic involution or the
parameter space, which is an invariant or the origlnal involu;
tion. By meansg or this observation, one can reduce the problem
to that or describing anti-holomorphlc maps between complex
tori, which 1s easlly solved. Namely, every anti-holomorphic
map between complex tori 1s an anti-holomorphic homomorphism
_ rollowed by a translation. As one varies over the parameter
space, one obtains an "analytic ramily or anti-holomorphic
homomorphisms" and an "analytic ramily or translation parts".

These are classiried by certain cohomological Invarlants or

iii.




the data definingrthe fibré variety which, together with the
involution induced on the parameter space, constitute a complete
set or invariants. In Chapter II, we obtain & necessary and
surricient condition ror the existence orf an antl-holomorphic
involution of a ribre variety with prescribed invariants
{ Theorem 1). In‘Chapter IV, we specialize our results to the
cage or analytic ramilies or abellan varlietles belonging to
totally inderinite quaternion division algebras over totally
real number rields., In thig case, the invariants have a natural
description in terms or the dilvislon algebra, and the existence
theorem specializes to arithmetic criterion ror the existence
or involutions with prescribed invariants {Theorems 2 and 3).
-In the course of determining fome of these invarliants, we
have had to compute the group of holomorphic sections or thesge
ribre varieties., This is done at the end or Chapter T and
Chapter IV and ylelds an interesting class of‘algebraic cycles

on the tibre-varlety.
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CHAPTER O.

INTRODUCTION

A gquotient space U = INX or a symmetric domain X by a.
discontinuous group I’ 18 & projective algebraic variety.
Moreovér, U is orten the parameter space or & ramlily V or
abelian varietlies.

In that case, V is also a projective algebraic varietyQ
It is to this ract that the arlthmetic theory or the arithmetic
group I' owes 1ts success. For an arithmetic discontinuous
group TO acting on a non-Hermltlan symmetric space XO, this
powerirul resource 1s not avallable., However, as John Milson
has suggested, ir we could realize U_ = FO\XO as & real

algebraic varlety in PN

(R), we could attempt to study the
deeper arlthmetic theory or FO. According to thls point or
view, one could, for example, study the arithmetic or the
orthogonal group or a quadratic rorm over a number rield by
studying the unitary groups of the corresponding Hermitlan
rorm over all guadratic extensions or that numper rield.

With this alm in mind, there have been several investiga~
tions in recent years or the possibility or realizing such a
maniroid Ub = FO\XO as a connected component or'a real cross-
N

section P'(R) N U or a local Hermitian symmetric space U = T\X

embedded in PN(C) and derined over R. Thls problem 1s reduced,
usling Well's results on the rileld or derinition or an algebraic

variety, to the investigation or anti-holomorphic involutions

l.




o or U = T\X.

Harris Jarree [6] has classiried the anti-holomorphilc
involutions or Hermitlan symmetric spaces X and Steve Kudla
[4] has investigated anti-holomorphic involutions or U = I'\X
Tor thé case orf an arithmetic group I' belonging to a guaternion
algebra and acting on a product of coples or the upper halr-
plane,

Our purpose in this paper is to investligate anti-holomorphic
involutions ¢ or certain ramilies V& U or abelian varleties
paranetrized by a local Hermitian symmetric space U = \X.

We begin by observing that such an involution ¢ must bé
ribre preserving, l.e. there must exist an anti-holomorphic
involution UO o U such that g = Goow, Thererore, cone 1is
reduced to 1) investigating conditions on an anti-holomorphic
involution o, on U which will guarantee that it is induced in
thils manner, and 2) glven a 95 satisrying these conditions,
to classgiry all anti-holomorphlc involutions ¢ or V which
induce o, on U. The first.of these problems 1s solved by
Theorem 1 which glves a necessary and surricient condition ror
o, to lirt to V. |

Since o must be ribre preserving, we can'view 1t as an
"analytic ramily or anti—holomorphic‘maps between complex
tori’. Such maps are Well~known‘to nave a particularly simple

Torm, namely, they can be uniquely wrlitten as an anti~holomor-

phic homomorphism rollowed by & translation.




3.

As one varies over thé parameter aspace U, one obtalins an
"analytic ramily or anti-holomorphic homomorphismsg®, i.e. an
anti-holomorphic mapplng C : V = V which Induces a homomorphlsm
on each ribre, and an "analytic ramily or translations", i.e. an
anti-holomorphic mapping b : U= V such that fob = Oye

In Chgpter fI, we shoﬁ that the translation part b is
classiried by an element of HJ(F,IJ, where I', L, are data derining
V (namely T' is a discontinuous group acting on X and L is a
lattice on which I' acts). In Chapter III, we derine cohomology
with non-abelian coerricients and use this to classlry the
homomorphism part C.

In Chapter IV, we speciallze our results to the case or
an analytic ramily or abelian varieties belonging to a totally
inderinite quaternion division algebra D over a totally real
nmumber rield k. In this case, the invarianfs or g, described
above, have a natural interpretation in terms bf the arithmetic
or the division algebra&' In this case, we can prove that 1ir Oy
has a rixed point, then it 1lirts (Theorem 2), Moreover, ir we
specialize Theorem 1 to this situation, we obtain an arithmetic
criterion ror the existence or lirfts in‘case Oy does not have &
rixed point. Finally, at the end or Chapter IV, we apply ouf
results on the group - of sectlons or V at the end or Chapter I
to the exact determination or thét group in this special setting.

This provlides us with an interesting‘class.of algebraic cycles

on V.
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It is quite likely that we can extend our arithmetic
results to the general case by consldering ribre varieties
belonging to a semi-gimple algebrea with involution over a

number rield. We have already made some preliminary investi-

gations or this posgibility, the results or which will appear

in a subsequent paper.
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CHAPTER I

KUGA 'S FIBRE VARIETIES

Lo Iet W be a vector-gpace of dlmension 2n over the rield R

o real numbers, let WGj = W ®R

denote the Grassman manltrold or compleX n-planes

¢ denote i1ts complexirication,
and let Gr(wm)
P in W$. ‘ |
Ir X ig any complex manifold and if g is a holomorphic
mapping or X into Gr(Wy), then ¢ determines a holomorphic
vector-bundle g(¢) over X in the rollowing way. The total
space Ecp or p{y) consists or all pairs (x,v) belonging to

X X W, ror which the vector v belongs to the n-plane p(x), and

€ T
the projection mapping EQP —~Ps X is'given by.ww(x,v) = X. The
addition and scalar multiplication are derined by the rules
(x,vl) + (%X,v5) = (x,vl+v2), ce{x,v) = (x,cv).

2; By a complex structure on the real vector space W, wWe
mean a linear endomorphism or W such that J2 = ~1W. Ir J is
glven, we can define on W the structure or a complex vector
space by the rule (a+bi)+v = a-v 4+ bJ(v), ror a,b € R and

v € W. We will denote by (W,J) the complex vector-space so

obtained.

CIr J is a complex structure on W, then its C-linear

extension to Wm satlisries Jg =’lw , and we can wrlte
¢
_ ot - + . ~ . PN
W¢ = WJ @ WJ, where WJ is the i-elgenspace or J and WJ is the
~i-eigenspace or J. Wg i g complex n-plane in Wm canonically

5.




6.

+

assocliated to the complex structure J, and we say WJ

belongs
to J.
It is eaéy to see that the mapping w - W—iJ(W) derines an

isomorphism or XJ(W,J) onto Wgo

3. Suppose we are glven a non-degenerate skew-gymmetric
bilinear rorm B : WXWk R. Denote by HB the set or all
complex structures J on W Ior which the bilinear rorm
Sy + WXW = R derined by SJ(x,y) = B{x,Jy) is symmetric and
posltive derinite.

We have a canonlcal injection n @ My = GT(W®)
J e u(J) = W} which maps ¥, onto an open subset of the sets

given by

or n~planes totally isotropic ror B. Thus, H., has a natural

B
structure or complex manirolds ror which the mapping # 1s

holomorphic,

k. Tet X be a bounded symmetric domain and let I' be a group
acting holomorphically and properly discontinuously on X.
Suppose that T\X is compact.

Let Py ° ¥ = ¥_ be a holomorxphic mapping, and let

B
P = wop, 1 X - Gr(W®). By the results or §1, ¢ determines a

holomorphic vector-bundle g(ep) = (E@,W@) over X. The ribre

—

T (x) is Just {x)} x ¢(x).
Using the remark at the end or §2, we derine, ror every

x € X, a complex linear isomorphism i, : (W,9 (%)) ~ ¢(x) by

the rule A (v) = VHimO(x)(v).'




T e

Iet L be a lattice in\w such that B is integer valued on
. x L. Let Aut(W,B,L) denote the group or all linear automor-
phisms g or W-such that

1) g(n) = L.

2)  Ble(x),a(y)) = B(x,y) ror all x,y € W.

4

Let p : T = Aut{W,B,1) be a representation. ILet I' denote
the semi-direct product or I' and I via p. Explicitly, T = T;(L
with the group law derined by (yl,@ﬂe(yg,Lg) = (yl,yg,Ll+p(Yl)(£2)).
We require that ror x € X and v € [', we have
=

o (Yox) = p(y)ep (x)ep(y)™". Tt rollows that ¢(v-x) = p{y)(w(x)).

We derine an action or T on E@‘by the'rule
(yid)-(x,v) = (Y»x,AYUX(i) + p(y)(v)). It is straightrorward
Lo verlly that in this way T acts holomorphically and properly
discontinuously on ECpo '

Denote by V the complex manirold f\E$ and U the complex
manirold MNX. |

For v = (y,4) € T, the diagram

ot

B

Y > B
P @ _
' m - ls commutative.
T J @ \

X sy X

It rollows that w$ induces a holomorphic mapping V —r—s U.

Denote by V || V the set or all ordered pairs (vl,vg)

such that v(vl) = 7{vy). For (vysvn) € v | v, we can




‘o
L]

unambiguously derine w(vy,vy) to be w(vy) = w(vy).
The addition in Ecp determines & mapping -+ : V
which is holomorphic, and the O-section or E@ determines
a holomorphic section ©t : U= V. Hinally, the map
(x,v) b (x,-v) or EQp determines a holomorphic map
6 : V- V. ‘
In thls way, the sextuple (V,7,U,+,n,8) can be viewed as
an analytic rfamily or compact complex Tie groups. Moreover,
ror each x € 1, v"l(x) has the structure or a polarlzed

abelian variety.

Hencerorth we will denote by F, the ribre r—l(x).

5. We recall now, ror ruture rererence, the rollowing ract
which is proved. in [1]. T acts on XXW by the rule

(¥:2) (x,u) = (yex,44p(y) ") .

Iemma: There is a unigue structure of holomorphic vector-
bundle on X xW such that I acts holomorphically and such that
ror all x € X, the complex structure induced on the vector-

space [x} XW is mo(x).

Actually, we have essentially already proved the exlstence,
for the mapping A : X X W = Ecp given by (x,w) = (X,XX(W)) is
O ) . .
a bijection which induces on X XW the desired structure. For

the uniqueness, see [1].

6. As we noted in the construction or V in &4, the group T




9.

acts holomorphically and properly discontlnuously on the space

E_. Thererore, the subgroup I or T acts holomorphically and

¢
properly discontinuously on E@, and we denote by V# the quotient

space T\E®’ The projectlion mapping w@ : Ecp -+ X commutes with

the action or I' on these spaces, and thererore induces a mapping

# #

r V' = U. The pair (V#,W#) 18 a holomorphic vector-bundle

#

over U. It is proved in [1] that ror all g, HY(U,v") is can-

onically isomorphic to H(T,W).

7. The mapping A : XXW = E@ constructed in §5 maps X x I onto
s subspace A or E$, Tt 1s evident that & is a complex submani-
rold or E@ invariant under the action of T'.- Denote by A the

quotient space I'\A, which we view as a subspace or V#@ A is a

shear over U. It is proved inm [1] that ror all g, AHU,A) is

canonically isomorphic to H(I',L) and that the diagran

nd(u, 1) > 1%, v¥)

is commutative,

Hq(r,ﬁ)

BN, 1)

v

where the horizontal arrows are coerricient homomorphisms and
the vertical arrows are canonical isomorphisms.

In particular, we have Hq(U;V#) = nH(u,n) ® R.

8. In this sectlon, we compute the group = or sectlons or

the ribre variety 7« : V = U.
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In the category or analytic ramilies o1 complex Iie groups

over U, the seqguence

*

(*) O= A=V = V=0 is exact,

where V# = V is the natural mapping I‘\Ecp - T\Eon

#

Denote by " the shear of germs or holomorphlc sections or

V#, and by v the shear or germs of holomorphic sections or V.
As we noted in 87, A is already a shear. Then the sequence
(%) determines an exact sequence
(#%) 0 A=3tayao
or sheaves over U.
We thererore have an exact cohomology sequence
0~ (U, 0) = 1ot = 1(u) 8 wlu,n) - mtuat).
Of course, HO{U,¥) = -, |
Using the isomorphisms described in §§6-7, we have that
0 - H°(T, L) - EO(T,W) - = 3 HI(P,L) - Hl(P,W)

ig exackt.

The kernel of Hl(T,IJ - Hl(P;W) ig just the torsion sub~

gEToup Hl(P,L)torS‘ or Hl(T,L) go that we obtaln the rollowing
exact sequence
1o (1, W) _ — 1 tors
0 ;67"4_m - = = H(T, 1) a0
B (T, L)
: o
This sequence splits since EéLELﬂl is a divisible
H (I, L)
0
.c‘ E [ -Iiéjr,W) X Hl(r’L) tOI‘S.
H (T, L) . :

Tn all the cases we will consider, B°(T',W) = 0, so that
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~

= = Hl(T,IJEEEE‘. Moreover, since the group I' 1s rinitely

generated, so 1s the group Hl(T,IJtorS°, Thererore, ror

sultable N, Hl(T,L)torS‘ conslsts entirely or N-torsion.
From the exact sequenée or I'“modules
o-13 1~ L/NL = 0, we have the coerricient sequence
Ho(T, 1) - TE[O(I‘, L/‘NL) S wlr,n) ¥owler,n).
Since we have H°(T, L) - 0, and the image or &6 is the
N~-torsion in Hl(F,IJ, we conclude that

(55) T o= i, 1) OB = gO(r, 1/NL) .

9. The elements osz-determine algebralc cycles in V. It
would be interesting to study the hbmologidal properties of
these cycles. For example, when do two elements of - deter-
mine homologous cycles?

We can degcrlibe these cycles ex?licitly in a way which
sheds more light on the isomorphism = = HO(r, I/NL) . Let
c € L be an element which represents an element or HO(P,L/NL);
so that p(y)+(c) = ¢ (mod NL) ror every y € I'. Then |
p(Y)(%C) = %o (mod T.) ror every y € T,

It rollows that there is a uniquely determined section w
of V such that the dlagram |

X——-—»}-Xx{-]ﬁc] gXxW—-z‘-'-;u ECP

is commutative.

U w ' > v

Then w and ¢ correspond to each other under the ilsomorphism (*%%),
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10. We say that a holomorphic mapping r : V = V is an endomor-

phism of V 1r weof = g and ir ror every x € U, r induces on the
Iibre FX an endomorphlism o1 that complex Llie group. I r is
bijective, we say it 1s an automorphilsm or V. ‘he set or all
endomorphisms or V rorms a ring BEnd(V), which we will always
view a8 operating on V rrom the right. The group or units or

End(V) consists or the automorphisms or ¢, and 18 denoted by

Aut( V).




CHAPTER IT
EXTISTENCE OF COMPLEX CONJUGATIONS

la Iet M and N be complex manirelds, and let ¥ : M - N be a

dirrerentiable runction. We say r is antl-holomorphic ir

dr : T(M) -~ T(N) induces conjugate-linear maps on the tangent

spaces to M.

The rollowing proposition 1ls well-known, but ror the sake

or completeness, we will give a proor.

Proposiltion l: Tet M and N be complex torl and let r ¢ M= N ‘

be an anti-holomorphic mapplng. Then there is a unique elemént
b € N and a unique anti-holomorphic homomofphism,c 1 M- N such
that ror all x € M we have r(x) = ¢(x)+b.

Proor. We may ag well write M = M/L., N = NVIQ, where M,N are
complex vector spaces and Ly and I, are lattices in M and
respectively. We can identify'ﬁ and N with the universal
covering spaces of M and N respectively., We can thererore
cover r with an anti-holomorphic mapping T : M - W. For each

X\ € T, and each z € M, F(z+)\) and ¥(z) represent the same

point or N. Thererore, ﬁhere ig a boint @(k,z) € L such thatf
T(zh) = Tz} + o(r,z). Since o is continuous with respect to
7 and L2 is discrete, o must actually be independent or z, Sso
we can write w(h,z) = o(r). |

Then ror all A € I, and z € M, we have df{z+\) = dF(z),

1
so that dT : M = Hom(ﬁ;ﬁ) 1s a periodic anti-holomorphlc runc-

13.




= 14,

tion with period L,. Thererore d¥ is constant. This proves that

T is or the rorm C+b, where D € N and where T : M~ N 1s a

conjugate-linear mapping. The proposlitlon rollows as once.
QR.E.D,

By & complex conjugation of a complex manirold M; we

mean an antl-holdmorphic inveolution or M, l.e., an anti-holomor-
phlc mapping © ¢+ M = M such that reor = lM‘

2. et V3 U a Kuga ribre variety, that is to say, a ribre

system of abellan varieties over U or the type discussed in §4
or Chapter I. Our purpose is to study the complex conjugations
or V. .

Let us begin by remarking that a complex conjugation ¢ or
V must preserve the ribres of 7. To see this, let x € U. Let
Tt Fx - U be the restrlction or wer %o Fx’ r is anti-holomor-
phic and Is induced by &an anti-holomorphic mapping T or the
universal covering space of F,, which 1s a complex vector space,
Into the universai covering space'of U, which 1ls X. ILet |
g + X = X be an anti-~holomorphic isometry. .Then ng is a
bounded holomorphlc runction on a complex vector-space and is
‘therefore constant. It follows that r must be a constant map,
say, r(u) =y € Uror all uw € F,. Then r maps F, into Fos
which proves our assertion.

Iet ¢ be a complex conjugation or V. Silnce this ribres

of 7 are 1n 1-1 correspondence with the points or U, o induces

a runctlon Ty * U = U such that the diagram
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<
¥
-

1s commutative.

=

Q

<
=3

el
i) =

o

Thus, o(F,) = FUQ(X

so that Oy is anti-holomorphic.

) ror all x € U. We can wrlte 0, °m°0 N,

For every x € U, Fx is a complex torus, and o induces on
Fx an anti-holcomorphic mapping or k. into Fé (x)° Applying
o
the proposition or the preceding section, we conclude that

for each x € U, there is a unique element bX or FO ( and a

A x)
unigue anti-holomorphilc homomorphismcX I FGO?X) such
that for all u € F_, we have o{u) = Cx(u) & b

We can thererore derine a function b : U= V and a
runction € : V = V by the rules

| b(x) = b, = o on(x)

and C(u) = ¢ (u) = to(o{u),6oboer(u)), ir 7(u) = x.

it is evident rrom the descfiptions that b and C are anti-~
holomorphic, and we have ¢ = C+(boy).

For u € V, ir we put x = 7(u), we have

2( 02(

U= o u) + C¢{b.) + b,

u) «

| A | ol %) "
In particular, ir u = n(x), we get
ﬂ(X) = C(bx) + bUO(X)
which we can rewrite as ‘

(1) Ceb = ~b°co.
For arbitrary u, thererore, we have

(v,

u = Cg(u) + n(x) =C
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so that C is also ribre préserving complex conjugation or V.
We call C the homomorphism part or ¢ and b the transla-
tion part or o.
In order to clagsiry éomplex conjugations or V, 1t is
thererore surricient to classgiry all possible C's (i.e. all

those whiep leave the image orf 7 invariant), and then to rind

all b's which, ror a given C satisry (1).

3. The rirst invariant or the compiex conjugation o is the
complex conjugation O, or U. As we noted above, the homomor-
phism part C or ¢ 1s also & complex conjugation or V and it
Iinduces the same complex conjugatioﬁ on U. It is natural to
try to determine those complex conjugatlions or U which are
cbtained in this way.

Let Ty be any complex conjugation or U, and let’go be a
liring or C, to an antl-holomorphic mapping rfrom X to itselr.
Then'gg is a holomorphic covering transrormation or X over U,.
and thereﬁore can be ldentiried with an element Yo or I'. More-

. ~ ~=l . . .
over, the mappilng y O,Ye, derines an automorphism or I,

Theorem 1l: A necesgary and surricient condition ror the

complex conJjugation Oy of U to be induced on U by a complex

conjugation or V 1s that there exist a linear transrormation

A W= W with the rollowilng fouf properties:

1) A% = p(v,)

2) A normalizes p(T') and induces on I' the.automorphism
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s 1
Y GO‘YO‘O .

3) A(L) =1

4)  ror every x € X, we have Aop_(x) = ~m(30(x))oA.

Proor. By the results or §2 or thig chapter, we may as well
requlire that O be induced by a complex conjugatidn preserving
the image‘of MNa . 7

Ag we noted in §5 or Chapter I, there 1s a unlgque structure
- or holomorphic vector-bundle on X XW - X such that T actsrholo-_

morphically on X XW and such that the complex structure induced

on the vector-space W 1s ¢O(X).

The mapping A\ derined inrthat section‘determines a holomor-
phic isomorphism or that vector-bundle onto,E{;P which ls compatible
with the action orf T. Thererore, we may view X XW, with this

I~action and complex structure, as the universal covering mani-

Told or V;

Now suppose that C 1s a complex conjugation or V preserving
n and inducing o on U. Then there is a unique liring or C to
an anti-holomorphic mapping T : XXW = XXW such that the diagram

XXW e XKW

1s commutative

¥ —z

and such that 1or every x € X, T induces a real-linear trans-

formation of the vector-space {x} XW onto fEO(x)}><Wa Thererore,
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we can write G in the rorm G(x,u) = (EO(X),AXu), where

Ax T W= W is R-linear. Ir Y € T, then TyC is a holomorphic
cévering transrormation of X XW over V, and thererore belongs

to T, 1In particular,'"(fr2 belongs to I\, and ror every y € T,

Cyc_l = (E?E)E"E belongs to I'. Actually, ir we write
(o (y,4), we must have y = Y, and &O = 0, since T covers

EO and preserves the o-section.

Thererore, T (YO,O) and ¢ normalizes I'. Since €
normalizes TY, 1t rollows that ror any &O € I, we can rind
(y,4) € T such that E(O,LO) = (y,4)C.

For any x € X, we have

¥ (0,4,)(%,0) = Blx,t) — (3x,4,(4,))

(v,4)8(05,0) = (v,4)(5 x,0) = (¥F,.4),

so that ('E}Ox,AX(LO)) = (y’é?o,&).

Thererore y = 1 and AX(LO) = 4, independently or x. S8ince
I contains a basis ror W over R, it rollows that the transrorma-
tion AX is independent or x. Thererore, we can write A = A%.
This 1s the linear transrormation we are looking ror,

What we have shown is that A(L) < L.

Since T° - (YO,O), ror every (x,u) € XXW we have
(u

(voxs (Yo (W) = T(x,u) = TF xa(n)) = (Fpxa®(w) = (vx,A%(w),
so that A® = p(yo), which proves l). | | |
Since A(L) ¢ I, we have L = p(yo)( L) = AE(L) ¢ A(L) ¢ L, |

so that A(L) = L, which proves 3).
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~t

For v € I', we cah rind (yl,Ll) € T 5 (v, 0 ) = (Yl, )G,
since T normalizes T'. Then ror (x,u) € X XW, we have
T(v,0)(x,u) = Clyx,ply)u) = (o vx,Ap(v)(w)) ond
(v1.49)80xu) = (y1,47) (B ox,A(u)) = (48 x4 +p(v)A(w)
Thererore, we have (EOYX,AOp(Y)(u)) = (ylo X, %1+p( 1) oA(u)) ror

all (x,u) € XxXW.

Thus we have

a) 1, =0
_ .
b) Yy = O Y0,
-1 ~ el
¢)  Aop(¥)eATT = p(o Y 7)

Q o ‘

which proves 2).
Mlnally, since € 1s anti-holomorphic, the linear mapping

(W, (2)) ~ (W;@O(EO(X)))} glven by v A, must be anti-holo-

morphic as well, i.e. 1t must be conjugate linear. Thererore,
we must have A°®O(X) = -mO(EO(x))OA ror all x € X, which
proves 4).

Conversely, suppose we are glven a linear mapping A : W~ W
satisrying conditlons 1) - 4). Derine the mapping T : X XW = XX W
by the rule T(x,u) = (EOX,A(u)). Then G 1 is given by
T xw) = (F0heaTNw)).

By 1), (o (YO;O) e T. 1Ir (v,4) € I, then ror all
(x,u) € XXW we have T(y,4)C (x;ﬁ) = (goygglx,A(L)+Aop(y)OAnl(u)).

(

By 2), we have Aep y)OA_l :‘p(EOVE;l), and by 3), A(L) € I,

so that the right hand silde of the dbove equatlion becomes

(3137 A () 1o (Bo¥55 ") () = (3,185 5a(4)) ()
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. Eo(y;b)dﬁ—l G‘?, so G norﬁalizes .

Since G° € T, we conclude that € induces on V a dirferenti-
able mapping ¢ : V= V such that 02 = lV' Obviously, C preserves
the ribres or i and the image or N. Moreover, C must induce
the complex conjugation g, on U. It only remalns to prove that
C is anti~polomo£phic.

_ Denote by N the manirold X XW with the complex structure
described in §5 or Chapter 1, and dencte by M the manirfold
X XW with the unique structure or complex manirfold ror whilch
the mapping'ﬁ ¢+ M~ ¥ 18 anti~holomorphic. We only have to
show that M = N, i.e. that these complex structures colncide.
- Iet g2 denote the almost complex structure Qﬁ XX W determined
by the complex manlrold N, ﬁet ! denote the almost complex
structure on X xW determined by the complex manirold M, and
let 30 denote the almost complex structure on X..

It is easy to see that g' = ;dﬁ“1090d@. In view or the
unigueness part or Lemma 1 or §5, Chapter I, in order to prove
that M = N, or what is the same, that g' = g, we only have to
veriry that the almost complex structure g' has the other
propertles described in that lemma. .

We begin by proving that the mappinng T XXW = X, given by
7(x,u) = x, is holomorphic with respect to g'!'. We already know

that it is holomorphlc with respect to g, so that died = godi.

Then we have dreg! = ~diodd Togodl = ~d'5;l_0dﬁ:°g od(

~] —~— ~ — ~ —~ ~ .
= -doo OQOOQWOGC = —dUOOQOOdGOOdw = J,°0m as required, since
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EO is anti-holomorphic.

Now we will prove that additlion is holomorphic. Denote

by Z2x g and ' X g' the product almost complex structures on

NxN and MXM respectively.

Denote by 2 ﬂ g the almost complex structure on X XWxW

for which‘the maﬁping (x,wl,wg) = ((x,wl),(x,wg)) or X XW xW
into NXN 1s holomorphic, and denote by gr_ﬂ 27 the almost }
complex structure on X XW XW into M XM is holomorphlc. Call
the resulting complex manirolds N ﬂ N.and M ﬂ M respectively. ‘

The mapping € xC : MXM = NXN maps the image or M || M }
in  MxXM onto the image or N || N in NX N, and induces a
mapping T | T : M J| M- N || N which 1s antiuholomorphice

Denote by T the mapplng X XWXW = X XW given by
‘I(X,wl,wz) = (x,wl+W2),

 We want to prove that f'od¥ = dio(g! ﬂ 2'). We know that

ot = d¥o(g | 9).

We have

d¥o(gr || 1) = ~d¥oea(T || )" Le(g L g)ed(T | T)
s (@) hed¥e(g | ) ed(T T

. ~-1 . ' : i,
gince C is & homomorphlism on ‘each ribre

~(d®)"Hegodiod(¥ || ¥) = ~(d¥) Legedody
= gted¥. '7 | w

Next we check that the scalér multiplication mapping is

holomorphic. Denote by J the almost complex structure on @, and

by J ® 2' the product almost complex structure on ¢ xM. Simllar-
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ly, J ® g Is the product almost complex structure on € X N.
Derine y : € XX XW 4IXXW'byLdz,x,w):=(£,ZJM, We
want to prove du° (J®J') = dg'edu. We know that
dpo (J®Z) = gédp. We have
duo (J®F1) = dpo (Jo(-dl Togodd))
= auo(:LT(C)@(-d’é“l))o(J®g)o(1T(C)@d"é')
= —di L edp o (T8Y) 0(1

T(C)®d”)

since T is linear in every ribre

= -dﬁ’logoduo(lT

(C)®c{é) |
= _dé“logodcodp = g'odé. |
Denote by 7 : X = X xW the mapping x + (x,0). Then we
have dﬁogo = g.dn, so that -
grodd = ~df tegoddedh
= gl oy odTodo | = —d’é“lod?]ogooago
N —a’ﬁod’c}”glogood”go = dfieg_,

ggiﬁ holomorphic with respect to g2t.

Thls proves that 7 : M ~ X 1s a holomorphic vector-bundle.

Next we prove that I operates holomorphically on M. ILet

Y € . Then d¥e§ = gody. We have
dVog! = ~dYodt togody

v T oa(TeY T L) og odl

=t Logod (Teoy L) ol

since'55Y5§”1 €T |

= _dhéogodﬁod? = gfodn‘\-{‘o

Finally, we check that the complex structure induced on
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the vector-space {x) XW by the vector-bundle 7 : M -~ X is

mo(x) for every x € X.
‘Denote by i the mapping X = X XW given by ur (x,u).

Tor every x € X, ix is an R-linear igsomorphism o1 W onto the
Y

ribre 7 (x).

We have to ﬁrove the ix maps (W,@O(X)) complex linearly
into the ribre 7 1(x), or, what amounts to the same thing, that
di_ maps the tangent space to 0 in (W,¢O(xj) complex linearly
into the tangent space to LX(O) in M. |

Since the complex. structure on the tangent space to 0 in
(W, (%)) 18 dpy(x) |
x € X, we have di. ode (x) = Ztedi..

o 1t surrices to prove that for all

Since we know that the complex structure induced on the
vector-gpace {x} XW by the vector-bundle 7 : N = X is @O(X)J
welwmecuxwwobq = Jodi_, |

Then glodl, = -df Togodloni.

= Hdﬁnlog odi~ od A

o, (x)

ym1l L © ~

= A0 Tedly (x) "Ho(9g(x) ) odh
1—1 Lt

= ~di, cdA” edyp (o (x)) edh

= o (-A g (G, () ) oh)
= dixodcpo(x)

because A satistries property 4).

This shows that #' has the ﬁroperties degscribed in ILemma 1
or §5, Chapter I, so that g!' = g, M = N, and the mapping

T ¢ XXW - XXW is anti—holombrphic, This completes the proor.

Q.E.D.
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-

b, Let C be a complex conjugdtion or V which preserves the
ribres orf 7, the image or 7, and which induces the complex
conjugation o, on U. The purpose oI thls sectlon ls to describe
the set or translatioh parts b which are compatible with C.

In order that b : U~ V be a translation part, it is
necesgary and surricient that b be anti-holomorphic, that
T°ob = 95 and that Ceob = -boco, It is clear that the sget or
translation parts ror C rorms a group under pointwlse operations.
Denote this grouﬁ by Trans(C). Ir b € Trans(C), then beo  is a
holomorphic section or V, whlch we call Gy -

The mapping b = Wy derines an isomorphism or Trans{C)
onto the group of all sections w € = such that Cowos | = ~W.

In Chapter I, §8, it was shown that ~ ils isomerphic to
B°(T', I/NL) ror sultable N. Let go be a lirt or ¢ to an antl-
holomorphic mapping orf X onto itselr. By the results or §3, we
can 1rind a linear operator A on W which satisfies the condilitlons
1) - 4} or Theorem 1, and such that the mapping'a P AXW = X XW,
given by C(x,u) = (on,Au), induces C on V.

Tet w be & seétion or V, and let w. be a mapping
W : X = XXW which induces the section w on U. By the results
~or §9, Chapter I, we can write ® in the rorm 6(x) = (x,%c),

where ¢ € L satisries the conditlon p{y)(c) = ¢ (mod WL).

Then the section Cowoco is induced on U by the mapping

'5655551 (since o, has order two), which is given by

TwT (x) = (x,q0(c)).
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Thererore, the mapping‘w [ COwGGO of = into itselr has
the rollowing description in terms or :f_{o(I‘,L/l\IL).a By condle

tion 3) or Theorem 1, A{L) = I, so A(NL) = NL. Thererore A

acts on I/NL. Moreover, since A2 € p(T), A2 must act trivi-

and the group Trahs(c) is isomorphic to the subgroup or
HYT, I/NL) consisting or elements 4 € EC(T,I/NL) such that
A(’EJ) = ""’E/o

In Chapter IV, §14, we will determine the group H tors.

|
ally on H(T,I/NI). Thus A is an involution or H(T,1/NL),
|
|
|
l
Yr, 1) 1
|
ror special choices or I' and L, so that the problem or deter-
mining Trans(C)} is reduced to a ressonable computation.

-

Tr C' is a ribre preserving complex conjugatlion or V which
18 conjugate to ¢ by an element a € Aut(V), say C! = mCa“l,
then Trens(C'!') = aTrans(C), so that the determination or
Trans(C) depends only on the conjugacy class or ¢. In Chapter

IIT, §8, and Chapter IV, §§11-12, we will discuss how to classiry 1

C up to conjugacy.




CHAPTER TIT

COHOMOLOGY WITH NON-ABELTAN COEFFICIENTS

1. Let G be a group. By a G-module, we mean a group A
together with a homomorphism or G into the group or automor-
phisms or A, For g € G, we denote the actlon or g on an

element a € A by a » .

|

l

1
By a l-~cocycle or G valued in A, we mean a mapping 1
& : G = A such that ror all g,h € G we have a(gh) = a(g)®a(n).
We denote by Zl(G,A) the set or &ll these l-cocycles. This
1s a polnted set whose basepoint is the cocycle which maps G |
onto the identity element or A. Clven elements a,a' or
l(G,A), we say that ¢ and o' are cohomologous 1t there exists
an element b € A such that the equation ot{g) = b ()"0
holds ror every g € G. Thils derines an egulvalence relation
on Zl(G,A). We denote by Hl(G,A).the set or all the equiva-
iencerclasses. This i1s & polnted set whose basepoint is the
cohomology class or the basepoint or Zl(G,A). We call Hl(G{A)

the rirst cohomology sét or G with coertricients in A,

2. Let A and B be G-modules. By a morphlsm rfrom A to B, we
mean & homomorphism g : A - B such that fbr all . g € G and a € A
we have 4(%a) = gﬁ(a).

let ¢ : A= B be a morphism, Ir a : G- A 15 a l—éocfcle,
fhen poo. : G = B is ecasily seen to be a l-cocycle valued in B.

Irot : G= A is a l-cocycle cohomologous to ¢, then got! and

26,




27,

pol are cohomologous as well.

Tn this way, g determines a commutative dlagram

Mo,y By, m)

in the category or pointed sets.

In this way, Zl and H1 are seen to be runctors rrom the

category or G-modules to the category or pointed sects.

3. For the rest or this chapter, we will consider only the
case where G has two elements, say G = {1,g]. For any G-module
A, we denote the action or g on A by a i a ror all a € A.

The mapping o H o{g) derines a bijection between Zl(G,A)
and the sét or all elements a € A > & = a ™", Tn view or this
bijectlon, we will orten rerer to such elements or A as cocycles.
Ir a,b € A are such, they determine cohomologous cocycles ir
.and only ir there exlsts an element ¢ € A such that a = ¢ ha.

We will devote the rest or this chapter to examining some

interesting examples or these cohomology sets,

4. Tet M be a dirrerentlable manirold with a connectlon 5,
and suppoee that given any two points x,y € ﬁ, there is a

unigque geodesic joining x to y. Let A be a group or connection

preserving dirreomorphisms which act properly discontinuocusly
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on M. Denote by M the quoﬂient maniroeld and by v the connec-

tlon Induced on M by Y. Iet o be a dirreomorphism or M onto

2

1tselr, other than the idehtity, such that o7 = 1 and

MJ
guppose that ¢ preserves the connection v.

Suppose rurther that ¢ has a rixed point x, rixed through-
out this pgragraph and thernext. Let X be a point or M repre-
senting x. We can rind a 1irting or ¢ to a connection preservy-
ing mapping § : M = M such that §(X) = ¥. (Proor: TLet 5! be
any lirting to M. It automaticaliy preservés V. S8ince X

represents a rixed point or ¢, we can rind a € A such that

et AT —~ ~ -'llN
0'X = ax. Then we can take G = a " 0!.)

NE . fid Ng ~
Then ¢ € A, ant rixes X, so g = lﬁ. Moreover, o

normalizes A, 8o we can view A as a G-module, @ = {lﬁga}c

As in §3, we denobe 0ad by a4 ror all a € A,

5. We will now derine, ror the situation described in §4, a

bijection between Hl(G,A) and the set or path components of

the set or rixed poiﬁts or o.

Let x; be a rixed point or o, and let El be a representa-
tive or x; in M. Tet 31 be the unique Iirt of o to ™ such that
El(§l) = §l‘ Then we can wWrite El = ad with a € A. The
element a is uniquely determined and satisries |

aa = a(cag) = Fi = 1y- Thus, a is a lecocycle, determed by“%l,

_ L
of G valued In A, Ir X is another representative or Xy, W€

R ~ ot i ~
can write x; = bx, with b € A. Ir o, is the 1irt or ¢ to M
Tt
o

I‘H' e —~ ~J s ~
rixing x,, then we have b 1b(x =X, = 0-{%x

l) 1 1 wnich implies

D
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that b lclb = 0. Ir a' is the l-cocycle determined by 0’,
~ 1 ~ ~ _ ~
then we have o0, = alc so that ag = b la'@b, i.e.

1

a = b ta5h3 = b rab. Thererore the cohomology class we obbaln

rrom x, is Independent or the representative El’
We c¢laim that the cohomology class actually ereﬁds only
on the pa?h compénent or % in the rixpoint set of o. For
Suppose X, belongs to that compeonent. ILet p be a path Joining
Xq to x, such that gop = p. TLet %1 be a representatlive or xq
in M, and let P be the unigue 1irst of » to a path in M beginning

-

o

t Xy. Tet X, = B(1). Tet G,,8, be the lirts or ¢ which rix

¢

~

1
1,§2 respectively, and write El = a0, Then since o rixes p,
i

s a 1irt of p to a path beglnning at §.(%

al

1P 10%7)

4P = D. In particular, ¥,(%,) = T,(B(1)) = B(1) = %, = 0o (%) -

0 Gy = U,. Thererore x, and x, determine the same cohomology

al

f

n

class.

This derines a mapping rrom the set or path components or

the rixpoint set into Hl(G,A), It remains to prove it is a

bijection. -

First wé prove it is injective. Let X4 5% be 1ixed polnts
or ¢ and suppose théy determine the same cohomology clasgss. ILet
§1,§2 be representatives or Xy Xp respectively,‘al,gg the
corfesponding lirgs or ¢, and a and b the corresponding cocycles.
By hypothesls, these are cohomologous, S0 we can rlnd ¢ € A

such that a = c_le.

Then coq = cad = bco = boc = 0,¢, 50 that Ug(cxl) = CXq.
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Tet P denote the unique geodeslc joining 0}1 to ¥,. Since
52 preserves ¥V, gop is a geodesic and it joints'gg(d§l) = CX,
to 52(§2) = §2. Thererore 6p = p, S0 that P lies over & path
p in M which is ixed by o and Joins Xy to Ko

Finally, we prove the mappling is surjective. .Leé a € A
be a l-cocycle and let El = ag. We will be done ir we can
prove El has a rixed point. Tet m € M. Ir m is rixed by 31,
we are done. Ir not, let p be the-umique geodesic joinlng m
£0 El(ﬁ)e Then 3105 ig the unique geodeglc Joining El(ﬁ) to M,
S0 we must have Eldﬁ(t) = p(1-t) ror all ¢ € [0,1]. Then

Ul(p(ﬁ)) = p(EJ and we are done.

6. | a ) Tt we take M = X, A - I' Vv to be the Riemannian
connection ror the natural metric oﬁ X, and take ¢ to bhe a
complex conjugation Oy or Uy, thep we conclude that the
components or the rfixpoint set or 0, ére classiried by
' (e,T). |

b) Ir we take M = W, A =1, ¥ to be the covariant
constant connection on W, and ¢ $to be a complex conjugation
on M = W/L with respect to some complex structure on M, then
the components or the rixpoint set or o are classiried by
H‘(G_,L)u In thls case, the components rorm a.pfincipal
homogeneous gpace ror the group Hl(G,L)°

c)  Ir we take M = XxW, A =T, ¥V = product or the two

connectlons glven in a) and b), and ¢ to be a complex conJu-

gation or V, then the components of the rixpoint set or ¢ are

1
i
1
i
¥
I
i
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classiried by H (a,I').

T Let R be a ring with unity and let a be & unit or R
contained in the center or R. Iet S denote the set or all
elements x € R such that x2 = a, and suppose S 1s nonempty.
let Xy be a non-g¢entral element or S 1ixed throughout this
discusslon. Then X is a-unit, and the mapping r X"lrx
determines an automorphism § of R or order 2 which we denote
by rw ¥, Ir we take G = {1,y)}, then the group R* or units
orf R is & G-module.

On the other hand, R acts by conjugation on S since a
1s in the center or R. ' -

We will construct a bijection rrom the set RA\S or

e

Rfmconjugacy classes in 5 onto Hl(G,RX). Iet x € 8. We can

write x = x 6 with o € R, Then a = x° - K OX 0 = a(x;lax)a = ada,

so that a =~ 1 and o is a l-cocyele valued in R, Conversely,
ir ¢ is a l-cocycle, then x = X0 ig clearly in 8, so every
cocycle 1s obtained in this way. Finally, two elements x,y

o’ 8 are conjugate by an element r or R ir and only 1ir

. I -1
rox (x Tx)r = xo(xo V),

. R, N I
i.e, iry r(xo vir o= Xy K

N

i.e, 1rr the cocycles x;lx and x;ly are cohomologous.

8. Ilet o, be a complex conjugation or U. Denote by'h(co)

the set or all complex conjugations or V which preserve the

image or n, and which induce on U the complex conjugation UOQ




~

Suppose that h(oo) is non-empty. Let C_ € h(do) be an eleméﬁtﬁ;*

rixed throughout this discussion., Iet G = {lv’co}“ Ir
a € Aut(V), then Coc, € Aut(V) as well. In this way, Aut(Vv)
ig a G-module.

The group Aut(V) acts on the set h(co) by conjugation.
We will derine a:bijection or the set Aut(vj\h(co) or Aut(Vv)
conjugacy clasges in h(@o) onto H'(&,Aut(V)).

Given C € h(oo), we can write C = oC_ unlguely with
a € Aut(V). Then 1y = ¢“ - m(COaCO) = oll, so o is a l-cocycle,
Conversély, it 1s clear that every l-cocycle is obtained in

thls manner,

Ir ¢,0 € n(co), and C = aC_ and C' = gC_, then & and B
are cohomologous irr & v € Aut(V) such that g = y—lm?o Thig
is equivalent to saying C' = BC, = Y_la?Co = YﬂlaCOY = Y—lCY,

l1.e. that C!' and C are conjugate.




CHAPTER 1V

SOME SPECTAL CASES

1. ILet D be a totally inderinite quaternion division algébra
over & totally real number rield X, and let n = {K:Q].

Tet & be an order in D, let 6x be the group or units in 6,
let @1 be‘ the subgroup or 6* congsisting orf unlte or reduced
norm 1, and let I' @l be a torglon-rree subgroup or rinite

index in ®1g

We identiry Dp =D ®Qm with ME(R)XcagXNb(R), where the
number or ractors is n. Let X equal the product ¥ X...Xd or .

n copies of the upper halr-plane.

Denote by Dé the group or units GL(2,R) X...X GL(2,R) or
1 s
DR’ and by D& the subgroup SL(Q,R))(..J(SL(E,R) or DE,
We define an action or Dé on X as rollows. Given
, a, b |
X ) Vy o |
g = (gl,...,gn) € D, where g = (Cv d\)) ror v = 1,...,n, - 1
and x = (Xl’°"’xn)’ we pult g-x = x! = ;Xi"°”xﬁ) where
avx +b
———e 1T 4. d ~b.C > 0
1 Cvxv+dv VOV YTV
K= |
\J -
a X -+b
—E?Xm—xrif a d -bc <0,
cvx\)+0‘_v AV IRV} ALEERY

Then Dg acts as isometrieg or X for the Bergménh metric.
Denote by Zn the group or pgrmutations on the set
{1,2,...,nJ). %, acts as a group or automorphisms or Dg and
as & group or lsometries or X. In both cases, the action is

given by the rule




@.(

- (x

@(l)"““’x@(l’l))l ror @ ¢ Zn.,

Xl, L e,xn)

Zn also acts as automorphisms or the product
PGI{2,R) X...x PGI{2,R) or n copies or PGL{2,R) in the same

way. Denote by G# the semi-direct product ZnoPGL(E,E)n.

2. If ¢ is an dutomorphism or D it induces an automorphism

BJ

on the center KR = K ®Q R =RX...XR. 8Since R has only the

ldentity automorphism, that automorphism or KE must belong to
Zn’ Call that permutation @, Then @—10¢ 1s an automorphism

or DR which is the ldentlty on the center KE, and thererore

induces an automorphism on each or the ractors MQ(R) OF Dp-

By the Skolem-Noether theorem, 1t rollows that the
automorphism @flo¢ 1s an inner-automorphism x axa”h with

a € Dg. It rollows that the group Aut(DR) is the semidirect

product or Zn with the group or inner-automorphisms or Dﬁa

X .
modulo its center,

R
which is GL(Z2,R) X...X GL(2,R)/R" X...x K" = PGL(2,R) X...x PCL{2,R) .

The group or inner-automorphisms is just D

Thus Aut(DB) is canonically isomorphic to ot

Let ¢ be an automorphism or DR and let w be the corres-

ponding isometry or X, | induces an automorphism on Dé, and
thererore on the group Dé modulo its center, which is
PGL(2,R) X...Xx PGL{2,R). On the other hand, the inner automor-—

#

phism or G' determined by w leaves PGL(2,R) X...X PGL(2,R)

invariant and induces an automorphism on that group which

coincides with the automorphism determined by {. This is easily




seen to be true. Ir | € Zn, it is obvious. Ir

¥ € PGL(2,R) X...X PGL{2,R), ¢ acts by conjugation on Dps and +
“thererore also acts by conjugation on G#, so 1t obviously |
coincides with the conjugation by w., We will denote by I't

the image or I' in Isom(X). Our hypotheses imply that I' is

mapped isomorphidally onto I'T,

3. The elements or IDX act as lsgometries or X. The kernel of

R
thls action ls agalin the center or DX, so that the action
ractors through PGL(2,R) X...X PGL{2,R). The subgroup
PSL(2,R) X...X PSL{2,R) acts transitively on X. Tr ¢ is an
isometry or X, it can be written uniquely asg the'composition
of an element g € PGL(2,R) x,n;xiPGL(E,R) and & permutation

@ € > . In this way, the group Isoﬁ(X) or isometries of X is
canonically isomorphic to G#.

It rollows that Aut(DR) and Isom(X) are canonlcally

lsomorphic.

4.  Denote by x = X the canonical involution or D given by

X = tr(x)-x, where tr : D = K 1s the reduced trace. ILet S € &
be a non-zero element such that § = -8, Derine a skew-symmetric
@-bllinear rexrm B, : DXD = & by the rule B (x,¥) = trD/Q(Sxy).
Bo is easglly seen to be integer-valued on 6 X6 and non-degener-

ate,

Put W = Dp, B = R-bilinear extension of B, to Dp, and

take L. = 2-sided G-ideal in &,




R

For the action or Dy on X derined in §1 or this chapt
I' acts holomorphically and properly discontinuously on X;ff.”'“'

Denote by p the lert-regular representation or Dy on itselr.

We will also denote by p the restrictions or the lert-regular

X
R

For vy € T g‘@l, we have Yy = 1. Thererore, ror any

representation to D, and to I,

X,y € D we have BO(YX,YY) = trD/Q(S(TE)Yy) = trD/Q(S§?§§)
= trD/Q(Siy) - Bo(x,y), so ply) preserves B_ and thererore B
as well.
Moreover, p(y)l,:ryﬁ = ¥ = L and since ¥ ¢ 6, B is integer-
valued on LX L. ..p maps I into Aut{W,B,L).
We derine 9, + X Hgoas rollows. Denote by J the element

B
(% Dt 9

.

)) €D

O H

R and denote by Z the point

(i,i,aom,i) or X, Fox z € X, we can rind g € Dé such that
gez, = %. We then derine ¢_(2z) = p(ng“l) = p(th"lg“i), It

is easy to see that this is well-derined,

-1 —l)

-1
For v € T', we have ¢ (v2) = p(yede™ v ") = p(v)g (z)o(y) .

5. We will prove that ®, is holomorphic. In view or the
derinitlion in Chapter I, §3 or the complex structure on HB’
it surrices to prove that the mapping o = ohep 1 X = Gr(Ww),

which assigns to each x € X the i-eigenspace of'mo(x) in W

is holomorphic. For i = 1,...,n, let Xy ME(R) % Dy be the
inclusion into the 1-th factor or D,. For every point z € ¥,

R

|

|

|

C’
\

z B L2,

let p{#) be the subspace ¢{{] or ¢, where ¢~ is viewed as a ‘
\

space or column vectors. Then, using the ldentirication or




Pl(m) with the extended complex plane, the mapping u'céﬁ;pé

identiried with the inclusion ¥ = PL(¢), and is thererore
holomorphic. We can ldentiry ¢° @ ¢° with M,(R) & ¢, and"wé B
denote by 62’4 the complex manireld or complex 2-planes in |
M,(R) ® ¢. We have a natural mepping i : Pl(ﬂ) " Gy ) glven
by *P+w P @ P, which is clearly holomorphic.

If we ldentiry Dp @ € with (M, (R)®E) ®...® (M, (R)®T), we

have a patural mapping j : Gy ) X...X 0O, ) = Gr(wm) given by
2 5

J

(PyseeosP ) =

n) P, ®...®PF which is algo holomorphic., Then ror

X € X, x = (Xl"°°’xn)’ we have that o(x) = J(iou(xl),“oa,iou(xn)),

S0 ¢ is holomorphic.

It rollows that the data (X,T,W,B,L,@é,p) satisry the
conditions or Chapter I, §§1-4, and, as was shown in those
sections, determine a Kuge ribre variety V. For the remainder

or this chapter, we will deal only with such V.

6. In this sectlon, we prove that I' contains a basis ror D
over . Tet D, = @[] denote the §-linear span or I'. 'Then
DO is a division algebra over Q. ‘We would like to prove that
D = DO. Let p, denote the 1eft~regular‘representation ot T

" on DO and on DO = Do ®Q R. We can view D as a lert-vector-

R

space or dimension m over D, 80 that Dy = D o X...XD (m

R R oR

copies).. Thererore D e DiRX°E,XD§ “and 1r we denote by Z

R R’

the center or D, we have that BSL{2,R) X...X PSL{2,R) (n
O . ‘

R
coples) is isomorphic to the connected component or

(Dgﬁ/Z) x...x(Dig/Z)k Using a basis ror D over D_, we can view




p as the direct sum or m copies or Py- Now, T' acts oﬁ“fﬁ
PST(2,R) X...X PSL(2,R) by conjugation, and it is not dirri.
cult to see that this corresponds, under the above isomorphism,
to the action or I' on (Diﬁ/z)x°°’x(D§B/Z) given by
Y'(élzaaégzs °°e:6mz) = (pO(Y)ESlZ, ° 6oy PO(Y)‘SmZ) °
Let 7., 1.= 1,...,m, denote the projection or
e x . . e 1 .
(Dom/z) K,.QX(DOR/Z) onto its i-th ractor. Iet
H = PSO(2) x...x PS0(2) « PSL(2,R) X...x PSI(2,R). 1 is a
maximal compact subgroup, and its image in
(Dﬁﬁ/z)x.,‘x(Dgﬁ) which we call H', must be a maximal compact
subgroup. Thererore, H' = vl(Hﬂ) xngoxwh(H))s
—_ X -|' 7 y e
Let X, = (DolR/Z)/wi(H ). Then we have Xom Xy Koo oX X,

nd thisg lsomocrphism ig compatible wlth the action or I,

)

Now suppose that m ig greater than 1,
Then I'\X can be viewed ag a ribre bundle over I‘\X_l
whose rilbre isg Xy XeeoXX .« Since I'\X is compact, ].‘\X:L and
X5 ReaoX X must also be compact. However, since each Wi(H‘)
18 compact, XéAx..eme 1s compact it and only ir DﬁR/Z is.
But that would imply that PSL(2,R) X...X PST(2,R) = (Diﬁ/z) e ‘
va X (Dﬁﬂ/z) is compact, which is a contradiction. Thererore

m= 1, DO = D, and we are done.

7. Let ¢, be an anti-holomorphic involution or U. Iet Ed
be a lirting or Ty to an antl-holomorphic mapping or X into

itselr. It is not hard to prove that EO muist be an isometry

ol X ror the Bergmann metric. Moreover, we can choose EO to




be an involution or ¥ ir and only ir Oy has a rixed poiﬂt;_ff“'ﬂ.
Tet § be the automorphism or D corresponding to 30 under .

the canonical isomorphism or §3. Then § must leave I' invariant.

T.emma s ¢omo(x) = ~@O(GO(X))0¢ for every x € X.

Proor. By §¢3, we can write t = @o . where h € DX, and Th

denotes the inner-automorphism determined by h. Since Eo

is anti-holomorphic, we can choose h = (hl’“'°ﬂhh)6Dé S0
that det(hi) = -1l rori=1,...,1.

Let o = ((é _g)),,,&,(% #g)) € Dpe Let x € X, W¢ can
write x = guze; where g = (gl,.es,gn) € D%L and z_ = (i,4,...,1)
as in §4,

Then 1t 1s easy to check that hes = (hga}ozo, gince
uozO = Zo’ and the element hgo belongs to Déo Thererore
'mo(hoz) :_p(hgaJag"lhhl) = —p(thg_lh"l)n For y € Dgp, we
have then -

9,(ne7) (y) = -heig 7y
= -n((e7e™ ) (nyn) ™ = nyep (2) 0TS My,
g0 that @O(h°z)Th =7;Th°wo(z). Finally. _ -
9o, 02) = g (@o(T,g0) oz )
= ple(hea)de(nge) ™t
— @ op((nea)s(hga) 1) ea ™
=@ep _(h-z) @t ﬂm@OThoch( z) oTﬁlo@"l

S50 CPO(E; OZ)O'{Ef = m\lloqjo(z), as C[ESiI‘ed.,

O




8. et 9, be as in §7. Iet V be the Kuga ribre variety =
derined in §§4-5 or thls chapter, where we take 9 = ®°.'Ouf.

object in this section is to prove the rollowlng result.

Theorem 2: Suppose thab 9, hags a rixpoint. ILet Eo be a
complex conjugation or X covering OO, and let { be the corres-
ponding automorphism or DB’ Then Gy is induced by a complex

conjugation of V ir and only ir y{6) = 6.

Proor. (=) Suppose Oy is so induced, Then by Theorem 1 or
Chapter IT, §3, and the results or §2 of this chapter, we can

rind an operator A on W such that
2

R

¢ . FET P . o
2) A normalizes (") and induces the automorpnism

v on T,
3)  ale) = 6.
h)  hep (x) = m@O(EOX)QA ror all x € X, |
Let B = Aoy, Since A% — ¢2 = lW’ ror any v € I' and any y € W,
we have
Bop(v) oB™ (y) = Aoyop(y)oyeA(y)
= AGY(Y)A(y)) = Aop(¥(y)) A(y)
= (47 (7) = p(¥)(¥).

Thus, B commutes with the elements or b(P)a By the results or

86 or this chapter, I' contains a basis ror Dy over R, so B

commutes with the elements or p(D Thererore B has the rorm

R)'
X = ¥b with b € Dp. Thererore, A is given by A(x) = {{x)b ror




all x € Dy. By 3), we have 6 = A(6) = y(6)b = ¢(®)¢(éjgi;_

since §(6) is an order, and thererore y(6) 6. Applying &;

we get 6 = §°(6) & 4(6), so P(6) = 6.
(<=) suppose §(6) = 6. Let A = §. Then we claim 1) -~ L) are
satlsried. Tor 1) and 2), 1t is obvious, 3) holds by hypo-

thesls, and 4) holds by the lemma or §7.

9. In the situation described in §§4-5, we now take & to be
a maximal order., Tet T ¢ DX, and suppose that TI‘T“jL = I
Then the action or T on X induces s mapping on U = I'\X.

z € KT and that the reduced

Moreover, 1r we require that T
norm v(T) or T be a totally negative element or ¥, then that
induced mapping will be a complex conjugation or U, which we

|
cal.f Tye

Theoreg_gzl In order that 9, be induced by a complex conjuga-
tion or V, it is necessary that T6 = 617 and that K(V<{TJ) be
embeddable in D over X. |

Ir the ideal class group or K is generated by the primes

or X at which D is ramiried, then these conditions are also

surricient.

Proor. Let ¢ be an element or K ®Q R whose square is v (1),

- L) . .-.1 . —~ = a4 ~g B
and let 6 = ¢ T. Ir we write o, = (01,.°°,Gn), then
det(gi) = -1, ror i = 1,...,n, and EO determines an anti-

holomorphic mapping or X into itselr which covers Oy - Suppose

o, ig induced by a complex conjugation or VO. Then by the

o]




results of Chapter IT, 83, we can rind an operator Aién-w such

that

2) A normalizes p(I') and induces on I' the same
automorphism that Eo does.

3y A{Y) = 9.

By A g (x) = —p (0 -z)h.

_ , T
Let A, = p(o_) and let B = A_

A. Since A and AO Induce
the same automorphism on p(I'), it rollows that B commutes with

the elements or p(I'). Thererore, B commubtes with the elements

or p(DR) and 1s or the rorm X v xb, with b € D Since B

R
commutes with the elements orf p(DR), in particular, B commutes

with A_, 80 A commutes with A_. Therefore, since A? = Ai, by L)
we have B2 = le 50 b2 = 1,

' By 3), we have o = A(%) = AOB(M) = goﬂb. ILet B = ¢ "be.
Then ¥ = G ab = TUB, so that B € D, ™= = c“b™ = ~y(1), so

K(4/=V{T)) embeds in D.

Since ¢ i8 maximal, 6 is the lert order or %, and

T is maximal. Then ¥ = TUB = TOUR = TOTITUE = TOT Ly §

80 that T@Tu1 c 6, which implies TG = ¢T.
Conversely, let Pyse+0,P, be the distinet primes or K
where D is ramiried, and suppose that they generate the ideal

class group of K. We will prove that the conditions Te = 6T

and K(/-V{T)) embeddable in D imply that o, is induced on U

by & complex conjugatlion ¢ or V.




5 -
element & € & such that 62 = ~v(T) = ¢, Put b C T,
B = c"ga, and let B € GL(Dy) be derined by B(x)

xb ror a11¢

x € Dp. Then B commutes with p(DR), Let A = p(EO) and lEt;g

A = A_B, s0 that ror x € Dy, we have Alx) :'onb, We clearly f}f}f

!

We will prove that A satlsries the condition 1) - 4)

have 32 = 1.

given In the direct part or this proor.

Proor or 1): Since A€ p(DR), A, and B commute. Thererore,

2 o D2 2 e (2
A" = (A_B)" = AR = A = p(o))

©

Proor or 2): Since B commutes with p(I'), this 1s obvious.
Proor or 3): TFor each prime ideal ¥ or K, there is a unlque

U v

maximal ideal mp or 6 containing P&. We have

mp 1 D is unramiried at f.

2
mP

It is well-known that the rinitely generated two-sided

PE =
ir D ig ramiried at P.

submodules or D {other than (0)) rorm an abelian group under
ideal multiplication, which 1s treely generated by the mp'sa

By hypothesis, T6 = 6T is a two-sided ideal in 6.

Thererore, we can write
Do
™ =10
P 4
uniquely with Ny = 0 ror all P.

Ir P is a prime or K, then $ = ©, so that ﬁ; is a maximal

ideal containing 6, and thererore m;‘= m Here, of course,

P




x denotes, ror ali %X, the image or x under the cahéﬂiqal
involution orf D over K. It rollows that f = 8 ror anﬁ'fWQ_
sided G-module P. Tet P = {Pl,..,,Pr}. Taking redueed..i.
norms, wWwe now see that
n EHP
vime, = 1 7« 0 p 7,
PEP PP
Since the primes in P generate the ldeal class group or
K; we can rfind an element E € KX, anq integers Mqsenesl

T
such that

n Ir m
noe & et on et
PeP -
Then we have .
T npi+2mi
vinT)oy = 0, Py -

It is obvious that T and nT induce the same automorphism

on I', that ﬁT@ = onT, and that K(/{T)) = K(/=V{MT)).

Thererore, replacing T by nT if necessary, we may assume without

loss or generality that ror P § P, n, = 0.

Since 5 — ~v(T), 1t rollows that ror ¢ P, & is a unit
in @P, so that 6®P = @Pé = @P, ror ® G-P, DP ig & division
algebra, so 6®P = @Pé automatically.

Therefore &6 = 646, Since 62 = -v(T); we- have

(5@)2 = 3686 = 626 = v{T)6
= TT6 = T6T6 = (Te)(TE)
o X
—“—('I@),
. -1 X
so that 8¢ = T® and so T8 €6,




Y

Thererore, T = Téc ° - Ta(-v(T))"1 = T66 " = Tg
that
' -1 -1
A(Y) = TIB = TUT "TR = TOUGT ~Tp
= (m)u(r" Y6 )8 = uTs - M.
Proor or 4): It rollows immediately rrom the result or §?ﬁ

that AOO@O(X) = éo(EoX)OAo° Since B commutes with the eleméﬁfgﬁwjz
or P(DR)s and since @O(X) € p(DR) ror all x, we have

Reg (%) = BeA op (x) = Bog (T x) B
- “@o(EoX)OBOAo - “mo(EoX)A’

as required, _ Q.E.D.

10. In this sectlon, we will describe the endomcrphism ring |
or V. Iet a € End{V), and let & be a holomorphic mapping or

XXW onto itselr which induces & on U. We can take & to he

or the rorm (x,u) » (x,G(u)), where G is a linear operator on
W. Tt rollows that G must commute with the elements or p(T)
and thererore G is or the rorm u%ﬁ.u»a, with & € E%o Sinﬁe a |
must preserve U, é € D and belongs to the right order ¢! or 9. 1
Conversely, ir a € &', then one can show, using a proor

gimilar to theproor or Theorem 2, that (x,u) - (x,ua) induces

an endomorphism or V. We omlt the detalls. For a different

approach, see Shimura [2].

. 11. Tet G oo Eo’ Y, V, and in particular %, be as in {8 or

this chapter. Then % = &, and so the right order or 9 is 6.

In this way, we have End(V) = 6. Suppose that {(6) = 6.




Let € be the coﬁplex conJugation of X XW gi#eg b
T(x,u) = (EOX,W(u)), and let C be the complex conjﬁgatio
induced on V by G. ILet ¢ = {1,¥}. We can view & as a:
in two dirrerent ways, as rollows. For 0 € End(V), Coﬁgc
belongs to End(V). 'Thus, letting G act on End(V),. by cgnjuga
tion, via[{l,c],aEnd(V) becomes a G-module, E
Using theidentirlcatlon or End(V) with 6, 6 becomes a
G-module, which we call Mlo :.“
On the other hand, by hypothesis, (6} = 6, =o that by’w“
letting G act on & via {1,¢}, 6 becomes a G-module which we
We will prove that Ml = Mg, in other wgrds, that these
two G-actlons are the same, |
Iet & € 6, Then o acts on X XW by the rule (x,u)a = (x,u@)“ 
Call that mepping &. The endomorphism Cogol is induced on V
bj the mapping CoGel : XXW =~ X XxW given by
TotloC{x,u) :'EJE(EOX,Mﬁ)) = ﬁ(gox,w(u)a) = (x,u ${a)). Thus
CeqtoC 18 the endomorphism corfesponding to @(a), which proves

our assertion.

12, By the results or Chapter ITI, §8, we can ldentiry the

set or Aut{V)-conjugacy clesses in w(c ) with the cohomology

L

- O)

set H(G,Aut(V)). By the results or $11, we can identiry this

1
(

set with H {1;¢},©x), Now suppose that ¥ is Inner. TLet

T € 6 such that §(x) = Pt ror all x € D, Since ¢2 = 1,

r‘ P
T € K, and since ¥ 4 1, T ¢ K. Thererore T = -T, so T° = ~v(T).




By the results or Chapter III, §7, we can identif§ }
Hl({l,w},@x) with the set or 6 -conjugacy classes offeleme'ﬁ

2

§ € & such that § = uv(T). This cohomology set was dompuﬁe' [A}Ji

13. We continue with the assumptions ana notations or §i1
the results or that section, the action or {1,¢} on & via?{_uf
coinclde with the usual actlon or {1,y} on 6. 5
On the other hand, the automorphism induced by Eo orL Fﬁi ﬁ1,_f
coincides with §. Thererore, we can say unambiguously that i
the composition I' & 6% 3 Aut(V) 1s a morphism of G-modules.
By Chapter IIT, §?, there is an induced mapping .
pi(a,T) - #Ha,Aus(V)). By the resulss or Chapter 1I11, &§5-6,
we can identirty HY(G,I') with the set of path components or the
fixpoint set or UO,
It rollows now that every component ot the 1ixed point
set or o determines an Aut (V) -conjugacy class or lirtings or

GO to V.

14, Ir N is a positive integer, we denote by FN the group or

all y € @l such that y-1 € N&. For surrficiently large N, T

is torsion-rree, and frfor all N, FN has finite index in @1.

N

In this section, we will compute H;(FN,®)EQEE'¢ our
result is that Hl(TN,®)torS‘ is isomorphic to 6/N&.

For every prime § or K, denote by Kﬁ the completion or

DN _ bd
K at ¥ and by @P the closure orf & in DiP =D ®K KP° Let ®P
denote the group of units or & %

and write I ror the subgroup

PJ




consisting or all vy € 6> whose reduced norm’iéfl,,and

P
By the spproximation theorem, PN 13

or @;

such that y-1 € NG

P
N

Tet Dp = ordPN Tor every . Then ?N and Tg have the same

P

dense in I',. Tror every P.

n+£@ Tor every 4> 0, namely they both map onto

image in @P/P o

D+ Do np+rﬁ
@P|v(x) 1 oand x-1 € P "6,/P 6ple

il

x € ®P/P

’np-l% np%a?,
Here, oI course, V denotes the mapping @P/P @K?/P 6y
o
Induced by the reduced norm mapping D ~ K.
1 n.+4 n, +4

Tt is clear that P'o./P P o, < HD(FE,GP/P P We

SR
will prove the incluslon is actually equality.

Case T: D ig ramiried at P
Then D, is & divislon algebra over K@ and 6. 1s a valuation
P W P
ring with maximal ideal ®. Thererore @P/P 6, 15 a valuation
o+
ring whose maximal ldeal 1ls P& /P P @P' Let
+&
x € B° ®P/P e Tet v € ™ pe an element such that 1Lts
4 P N n+1 £
] P+ lP+ nP+
image in 6,/P 6, does not belong to (14+P )/P 6p
This is possible in view of our determination or the image
N+
N “p = )
or I'y in 6,/P 6p- We have ordp(yml) £ Do

Since x = Yx = x+(y-1)x, we have (Yy-1)x = O, Thererore

ordox = (np+%) - ordP(Q—l) z 4, which proves

n n 44 4 n_+4 np+&

P . P I o PN &
6o/P Gp <o P @plp 6, =H (PN,@P/@

% € P P

@P)o

Cage TI: D is unramiried at P

Then DP = ME(KP) and 6., = M

P




-ﬁ;;;éé

Denote by RL the residence class ring 6. /P P 6. f} Then
np+; Kp Koo
©

. . 4y .
@P/P p 18 isomorphic to M,(R3) in such a way that the 1mage

or FN corresponds Lo

(x € My(Rh) [aet x = 1 and x = (5 3)(nod P Py (R5))).

P

Tet 7 € & be a prime element, and denote by 7 L1ts image in
¢ oo
Then
n
ol ¢
1 " > and ln 0
both bel to the ima r by (R&)
ath belong to e image o N n M2 Pl
Tet '
n, . +4
a b O P §
(. d) GIJWFNJ®PA“ @@.
Then _ng, g o,
(a b) . (l T )(8, b) _ (a—k'ﬂ' C b4 d)
c d/ 7 M0 1 c d’ c d
and
(20 = (fnp O)(i by (g ,nli )
: T 1 1 i T oate g bid
(1 n n n
so.that 7 Ya + 7 b =7 Pe = 7 P4 = 0. Thererore,
a,byc,d € P&R& s that (? E) € P&ME(Ré) This proves that

P+& ' F&
P @ P = ,@ P .
P/ P/ P»M, nPH',
Since the inclusion &6/P 6 & @P/P 6p is an lsomor-
: : : N+
phism and since TN and Fg have the same Image in @P/P P 6o

we conclude that--i ' .
n_ o ont
o/ © 6 = HO(T,6/P © 6).




50::

Ag we remarked in Chapter T, §8, ror any positive integer

M, HO(PN’®/MN©) is naturally lsomorphic to the MN-torsion in

@)tOI‘S& ]

HJ(PN,@), Moreover, we obgerved that Hl(T is a

NJ
rinlte group. Therefore, ror suitable M, we have
tors.

1T, 0/M0e) = BT .6) .

N‘J
For every prime ® or K, let LP = ordPM. Then
n_+4 )
6/MNG = &/P P P@, so that by what we have proved above, we
I‘ .

have N

nP+LP®)

HO(TN¢©/MN©) 2 HO(TN,®/P

@®
P
®
P

= Mo/MNG = &/NG.

Thererore, Hl(T

63575 g e .
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