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Abstract of the Dissertation
A Class of Compact Manifolds With
Positive Ricecl Curvature
by

Horacio Hernandez

Doctor of Philosophy
| in . ' .
Department of Mathematics o
State University of New York at Stony Brook

1972

In this thesis we prove the existence of a large
class of compact Riemannian manifolds (most of which are

not locally homogenecus) which admit a metrilc such that breD

Rieccl curvaturs 1s strictly positive. They are certaln

Brieskorn varieties with a metric induced naturally from
some modified lmbedding into euclidean space.

In II we develop the general theory, in III we apply
1t to the modifisd Brieskorn manifolds qnd we derive our
main results. In IV we dlscuss the scope of the results

proven 1n iII, and give further applications.
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I. Introduction

The problem we are dealing with is part of an
important question in global Riemannian geometry: To
study compact manifolds of strictly positive curvature.

So far, one of the main difficulties has been the lack

of enough examples. In fact, all known examples of

compact manifolds with pcsitive sectional curvature are
diffeomorphic to locally homogeneous spaces. It is
_somewhat surprising that in the much moré general case

of positive Riceil curvature, agaln no examples other than
ldcally homogéneous spaces are known (up to diffeomorphism).
In particular, 1t 1s an iﬁteresting question whether or

not exotic spheres (which caﬂ never be homogeneous) admit
metrics of positive sectional curvaéure, or at least
positive Ricci curvature. Only this year, Cheeger [2]

" has found the first non-homogeneous manifolds of positive
Riceil cﬁryature (including the Kervairelspheres), by means
though of a very isolated constructiop, which is essentially
intrinsic. | « |

In this papefxwe shall glve a very large new class of
(in general not locally homogeneous) compact manifolds
with positive Riccl curvature, including a very rich
class ofiexotic spheres; compare sections III, IV.

These examples are Brileskorn varietlies endowed with a
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metric induced from euclidean space after a modification
of the standard embedding. The methods involved seems
to be quite promising to produce even more new examples
of positively curved manifolds among certain algebraic
varieties.

To determine properties of the curvature tensor
explicitly for a glven Riemannian manifold is in general
very difficult. Basically our approach is very classical,.
namely, to study Riemannian Submanifolde-of euclidean
spaces which are globally defined by equaﬂions. Our key
observation is that there are many interesting.examples

of such manifolds which are orthogonal'intersections orf

level surfaces of simple functions.

I would like to take the oppo:tunity to thank ny
advisor, Professor D. Gromoll,fgr his kindness and essential help -
in many ways, to Professors W. Meyer and J. Cheeger for heip
in the very early stage of the work, to Virginia ILaLumia
for doing an excellent typing of my dissertatilon, and to
the State University of New York for financially supporting

- almost all of my stay at Stony Brook.
~



II. The Ricel Cufvature of a Variety

In'this section we first review the fundamental
 curvature gquantities of‘a.Riemannian manifold M. Our
main objective is to estimate the curvature of M in compu-
~table terms. This problem seems to be least difficult
for Riemannian submanifolds which are globaily defined
by equationé and Which_for our purposes, we call varieties.
Even though our approach is very classical and familiar in
the caée of hypersurfaces, hardly any results have been
knhown for higher cod;mgnsion. We develop some new ldeas
how to obtain estiﬁates for the curvature of certain
varieties in terms of the defiﬁing ideal of functions.  “ud
We finally prepare ail fofmulas for applicationrin our
study of Brieskorn varieties in Chapter ITI. For baslc
‘definitions and facgs in Riemannian geometry, we refer to
[51. [8].

We éonsider an n-~dimensional Riemannian manifoid M
with metric < , > and Levi~Civita connection V. All
data will always be of sufficiently high differentiabi~-
lity class, say ¢ for convenience (however it is not rniecessary
to supposevthat). For p € M , let M_ denote the tangent

. p
space of M at p. The curvature tensor R of M assigns

to vector fields X, Y, Z a new Vector field..

\



(1) R(X,Y)Z = vx(vyz) - vy(vxz) - v[x’y]z

One may consider R as a skew symmetric 2-~form which assigns
to u,v € Mp a skew aejoint eedomorphism R(u,v) of Mp .

Let & < Mp be a 2-dimensional linear subspace of Mp
and u,v € & inqependent vectors. Then the sectional
curvature K6 of M with respect'to the plane & is the;

real number defined by:

(2) K, = K(u,v) - Rw,v)v,w
e Jull P, v

K depends only on the plane 6.

The Riccil tensor S is the 2~form on M defived by:

(3) © s(u,v) = trace(w - R(w,u)y)

where u,v,w € M_ . So, if eig...,en is any orthonormal

b
. basis of Mp s

_

(31) s(u,v) = j§l<R(ej,u)v,ej>

In particular, S is symmetric. The Ricei curvature

Ric(u) 1s a real number associated with the l-dimensional

1inear subspace of Mp generated by a vector u % 0,

(4) . Ric(u) =

1
s(u,u)
)l @

1f ||ul| = 1, we obtain using (2) and (3'),
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n-~1l

: (&f)l Ric(u) = = K(ej,u)

J=1

for any orthonormal basis ej,....e, 1, U of Mb'.

" Remark: Some authors call H%T Ric(u) the Ricel curvature,

the reason being that this number is exactly the average
of all sectional cur&ature with réspect to planes & which
contain u. 1In our context, such a normalization is
irrelevant.~ }

By definition, M has positive (negative) Ricci»v
curvatﬁre e&erywhere if and only if the Ricci tensor

S is positive (negative) definite at any point p € M.

The scalar curwture of M is a real valued function

P s

s on M defined by ‘ » ROy
(5) s = trace S

where the trace is gaken pointwise with respect to the
inner product < , . Hence,

(5%) s(p) = .g Ric(ej) =2 3 K(e,

e.)
j=1 ‘ 1<i<j<n 127

for any orthonormal basis €5e005€) of Mp .
Now we turn to the situation where M is a Riemannian
submanifold of some Riemannian manifold M of dimension

n + k. So M © M, and the inclusion map 1 is an isometric

imbedding. We identify the tangent space Mp with



T

) ROLY)Z = (R(x1)21T - (ex(é

6.

“i%Mb c ﬁb . The normal space of M at p is the ortho~

gbnal complement M; of Mb in ﬁ? . For we ﬁp’ we wrlte

WT € Mﬁ, wh e M; for the tangent and normal components

'_ofw=wT+wJ‘

Let ¥V denote the Levi-Civita connection of M. One

has the following relation
- (¥ )T
6) . vy=- @F0T,

for vector fields X, Y on M; which we.may also conslder

asvvéEtor fields in.ﬁlalong M, i.e., along the inclusion i.
By applying.(G) to (1), one caﬁ express the curvature

ténsof R éf M in terms of the curvatu;é tensor R of ﬁ

and in terms of derivates involving only ¥, |

%) 4 (F.(F 2T
y yox

o
SR
AL

Now one introduces the second fundamental tansor of M .
at p as-'a l-form A oh Mﬁ with values in linear transfor- -

mations M; - Mp by
_ T
(8) A= (V0)©

where u ¢ Mp’ Nb e/M;', and N is any normal vector field

along M with N(p) = Np . The right hand side of (8)

depends only on NP . Let A¥ denote the l-form on M,

with values in linear transformations Mb - M; defined
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by A%*(u) = A(u)*, the adjoint of A(u). One has

© v - G0,

" where v € Mﬁ, and Y is any tangentiai.field along M with

Y(p) = v. Using (8) and (9) in (7) we obtain the Gauss

equations.
(10)  R(uv) = Klu,)T + A(u) o A%(v) = A(v) o &*(u).

Of course, the "product" A(u)o A*(v) is the composition
of linear transformations. Let us consider 4 = R ~ ﬁT
as the curvature difference of M and M at p, and let

A A A% denote the skew 2~form on M? With values in endo~

morphisms Mp Mb given by

AA A% (u,v) = A(w)e A*(v) = A(v) o A%*(u)

then the Gauss equations (10) take the more suggestive

form -
(11) A =R~TR =AA A%,

For to work with the curvature difference A explicitly,
one often chooses -a basis Nl,...,Nk for Mp* and consider
the self-adjoint endomorphisms AX of Mf with

Au = A(u)Nk for 1 £ A S k, In many cases, it need not

A
necessarily be advantageous to assume that the fixed basis

P



is orthonormal, for example, when M 1s a variety. For

any a € Mb*, we have the identity

: k
a = >
M=

. 7y Ko O,

1

where ﬁiu is the inverse matrix of <N, ,N,>.
Since {A*(w)w,N> = <w,A(w)Nyp = <w,h W,

. k
A*(uw = = g4 <{Au,wN, .
A,u=1 MM - A -

Therefore, (10) becomes

k : ,
(12) A(u,v)w fl E_lﬁiu(<AXv,W>Auu - <Aku,ﬁ>Auv).
) s - .

If Nl,.'..,Nk are orthonormal;

4 k : ' '
(12')  A(u,v)w = le(<AXv,w>Alu - <Aku,w>Akv) _

To deal with the curvature tensor R in many applica-

_

tions, the Gauss equations can only be used successfully
if, at least locally, k in dependent normal fields of M
can 5e found such that the transformations Ay in (12) |
are computable, pro#ided in addition, that R is known.

Moreover, the codi;ension k should be finally compared

to n = dim M. The most favorable situation seems to be
when M is defined by fairly simple "eéuations", this was

studied to some extent by Dombrowski, whose paper [3]

ety o e R v oz



'inspired our investigation.

Recall that the gradient of a function f defined

in some open subset U of M is the vector field Vf on

U such that {Vf,X> = Xf for all vector fields X on U.

At p e M one has

/ nt+k ( )
Vf/p = = e.f)e

- for any orthonormal basis S ERREE L of Mp R

We say that a subset M of M is a varlety in M if there
is an open neighborhood U of M in M and an ideal IM of
functions in the ring C”(u) of real valued Cwefunctions

on U such thati' *

a) {p/f(p) 0 for all T e I, }
b) Iy is generated by fl””’fk and Vfl/p,s-«s L

are linearly independent for all p € M.
Clearly, k = dim.ﬁ, and necessarily, M is a closed

submanifold of U, of codimension k, since O is a regular

va}tﬁe.of F U~ Rk by b), F = (fl}““"ﬂfk)ﬂ and

M = F“l(O) by a).
-

Proposition II.1

The‘submanifold M of M is a variety if and only if

the normal bundle, vy Of M is trivial.



10.

Proof: We only sketch the straishtforward argument.
Clearly, if M is a variety, the vector fields Vfl,...,ka

give a parallelization of V Conversely; assume that

M °
Vi is trivial. Then we can find k = co dim M ortho-
normal vector fields Nl""’Nk along M.

The exponential map exp .of M maps. some open neighﬁor—
‘hood V of the zero section in Var diffeomorphically onto
a neighborhood W of M in M. Let v, denote the sub-bundle
of‘vM whose fibers vi/b over‘p € M is the linear hyper~
plane in Mp-t perpendicular to N; 4 1< 1< k. ILet
vy =.V'ﬂ V; . Then exp maps A diffeomorphically onto a
hypersurféée‘wi‘such that M = Wlﬂ...ﬂﬁk . Moreover, M
is an "orthogonal intersection of hypersurfaces"”, i.e., .
the normal.vectors Ni/P of W, at p € M are orthogonal, =P
Let @iAdenote the trivial nqrmal line bundle of:Wi in
M and cohsider the section.%i over Wi such that “%i” =1
and %i/M = N; . Ve have the function wi%if* R with
mi(w) = <w,%i>'. Again the exponential map exp of M maps
an open neighborhood %i of the zero_section in %i diffeo~
morphically onto a neighborhood Ui of Wi in M. Let fi
be the restriction’of @, o (exp/\"fi)“l to U = U,N...NU .
Y

. 0) = W, . Hence

M is a variety with defining ideal IM generated by fl"'°’fk

Then Vfi/ = Ni/p for p e M and Fi

1n ¢*(U).
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‘We have two immediate consequences.’

~ Corollary II.Z2.

1) Any submanifold M of M is locally a variety, i.e.,
every point p € M has an'open neighborhood in M Whiéh is a
variety in M. | _ . | |

2)  The defining ideal I,; of any variety M in ¥ has

M
" an "orthonormal generator system", i.e., I, can be generated
by fi;""fk such that Vfl,...,ka are orthonormal along
M. '
We want ﬁé'emphasize:that the whgie point for intro-

ducing varietles.is that they.are globally defined by

Dt
functions. Global curvature estimates can be obtained just

by studying fivst and éecondvderivates of k'éenefating
functions, as discussed next. This 1s usually a less
difficult problem than working in ﬁhe general case, in
particular, when the defining functions and the ambient
space are falrly "simple". We should mention that the
second part of Corollary IT.2 is mainly of theoretical
interest. In examples, generating functions form hardly
ever an orthonormal system, and explicit orthonormaliza-
tion is in general too complicated to be of any practical
use. However, one of our crugial observations is that

sometimes the defining functions of a variety M in M can
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be slightly modified fo.yield at least an orthogonal
geﬁefator system for a new ideal IM' which defines a
variety M' diffeomorphic to M.

For a real valued function f defined on some open

subset, U ,. of M and p € U, the hesslan tensor is the self

adjoint endomorphism Hf : ﬁé - ﬁb with

v =Yy vr

(13) | Hp

Hf is given by the matrix of second partial derivates of -

f at 'p in the case M= Rk .

‘Let M be a variety in M defined by the functions

fl’f"’fk 9n U D M. Seﬁtipg Hy =.fo and NX'=~?f;/M’
we obtain from (12) and (13) for the curvature difference sem

“Ravseped

tensor A of M in N,

k T T
<Hlv,w>Hku - (Hku,W>Hkv)

) _ 1
(14)  Au,v)w Z nvfkn’f(

Here, Hg :'Mp - M? is the tangential projection of

H, » i.e., ng = (qu)T . From now on we restrict atten~

tion to the case where M is a variety in flat euclidean

space M = RnTk , so & = R. Furthermore, we always assume

-

that Vfl,...,ka aye mutually orthogonal along M. Then -
for the sectional curvature of M, we get by using (14t)

in (2),-
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K
1
(15). K5 = K(u’v) B xil ﬂ;;;ﬂ§.(<Hku’“> ©Hy v, - <qu>i§”

where u,v € Mp orthonormal. Similarly, using (14!') in

- (3') and (5') yields for Ricci and scalar curvature:

" k. 1 ' T 7,2
(16) S(u)u) : )\El 'lTv_f;‘”"ré‘ (<H')\u’u>tr H)\ = ”H)‘_u” )3
. -k 2 2
(ar) se) = > W ((trEy) = tr(E) )

Now let M = Cn = R* @ iR" = R2n complex-n-space,

where we ldentify z = (zl,...,zn) e ¢ with

.(xl,...,xgg ylg;..,yn) e R s 2y = x£ + 1y, . Let

{u,vp = ; u Vk denote the canonical hermitian

inner prgzict for ¢®. Then the real part Re{u,v> is the
canonical inner producf for Rgn'E o™, Sgppose T :U—~C IR

is a holomorphic function defined on some open subset
U of ¢® . Setting ¢ = Ref and ¥ = Im £,f = @ + 1{

satisfies the Cauchy-Riemann equations.

(18) Vo = - 1V
Hence, -

(19) Re{Vo, V> = O,

so Vo, V¥ are always orthogonal in R2n. The compleXx




gradient of f 1s the vector field Vf = (gf:,...,gi )
] ' 2y “n

on U. We have
(20) v = %(ch-i vY) = vo = -1ivy

The complex hessien H of f at p € U is a C-linear

~ 2o
endomorphism of ol = Mb given by the matrix (_ELEL__ Ip )
‘ , Bziazk

with respect to the canonical basis of c” s 1= Jj,k=<n.,
Now su@pose; we-are also given a real valued function g on
U, such that the ideal generated by ¢ = Ref, ¥ = Imf,g

' defines a variety M in ¢ . So M is a real submanifold of
codimension 3 in o wh}chvis the intersection of the complex
hypersurface f”l(O) and the real hypersurface gfl(55. ow
let us assume in'addition_thét the complex gradient vf =
and the real gradient Vg are compléx orthogonal, {vf,vg> = O.
Then we obtain the following result for the curvature of

M. Using the Cauchy-Riemann equations, the complex hesslan
H of f'and the real hessians H@, HW are easily seen to

be related as follows: :

(20) <Hu,v = Rg(Hmu,v>’+ 1ReCH,u, )

-
-

Lemma IT.3

Let u be a tangent vector of M at p. Then
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( Re<H ,i<H VE S oflmul|?

(21) . s(u,u) = Toel? HVgH [vgll

s

+ e‘(<fm, jf—->12 + |[<Hu, —& >12)

vell [ vell
L (o te 5 - ),
lvell® 8 e e
(22) . s(p) = —t (I ® ool 27 e S T
[|v]] v gH | vzl el vzl
- Ka Y, Ye >l - tr HH)
o el vel --
1 o 2 BRI N ‘ e
IIVg]§2 ((tr Hg). 2 tr(dg) ). 7
Proof: = The above formﬁlas foilow étraightfor&ard from

(16), (17), and (20), ‘using a complex orthonormal basis

vt
el e lvsl

€y500038, o 3 lp for Cn . Note that

|p 1is a real orthonormal

e > le,,0...5e 5 le Y
1: 1 n-2 n ”Vg“

basis of the tangent space of M at p.
In appllcatlons,formulas (21) and (22) can be used
advantageously in particular when the function g is very

simple, as we will study now in the next section.
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ITI. Results for Brieskorn Varieties

Iet n= 3 and a, 2 a 2...2an 2 2 integers. Consider

"r112 nooag
the polynomial £ : ¢ - ¢, f(z) = = z, , and the function
k=1
n
g e - R, g(z) = = Z, Z; ~ 1. The intersection of
k=1

the complex hypersurface f"l(o), which is singular only
at z = 0, and the euclidean sphere g-l(o) is a compact

submanifold of C™ with real codimension 3, the Brieskorn

variety V(al,...,a These manifolds have been studied

n)'
extensively 1in recent years from various viewpoints and

turned out to be extremely important and interesting.

(For a general account, compare [9 ]). In differential

geometry, of course, one is inﬁerested,in thelr curvat
_behaviérf_ Clearly V(al,...,an) iS'a-véfiety in our sense
defined by the ideal generated bj (Ref, Imf, gj. It is
very easy to see, and has been observed by many people that -
V(al,,;.,an) with i%s induced metric alwa.s has sectional
curvature of either sign. Our starting point was to study
the Riccl Tensor of V which in some very special cases
turned out to be gpsitive; fbr.example, when al=...=an=2.
However, already.in.the fairly simple case al=3, a2=...=an=2
(which contain exotic spheres), the formulas became too

complicated to work with. In our gttempt to make computa-

tions more accessible, we discovered that there 1s a
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simple modificatlion of the imbedding of V in ¢™ which is

an orthogonal intersection of a perturbed complex hyper-~

surface and an eiiipsoid. Then the fairly simple formula
- (21) is applicable, and that makes it possible to obtain
estimates for the Riceil curvature. |

Let Ogseees®y > 0 and wi,..},wn > 0 real numbers.

Thon we consider the generalized Brleskorn variety

a

A (al,...,an) = £ (O) n g (O), where f(z) = Z a, z kk ,
n - k=1 :

g(z) = lek K EE -~ 1; Note that on V!, the complex

~gradient VI and the real gradient Vg are independent over
' ‘ -1 L =ap-1
C: Forz#O, Vf = (alal ll’ ’ananznn ) £ 0,

vg, =.2(wlzlj..g,w z ) £ 0. Now if for some O £ i € C T

and z ¢ V!, VfIZ = pVg[Z s> we would have

—8K.] _ - ~ap _ 2pW el .
@8y z) = 2pw,z),, SO Tz _ K Zy * Zp - Summing
k
n w -
over k yilelds O = 24 2 _E.zk ©Zy s which is lmpossible.
: k=1 %k -

Moreover, we have the followlng fact.

Proposition III.l.

_V‘(al,..&,an) and V(ai,..,,an) are diffeomorphic

and isotopic in c™ .

Proof: Tet H : ¢ x [0,1] = C X R defined by

: n o
H(z,t) = ( 2 ak(t)zk , = wk(t)zk © 2y ), where
k=1 k=1 '

ak(t) =1~ t+ ta >0, wk(t)_= 1~-t+ tw >0. By



18.

the above argument, O is .a regular value of H. So,
Q = ﬁ“l(O) is & compact submanifold with boundary
VX OUYV'x 1. The restriction A of the function (z,t)t
to Q haé no critical points, X";(O) =7V X 0, x'l(l) = V! x 1.
Hence, Qlis diffeomorphic to V X [0,1], and this completes
the argument. ‘

Now once and for all, given al'2 25 2”f25n =z 2 we
4'cﬁdose @) = akIE;EIT and W, = gi- and consider always‘
-the Brieskorn variety, ~ :

V' (ag,.nes2,) = £71(0) N g7(0), where

a : _
(23) n .z ko n z, < 2z
S fe) = 2 ooy ale) = 3 == -1
endowed with the'induced_Riemanﬁian structure as a2 sub- £
,manifoid of Cn, We have -
‘ =a1~1 =an-1 -
Zq zZ, .)
(24) vf = (————-———- 8380 ‘|‘
: lZ : al"l an".._.
B (él zn)
25 Vg = 2(= ., ..., —
!Z al 2 2 an

Hence, if z € V' it follows using (23) that

(26) <Vf,vg>I% = 0.

We are now in a situation where the ‘techniques developed
at the end of Section IT can be applied. In particular,

we want to find lower bounds for the Riceci curvature of V!



19.

using .the formula (21). For this purpose, we need the

following quantities:

" o 12(2k=1)
() Ive?, -z lmlE
: . k=1 (ak~l)
(28)  lval?, - 43 la

(29) -H=~ ‘1 O

: _ ' n u’
(30) Re{H u,v) = 2Re = g K
g k=1 2x

the norm of H at z'is the number

VN Ry . A

Lemma IITI.Z2.

A lower bound for the Ricci curvature of V' 1s given

by

e

: 2 a
(32) Ric(u) = =3 sup i + -2 (2n-4)

wevt [vel? ey

In the case of equal exponents 8y =e..= an =p we have

a better bound
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2
(321) Ric(u) = -2 sup ] + 2n-b
- zeV! HVfH D
Proof': We may assume, |lull=l. Thus, from (21) we
~obtain

F33) ‘ s(u,u) = - H ”2 (|<HU,1-J:>|]<H ‘n‘v'é‘l": 'n'ﬁ'g"" l +

2lll] + = (CHgus b br Hy - anuu

Ivell

Now

<o, B | I<a 2 eS| < |ul®
lIv gH v gll

Note that <H ﬂ_—ﬂ- -n-v—gT-> =0 in the case of equal »
exponents.

For the second term in (33) we get using (15),

H;;HE-(<H w,w tr H - HH u” ) 2 (2n~1)K min,

_-

where Kmin is the minimal sectional curvature of the

ellipsoid g“l(O) 1n R°% = ¢, Then the second term in

the lower bound for Ric(u) in (32) follow from
>
.'an
a1
To see that let u,v be orthonormal tangent vectors of the

ellipsoid at z ¢ g"l(o). Then
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K(u,v) = <ng:u><HgV:V> - <ng,v>2

lvgll®
From (28) we obtain
2 2
n |z, | y R |z, | L
lvgll® =4 = —Ss 2 3 X -
k=1 a° nk=1 %k &n
So
. )
(35) el s -
n

with ‘equality holding for z, = (O,...,O,Van). On the

a e 1 i! = ! = ) 54
other hand, setting Up @, Vi 'akvk for 1 < k £ 2n,

_JZ sor 1 Ca
Qe = Vg for 1 = k<n, Cprn = Lo

k
' ' D
. 2
<ng,n><Hgv,V> - <ng,ﬁ> =
<ul’u'><vf,vl> — <u.',V'>2 — S (u’kvl/& — ul{l.vlk)e —_
_ 1=sk<i=2n .
2 2 -7 2 2.2 2
s atas(uwv, =~ u, v,.)° 2 min afo s (u, v, ~u, v, )
1<k<i<on k4 }T»{, 4L 'k K<, k4 1sk<t=2n kL X'k
k<t
So - A
<H u,w<H v,v» -~ <{H u.,v>2 2 'ﬁﬁ'
g g g a

using the Lagrange identity twice and observing that u,v

orthonormal. Equallty holds at z, = (O,...,O,Jan) for
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the tangent vectors u = (1,0,...,0),:v = iu of the ellipsoid.

Hence,
. a
aq -
Remark In the case a1 = ans the estimate for the second

term in (32) can be substantially improved as follows:

(32") Ric(u) 2 -3_JEL n (1, "5

a, ‘a + 5;)’
HVfu 1 1 k=2

L
ak n
n-2 : .
wherée the sum 3 — 1is understood to be zero for n = 3.

k=2 %k

Proof': '_Choosing an orthonormal basis el,...,e2n for

R2n,s c¢® such that el,...,e2n 5 Span the tangent space of

SN
ﬁl—"

V! at z, we have in (33),

2n
1 T 1 1
=tr H = trH - = 3 {H e,,e.,y =
2 g 2 g 2k;2n-2 g 1’71
1 3 1, .1 3
= - tI' H o e—— 2(——' +. - a+ '_""') - e— =
2 g a, aq &, a,

N Frrres
n- n .

Since HH u| = HH u|
2
<H u,wtr H - HH ul| =

<(29H-4I )HID 214ndn-i%p~¥Lﬁ = 43;(p_£L s
k @y a
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using a, ; = a, . Combining this estimate with (35)
yields (32").
We now turn to a result on the Ricecil curvature of

- Brieskorn varietles defined by homogeneous polJnomlals.

Theorem ITI.3.

For any p'2 2, there exist an integer N(p) such

that in any‘dimension n = N(p), V’(al,.o,,an), a; =a,=a, =

has strictly positive Ricci curvature.

Proof: Fixing P 2 2 it suffices to show

_on-l lal®
(36) > 2 sup ol
P zeV' [|ve]|T

for n sufficlently largé, according to (32'). To prove

. _ 2
this we shall construct a suitable upper bound for-ﬁf%ri .
' Vi

From (27) and (31) we obtain

- D 2 o P-
IEl2 <maxlzkfp = pony? gl
el _1 2(p-1) 3 |z, 270)
| (p-1)° k= IZ | =
|2 ]% T
Setting py = “k we have = p, .= 1 Dy (23). We
P k=1

may assume P, = Po 2,,,Z Py 2 0. Then

' , p
C R (pe1)2 P2 (p-1)F
(37) 5 A= A
|vell p - p-1 D

1B
iRadei t



2L,

' To maximize (37) we have to minimize the reciprocal

Py P-1 | p.. p-1
1 2 n
=p, (1 + =5)  +...4+ (=) )
! Py
- - pk
under the above constraints. Put O = 6k = . =1 for
1 ,
2 < k=< n. 8So we have to consider
1 p-1 p-1
-.A——-. pl(l+62 +‘p.+ 6n )
with the constraint
p (146, +.. 48 )=1,L<p =1
1 2 n > n 1 )
One easlly verifies that %- assumes its minimum ne¢éssarily
when 62 Se..= én . Hence,
1)
%-2 min a(x), a(x) = 1+(n-1)x » 05 x=208,5 1.
1+(n-1)x

p-1
Since a(0) = a(l) = 1 and x < x, 0 assumes its
minimum at some interior point O < Xq < 1. Observe
a(x) =1 for p =2, so let p 2 3. Differentiation

ylelds that x is the unique positive root of the equation

0

> N
Pa

(p~2) (n-1)x""1 + (p-1)xP"2 - 1 = o.

Therefore,

(38) L= a(xy) = (p-1)x P .
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" As we cannot deal explicitly with x, for p 2 5,

0]
we shall find a lower bound for a(xo), which suffices

to prove the theorem. C(Clearly,

: 1 p~2 ' 1
A=< — Yo s where Yo = —

b~ X0
sgtisfies-

Q(y) ='yp“l -~ (p-1)y - (p-2)(n-1) _ 0.

1 _p-2 _ p~2 L
It f?llows that 5-T Y0 =1+ E:I'(n l)yo , SO
(39) As 1+ B2 (n1) L
- . p"'l yo
we have to find a lower bound for Yo - Since Q'has only €4

one positive root and Q(0) < 0, we haye Yy < ¥, whenever

a(y) < 0.  Choose y; = [(p-2)(n-1)1P"" , clearly

Q(yl) < 0. Hence, (39) implies

p-2
(%0) As 1+ %5% (n-1) 3’_15 =14 ‘-15%—1— [(p-2)(n-1)1P"" .

Combining (37) and (40) yields (36), which completes the
argument. -
We will now derive a general result for a large class

of Brieskorn varieties.
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Theorem ITITI.L.

-Given arbitrary integers a; 2 ég Z,..2 a, = 2, then
there exist an integer N(al,...,am) éuch that the
Brieskorn variety V‘(al,...,am, am+l"°°’an)’

Bpl == B T 2, has strictly positive Riccl curva-

ture whenever n 2'N(za,l,...,am).

Proof: As in the proof of the last theorem, it suffices

to show i
. 1]
(39) —» (ntm-2) > 3 sup S
a1 ¢ - zeVt ||vrfl

for n suff101ent1y large, according to (32). We shall
e
lvzl|?

show that " has an upper bound which only de ends D

on s esBy (and not on n). Then from (39) follows.
a, - 2(a, ~2) g2
Clearly, [|8]% = (mex|z | ¥ ) = max|z | 5 " <a '
K L k

-

Since [zk]2 < a, for all k by (23). On the other hand,
2(ak~l)

' m m+n .
Ivell® = = |z + 3 ]zkl2 .
k=1 2 o k=mt1
- (ak~l)
mn o
Using again (23), we conclude that if = lzkl < 1,
k=m+1
nolz % n |z, |2
then 2 = 5 s SO z > has a positive
k=1 &, k=1 (2, - 1) :



mihipumA B(al,...,a

o) on the compaétﬁset in ¢ defined

m }zk]

by %"S 3 < 1. Hence
k=1 a)
2 . : ‘ '
lv]< = mln(B(al,...,am),l). |

Remark. _ v
Thé original proof of this theorem is geometrical
using the fact that the orthogonal group o(n) acts

tran51tively on the Grassmannian Gn 2‘ of 2~planes
3 N .

in R .



IV, Further Remarks

We shall briefly discuss the scope of the results
proved Iin the last section and sketch some applications.
We mention first that there are Brieskorn varieties which
do not admit any metric with positive Ricei curvature
(in fact, not'e&en with non-negative Ricci curvature).
This follows from Orlik's result in [7.] saylng that the

fundamental group 7w, of V(a,,a,,a,) is infinite for
1l 1°72°73

x +;;L-+ L. <1 and from Myer's classical theorem
a) B, ag

according to which T, must be finite if there exist a
metric of positive Riccil curvature. In higher dimensions,

similar counterexamples are not known. However, 1t is

easy to see that V'(al,.,.,an) with 8y =eeo= aﬁ'= r has S
"negative Ricei curvature at z==~;% (1,..00,1,=1,...,=1)"

for n even, p odd, and dim V! = 2n-3 <'2(p~l)2. Thus,
Ric(v) < 0 for 0 #.v 1 iVg and Ric(ivg) > 0. The
scalar'curvature of V! at z 1is strictly negative.

On the:ofher hand, working more explicitly with our
estimate that appears in the proof of Theorem IIT.3, one
obtains that the Ricci curvature 5f V(p ,...5p) 1s
positive for |

n > [2(p-~l)2]pml + 2

Detailed computations glve better bounds, for example
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N(3) = 11. The fact that the Ricci tensor of V!'(p,...,p)

is only necessarlly positive if the degree p of f is small-

compared to the dimension n, looks somewhat related to the
_ behavior of the first Chern class of the associated pro-
jective variety (over which V! is a circle bundle).

In this context we mention that the "affine quadric!
V’(Q,..;,Q) in the Stiefel menifold of real 2-frames in
Rn with some homogeneous metric. The computatiocn of the
Ricel curvature 1s a very special and simple case in our
genéfal frame work. For a unit tangenﬁ vector u at

z e V!, n =2 3, we obtain from (21),

' : o R 2 )
Ric(?) _ (g_g) + gv,j%iz> . 1 -

T

-

Hence, n -~ 3 £ Ric(u) s n -~ 2,

where the bounds are assumed aﬁ any point.
In the general case of Theorsm III.4, a very rough

explicit lower bouna for the number of squares that have

to be added to yleld positive Riceil cﬁrvaturej is given by

&

< (2ma;) *

N(al,..ajam)
If one is interestéd‘in substantially better bounds, then
1t seems to be more efficlent to deal with each example in
question separately, rather than to work in the general

case which is difficult from a numerical point of view.
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For example, if m = 1, then N(3) < 5. The general

estiﬁates given in Section IIT cannot be‘improved by

too much, and even falrly optimal estimates for special

examples indicate that N(al"°"am) will be very large

compared to - Aside from this, it does not seem po

be possible to generalize Theorem IIT.L. in any obvious

way, say to add cubes instead of squares. Upper bounds
iﬁﬂﬁ;-~will depend on the dimension of V' such that
vell = ] |

(32) .cannot be satisfied. We also remark that'using

n zk.'z'k-
g(z) = 2 '

- :t"2 with some other radius r > O
k=1 ‘

1
3

-?k
in (23) does not make much difference in the basi

estimates. In fact, r =1 appearq to be fairly optimal.. .oy

Of course, the essential contents of theorem IITI.4

g

1g the existence of a very large infinite clasé of compact
manifolds among Bries corn varleties which carry a metric
with strictly p031tive Ricci curvature in a falrly natural
way° Even though we get only finitley many examples in
a-given dimension nj their number increases rapidly with n.
Also, in a certain sense, we can interpret the result to
the extent that almost all Brieskorn varietlies admit
positive Riccl curvature. This is because we may start
out with any V(al,...,am), and "adding squares' makes

V(al,o..,am,Z,;;.,Q) very similar to V(al,f.},am), except
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that the dimension rises and topological invariants.are

shifted as for suspensions.
As an important application, we consider ekotic

- spheres. It is known that every odd dimensional
homotopy sphere that bounds a parallelizable manifold
is diffeomorphic to some Brieskorn variety V(al,;..,am).
For example, the varietles V(6k-1,3,2,2,2), 1 g:k < 28,
represent ail the 28 differentiable structures on the
T-sphere. There 1s a simple condition on 81seeesdy such
that.V(al,...,am) is a topological ghere, and differentiable
structures can be distiﬁguished by invariants computable
from al,...,am, compare [1] for details. It follows from
that easily that if V(alje.,ba ) is an exobilc qphere m W

odd, then s. is V(al,...,am,2,2).m Hence, adding anﬁeven
number of squa?es,if'mAOdd, produces distinct exotic sphafes
from distinct exotic spheres to start with. Moreover,
- in fact adding an even number of squares In V(6k-l,3)5
k 2 1, g'ves already all the exotic spheres that bound
paréllelizable manifolds in the éorresponding dimensions
(congruent 1 modulo 4). 1In the remaining dimensions
(congruentA—l modulo L) there is at most one exotic sphere
among Brieskorn varieties, the Kervaire spﬁere v(3,2,...,2).

Applying our results, we obtain:
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Theorem IV.1l

‘Among the exotic spheres of odd dimensilon thet bound -
a parallizable manifold there are infinitely many that
admit a metric with strictly positive Riceil curvature.
These examples include in particular all the Kervaire
spheres in dimension U4k-1. Moreover, in dimension ﬁk+l
there aré at least Vi 2 0 such exotic spheres, where

Vi 1s weakly increasing and Ve T for k = =,

In contrast to that, Hitchin [6 ] polnted out that
there are examples of exotic spheres in infinitely many
dimensions which do not'even admit any metric of pésitive
scalar curvatufe. The:very interesting probleﬁ whether
or not.there are exctic spheres ﬁith positlve sectional  grm
curvatﬁre K is st11l unsolved. However, recently Gromoll

and Meyer [4] constructed a meﬁric on the Milnor sphere

sl = v(5,3,2,2,2) with K = 0, where the set of points
with K > 0 for all planes is open and dense. They make
“use of a.completely different description of 27 andv
intrinsic methods. Thelr example has strictly positive
Ricel curvature by the way, which we cannot prove since
our bounds are not strong enough in this case.

There are not many topologlcal consequences one can
dérive for a compact manifold with positive Ricci curvature.

Our application is (using Morse theory, [8]).that the loop
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2,...,2) and V(p,p,...,p) have

spgces of V(al,...,am,

"ﬁhe homotdpy type of a finlite CW-complex with finitely

many cells attached in each dimension (n large).
We conclude by mentioning that we have also studied
the scalar curvature s of the Brieskorn varieties V'.

It 1s not true that always s = O, compare examples gilven

-above. It seems one can only quantitatively improve the

'resﬁltS'of Section III in the case of scalar curvature,

which we will discuss elsewhere.

B s 8T
DI )



S s

[1]
[2]

[3]

[4]
[5]

[6]
(7]

[9]

3l

Bibliography

BE. Brieskorn, Belsplele zur Differential topoclogie
von singularitaten, Inventiones Math. 2 (1966),1~14,

J. Cheeger, Some examples of manifolds of non~negauive

~curvature (to appear)..

P. Dombrowski, KrummqusgrOSSen gleichungsdefinierter
Untermannigfaltlghe¢ten Riemannscher Mannigfaltigkeiten.
Math. Nachrichten 38 (1968), 134-180.

D. Gromoll and W. Meyer, An exotic sphere with positive
curvature, (to appear).

D. Gromoll, W. Klirgenberg, M. Meyer, Rlemannsche

Geometrie 1m grossen, Springer Lecture Notes, 55 (1968).
N. Hitchen, thesis, Oxford, 1972. '

P. Orlik,”Weighted homogeneous polynomials and funda-
mental groups, Topology 9 (1970).

J. Milnor, Morse Theory, Princeton University Pressg,

(1963).

J. Mlilnor, Singular points of complex hjpersurLaces,
Princeton University Press (1968).






