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ABSTRACT

Iet S be a compact Riemann surface of genus g & 1,
“Yl,Yg,...,Yg;él,ée,...,ég {(abbreviated by (vY,8)) a canonical
“homology basis on 8, T the period matrix of S and (v,8), u a
jmapping from 5 to 1ts Jacobl variety J{8) for a fixed base

‘point P, on Sand n & 2 a positive integer.

A8 & generalization of Abel's theorem, a divisor { 1s a

divisor of a multiplicative function f on S with characteristic

i

fet
n

if and only Lf its degree d[(] = 0 and u(C) = (;?)3 where
(:’)n denotes an nth period in J(s). '

1

For any two rational characteristiGS'[g,]n and [u,]h,

the quotient of two Rlemann theta functions B[Z,]n_(u(p),ﬂ)

and G[S']n (u(p),0) is a multiplicative function on S with

€~

characteristic [~€,+u1]n.

e+
is [e,iu,].

If n = 2, then its characteristic

Constructing an n~sheeted smooth covering é of genus .

A . : :
2 = n{g-1) + 1 over S by the method invented by Farkas and

Rauch, & canonical homology basis (¢,g) on 8 can be chosen

in a natural way by the 1ifts of (vy,5) on 8 onto 8.

Then thel"e iS 8 b&ﬂis dV J = '1,2,-.-311"'1, k = .lgggnaugg"l,

Ik’
for the vector space of multiplicative differentials on S with



iv -

haracteristic [jo...O]n normallzed by
:: av = b av = T, m=1,2,...,2~1L. = (T,
”IYm+1 Jk km? Iﬁ ol Jk Jkm? S RRREE Tg ( ka)

fhas positive definite imaginary part for eachj,j=1,2,...,n~1.

A
- The period matrix H of S and (Y 5) 1is

B : 3 -
ﬁ = . im where 4 = 0,1,2,...,n=1,
h .?-F}}{___.m.__ ?%;..m -— ‘ oom o= 13233éﬁi-:g"19
]
: i Tisel . ’ w = exp [mﬁm
1 h(&ﬁ) ]
=1t Ty
i
| A 1o 0
Now, using the symmetry of I, Tj = T . Ifn=2,

,tTi = Tq and Tl Géjgwl (the Siegel upper~half plane of degree
¥

g=1). If g = 2, Tj = Tj = Tnuj’ and hence there are [%]
distinct Tj,s such that TJ 66;1 for all j, where

[x] = max{y=integer|y=x} for a real number X.

For & particular case n = 4, 4n additlon £0

Oaa]
ig8

any. odd-E(g-l)-characteristic [g]; proved by Farkas and Rauch,

05 6 & &
151515161

: N
sny odd (g-1)-characteristic [g,]. Noting that S 1s a two-

R

22(g~1)m1(22(g~l)ul) even theta constants 8[ 0 on 5 for

D, e . A
28 2(2g l-l) even theta constants 8[ ] = 0on S for
' : A
: A
sheeted. smooth covering over S which is also & two-sheeted
smeooth covering over 3, |

) 5
515! ](_) = congt

(H)

L8
e

1 mc0ﬁ>

Qﬁ’




theta constant associlated with,s and (Y 6) and

\ T+ i(TlmTB 6@22
T = 7
(19-71)  TytTg
5 7
If g = 2, thenw:UlO)——(Tso)e@E.

For a hyperelliptlic Riemann surface S of genus g'§ 4, a
“perlod relation of Schottky type, Jﬁﬁ_i:J?E'i,J?g = 0, holds
such that for g = 4 and 5 1t becomeg a perlod relation of

Schottky type exhibited by Farkas and Rauch., For a compact

‘Rlemann surface § of genus g = 6, a period felation

> ﬁ1lrk-: 0 of Schottky type holds. For g = 7, Z iqlrk =
S k=1

holds. In each case, ry,s are the products of elght theta

congtants.

‘ _ : : ‘ : 2g+2
For a hyperelliptic Riemann surfeace S of w2 = 1 (Z"xk)
' k=1
: 0 ‘ I}
of genus g = 1, 8 [u(ll)] = 2 B [u(kak)];
. k=1 :
5 5
For a compact Rlemann suiface S of w” = 0 (z-ay)
D | L=1

of Riemann constants with respect to any branch point A, on 3

6Ver Z = a{]; L = 132339}4’}5'

O)

For a compact Riemann surface S of W3_= i (ZeaL)

=1

5 | S
{oxr wo o= T (z;aL)A) of genus g = 6, 8[K] ie a vanishing even
=1 | | |

theta constant with the vanishing order 2, where X 1s the vector




vl

6 | C
or w3 = Lﬂl(Z“aL)e) of genus g =4, 8[K] 18 the only one

vanishing even theta constants with the vanishing order 2,
where K 1s also the vector of Rlemann constants wlth respect

to any branch point AL on S over z = ay . Ghoosing a

partlcular canonical homology basis-yl,yé,y3,y4; 8158,504,8),

I 17311
on 5, K = (1111)'
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TNTRODUCTT.ON

For a compact Rlemann surface S of genug g 2 1 endowed
“with a canonical homology basis Yl,Yga;.Q,Yg;'61,62,}.,,6g

(simply abbreviated by (Y,5)), where Y, and &, are one-cycles

on 8 satisfying KI(Yi,vj) - KI(bi,ﬁj) = 0,

KI(yy,04) = aij, 1, 3 = 1,2,...,8, KT denoting the (skew-

.symmetric, bilinear, integraluvalued) Intersection ﬁumber,

the normalized basis dul,'dug,..,,dug-for the vecltor gpace

Al(S) of abelian differentials of the first kind on S over

the complex number field C 1s unlquely determined with reg-

pect to (v,8) by [y duy = 8, nij[s,(y,a)] = Jg au, 1, = 1,2,...,8.
The g x & matrix T[S, (y,8)] = (1[5, (v,0)T)1s called the

period matrix of S and (v,56).

Tt was recognized in Rlemann's work more than a century

ago and was recently proved by Rauch [18, Theorem 3]

explicitly that Hij[S,(yéb)] are holomorphic functions of

3g~3 complex parameters, "the" moduli, for g & 2, of 1 complex
paramneter for g = 1, for a non-hyperelliptic Rieménn surface

S, and that they_are of 2g-1 complex parameters for & hypgrelliptic

_RiemannASurfaCé S of genus g & 2, Consequently, there are

(g—zéfg—3) holomorphic relations for a non-hyperelliptic

Riemann surface 8 of genus g Z 4 and (g~ll§g~2) holomorphiec
relations for a hyperelliptic Rlemann surface S of genus g‘é 3,

among, HiJ[S,(Y55)]c



One of the classical problems‘in the theory of compact

. Rlemann surfaees 1s to formuiate such relations, 1.e, periogd
relations. In 1886, schottky [27] first succeeded in deriving
‘& relation for g = 4, and then Schottky and Jung [29] condecuur—
ed a simllar relation for higher genera., Thelr original

1dea was to establish such relatlons through (Riemann)

'theta'fﬁnctions, more preclsely theta constants, assoclated

‘with 8 and (v,8). However, those relations were very recently
‘proved and formulated by Rauch and Tarkas in the forms of

the #anishings of the explieit homogeneoué polynomials in

theta constants, after establishling the proportionaiity of

the squares of one set of theta constante, the Schottky constants,
to certain twomferm products of another set, the theta constants,
both sets associated with § and a definite canonical'hemolegy

vasis (v,5) [5,9,10,11,20,24, and 25].

They also suggested the method how to obtain a period

relation for g > 5 as a structural generalization for g = 4

and 5. But, they noted that the method does not neéessarily

glve all the (g—ELngS)' relatlons among §L%i£l periods. This

was one of the remarkable works which have been done for thils

classical problem S0 far.

On the other hand, Andreotti and Mayer [4] provedlthat
the exlstence of Polynomials in theta constants and thelr
derivatives whose’ vanishings imply all the period relations in

quite 8 different way from Rauch and Farkas.
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At any rate, theta functioﬁs~and,‘particulafily, theta

constants assocliated.with 8 and (y,é) are interesting sub-

jects to study for 1ts own.

A modern account of the propertles of these theta functions
~and theta constants 1s to be found in Leﬁittes' paper [171],
‘where, in addition to new results, we can find thé first
;correct functlion~theoretic proofs of some dellcate but

- hitherto obsgcure assertions of Riemann.

In chapter I, we wlll primarily study theta functions
and theta constants with rational characteristics. Prior to
this, some general observations on multipilicative functions
and differentials on a compact Rlemann surface wlll be nade
to have a close iook at the behaviors of theta functions

and theta constants.

In Chapter II, we will dlscuss more about the smooth
coverings g of given S, constructed in a similar way by
Farkas and Rauch, and about the propartionallty of Schottky
constants.to theta constants on S with a definite-éanonical

homology basis (Y,B), along with the Propartionality proved

by Accola [1] for a particular case.

In Chapter ITIY, we will derilve a'period relation on a
hyperelliptic Riemann surface S of genus g = 4, which has an
intereSting and ncteWorthy'structure, In additon, period

relations of Schottky type for g =6 and 7 will be exhibilted



by using thé'method suggested by Parkas and Rauch earlier,
~end 1t wlll be dlscussed how the latter reduce to the
former for g -6 and 7, lnciuding fqr g = 5 exhiblted by
.Farkas and Rauch [9,10;11]. A theta idenfity in 4th

-power will also be derived for'a hyperelliptic Riemann surface

il

S of genur g & 1.

In chapter IV, ﬁhe bbservations on the three=gsheeted
branched coverings over the sphere wlll be made to find
vanishing even fheta constants on it. Since theta constants
are functions.of the periods, the vanighlings of such even
theta constants impose_the conditlons on the perlods, and
conseguently on "the” moduli, on the surface, while all the
odd theta constants are always vanishling. In_particular,
we-will prove that the only one even theta constant does
vanishlon the'Rie@ann surface of an algebraic functlon w

satisfying WS = I (zua&), which is confofmally equlvalent

to the Riemann surface of an'algebraic.function w satisfying

W3 = LHl(z-- L)e, of genus g = U4, and that an even theta
constant doesg vanish on the Riemann surface of w satlsfylng
5

wo o= 1 (2— L)’ which 18 conformally equivalent %o the Rlemann
A= '

surface of w satlsfylng w5 = I (zmag)u, of genus g = 6.

=1 _
Finally, choosing a particular canonical homology basls {y,o)
on the Riemann surface of wo = I (zw-a, ) (or wo = T (z~a )2)

of genus g = 4, we will find out the only one vanishing even




fheta'constént assoclated wlth the surface and (v,5).

As the general references for the theory of Riemann

surfaces, we may offer [30] and [34], in particular, to be

ffamiliar with functions, differentials,'divisors and Abel's

theorem, etc, on a compact Rlemann surface.




CHAPTER I THETA FUNCTIONS WITH RATILONAL CHARACTERISTICS

1=l Multiplicative functlons and differentials.

We conslder a compact Rlemann surface S of genus g

s
}._J

eﬁdowed‘with a canonlcal homology basis Yl,?g,...,Yg;
:61,62,...,6g'on 8. Then there are normalized abelian
'differentialsAdul,dug,...,dug'of the fifsﬁ kind .on 8, uniquely
determined by the glven homology basils, such that

(1) Ideui: 8y30 15 d - TN
Tt is known that g x g matrix I = (nij)’ where

(2) Iy = jéjdui, 1, J = 1525000585

which we call 1t the period matrix (by contrast, we call

g x 2g matrix (Ig,ﬁ), where T is a g x g identity matrix,
the full perlod matrix) of S and the glven homology'basis is
complex symmetrlc wlth posltive deflnlte imaglnary part. The
setlof:all such matrices is generélly called the Siegel .,
(or generalized) upper halfuplanel;g of degree'(or genus) g.
2g columg of the full ﬁeriod matrix of S are linearly
Independent over thelreals and generates a disc}eterabelian
subgroup L of tﬁe space c® of g domplex variables, where GV
18 the complex number field. The quotient group Cg/L is
called the Jacobl varlety J(8) of S and J(8) 1s a compact

abelian group.

Definition 1.

An integral linear comblnation of 2g columns N
(), 103Dy 1,5,...,8, of the full period matrix (1,51), L.e.,
B | 6



(3) eie(l) ...+ eée(g) -+ 311'[(1) .};'e.+ egn(g)j

where ej’ 63, J = 1,2,...,8, are intégers, 1s ¢called a period

in J(8). We will denote 1t by [2‘} _ {el...eg}
- ’ ‘ l-oo

For a positive integer n 2, the one nth of a period

{ ] 1s called an nth period, denoted by ( n i.e.,

€
) (S =25,
~In particular, (g!)2 1s called a half period and we will omit

the'subscfipt 2, denoting it simply by (Z,).

Any two g-~vectors Uy and U, in ¢® which differ by a
perlod, i.e., there is a period {g,} such that Uy = Uy = {g,},

1

i

aré sald to be congruent (mod. periods), denoted by Uy ot
With thls congruence, we have a mapplng u from S into‘J(Sj
defined by

(5) ulp) jp dul, jp dug,...,jp dué)

for each point p on 8, where py is a fixed polnt on § as the
base point and a path of integration from P, to P differs by
a period and hence u hag a well defined image in J{8) for each

point P on S. Furthermore, thls map u can be extended to an

: n n
arbltrary divisor { = Pll...Pmm on S by
(6) u(g) = (ui(g)) = nJIp dui) 1 =1,2,...,2, where

j L

nj, J = 1,2;;..,m, are integers.

Definition 2.

- For a posltive integer n & 2, 2 x g matrix



where ej,eé, J = 1,2;...,g, are integers, ig called a

(nth integer g~) characteristic. If

(8) o= 63363 £ nel, J = 1,?,;,.,g,

.then'[z,jn is called a (reduced nth integer gw-) characteristic.
In pérticular, for n = 2, [2,]2 1s called a half integer-gA
characteristic and we wiil agalin omiﬁ the subscript 2,

" denoting 1t by [2[].

Thug an nth integer g-characteristic [21]n can‘be

consldered as a symbol of an nth period (gl)n'

Definition 3.

The charactér llen of [2,]n is,-acéording to [14, 18],

defined by o

€ oy & ' S ]
) 1eily = oS 5, egey) = opEE (eren).

Any half integer g-characteristic [Z,] ig called even or
g .

odd depending on whether e-<et! = 2 €J€3 = 0 or 1 {mod. 2),

. , =1 |
' ' g € ‘
equivalently lellg = |4l = 1 or -1,

For any glven nth integer g~characteristiC'[§,]n, we can
replace 1t by its reduced nth integer g-characteristic by

replacing ej, 33,_3 = 1,2,...,8, by 1ts least non-negative

g

residues modulo n. It 1s obvious that there are n” reduced .

nth integer g-characteristics, and there are 2g~1(2g+l) even

<




~and 28“1(28—1) odd reduced half integer g-characteristics.
- Moreover, any half integer g-characteristic is even or odd

together with 1ts reduced characteristic,

Definition 4.

A meromorphilc multi-valued function ¥ on 8 is sald to be
. ! . & -eoe .
‘multiplicative with (nth) characteristic [g,]n = [el 2

1 i
1G.I€g

where n ls a positive Integer 2 and GJ’GB’ J = 152,.0.48,
are integers, 1f a continuation of f along Y-(Sj) carries

21 - 211

t0 exp [=m= 63]' £)., Similarily, a meromorphic

multi-~valued differential dv on S 1s said to be multiplicative

(exp[

€
with {(nth) characteristic [2,]n = [ai.,.e'] , where n 18 &
posltive integer = 2 and e_,el, J = 1,2,...,8, Integers, if

b R
2 continuation of dv along Yy (63) carries to exp[2Hi

(expl 5 e3.av).

ej]ﬂdv

Since for any integer m, there are integers k and r such
that m = nk + r, 0 £ r £ n-1, and

EHi m] = exp[2lki]. exp[gni = xp[gli r], the characteristic

exp[——

[e‘]n of a multiplicative functlion and differential is to be

understeod as the one with'o_é'ej, 63 S nel, J= 1,2,.00058.

Such a char&cteristic wlll be called a (reduced nth) charactertie,
Any meromorphic function and abelian differentlal can be

considered as a multipllcatlve functlion and dlfferential with

characteristic [e'] [g]n.
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Theorem 1.
Let S be a compact Rlemann surface of genus g £ 1 and

n £ 2 a postive Integer.

A necessary and sufficient condition for a divisor { to
"be a divisor'(f)rof a multlplicative function f on S with
'characteristic_[g,]n is that 1ts degree 4[] = 0 and

u(e) = (7).

n
The proof of above theorem is completely a generallization

of the proof of Abel's theorem and will be omitted here. In

Wi

the assertion above, if n = 2, then u({) (%) = (% )., This

et R
is a result quoted by Farkas in [9]. Furthermore, if
[2,]n = [8]n, then it 1s, in fact, Abel's theorem and we may

consider Theorem 1 as a generalization of Abells theorem.

Temma i.

For given any integral divisor { = plpg}.qu of degree
d[¢] = g & 1, there 18 a multiplicative function £ on S with
charactéristic [21]n7+ [8jn’ whose divisor (f) is a multiple
of %. ' -

. g . _ _
u(¢) = = u(pi) 1s 1n ¢° (more precisely, in J(S)), and
1=1 | |

by the Jacobil Inversion problem there is a divisor w = ngé"’Qg

of degree g such that u{w) = u(¢) + (el)n

and w #+ {. By
Theorem 1, there is a multiplicative function £ on S with
characteristic [z_,]n and its divisor (f) = %, and hence (f)

is a multiple of %.




Lemma 2,

11

Let L. € j (f) be the vector space of multiplicative

(e

functions on 8 with characteristic [e’]n whose divisors are

multiple of‘%-for an integral dlvisor { of degree d[(]

and n & 2,

and r[zi] [EJ the dimension of L[c'] (%)

Then elther r_e

1y _
6,1 [g) = 0o 2,1 [gd = ael - g+ 1+ A1),

where f ig an arbitrary function in L[e ] (%)
Proof,
Suppose r€ | [tﬂ 4+ 0. ILet £5f55.40,f, be a basis for
’ . .
€ (%J. For each J, J = 1,2,...,k, {(f,) is an integral
iy - o ,
) . fj _ ,
divisor, and hence (?_)C(fl) is an integral divisor. Now,
, _ _ f2 fk :
k linearly i1lndependent functions 1, T a0 ey BTE elements of
: ] 1

1 : ' 1
L(ET§IT)’ and by EiemgnnuRoch theorem T{ZT?;T]

afe(£)) = g+ 1+ L[C(£y)] = a[¢] ~ g+ 1+ 4[(f,)]. Hence
k £ d[¢] = g+ 1+ L[C(£,)]. On the other hand, f.f is an

1

element of I e ] (%J for any element in L(ET%MT)’ and hence

[g! n l

k z d4[¢]} ~. g + 1+ 1[g(f Y]. If f is an arbitrary function

in L[c'] (

1s equivalent to (f

1
T

and 1[¢(£)]

), then %. 18 & meromorphic functlion on S and (£)

l)' Therefore ((f) is equivalent to ¢(f )

= i[C(fl)]. This completes the proof.
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In Lemma 2, 1f d[¢] = r & g and [g']n ! [8]n’ nz o2,

lthen-by Lemma 1 we see that r. € [l] % 0.
} : [ef]nt

‘Definition 5,

A multiplicative differential'on S with characteristic
l[gt]n, n g 2, which 1s everywhere finite i called o |
multiplicative differential of the flrst kind on 8 with
characteristic [2,]n. We wlll denote the vector space of

all such differentlals by Q[e ] (1), where 1 stands for a
- e : er

unit dilvisor, and i1ts dimension by i[a ] [1].
. Q‘ n

Lemma 3.,
Let 8 be a compact Rlemann surface of genus g 2 2, n & 2

a positive integer and [g‘]n + [8]n an arbltrary characteristic.

Then the degree of a divisor of a multiplicative
differentlal with characteristic [2’,]n 18 2g-2.

Eroof.

Let du be an abellan differential of the first kind on S.

l .
Then 4] (du = Pg=p = and by Lemma 2 r.€ ] =gl &1,
[(du)] = 2g g y I 18, lraay! ~ e

Suppose  that dv is a multiplicatlve differential on S with

. ) e ’ l
h terist € .
characteristic [6’]n and that.f ig an element in L[EI]H(TEET)

Then %; 1s an abelilan differential on S,-and hence
4 .
a[ (5] = a[(av)] - a[(£)] = al(av)] = 2g~2.
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T.emma 4,
TLet S be a compact Rlemann surface of genus g 2 2, n = 2

a positive integer and [s,]n = [8]n an arbltrary characteristic,

Then 1.¢€ 1] = g1,
[el]n

_Proof,'
For an abellan differentlal du of the first kind on 8,

. 1 . .
al (du = Z2gw2 & 2 and r.¢ = gl .
[(au)] g [el]n[TEﬁT] g by Lemma 2

: 1
If fl,fg,..pgfgﬂl is basis for L[ﬁg]n(T337)’ then

£, du, fgdu,,,.gfguldu are linearly independent elements in

| Q[c 1 (1), andg hence‘i[e [1] 2 g~l. On the other hand, if
. GL n

ai]n
| - | | v, avy
dvl, dVQ';-nongk_ iS a baSlS forﬂ[zl}n(l)g then l, dvljo-og'&vl—-

are linearly independent elements in L(TH£_7J’ and hence by
_ 1

| , L .
Riemann-Roch theorem,i[gl]n[l] = 5 = r[TavZTJ = gl

Definition 6, A multiplicative function on S wilth characteristic

[¢1],» n 2 2, g called epecial if its divisor of poles has
degree = g=-1,

Lemma 5.
Let f be a speclal multipliCative function with charactertic

[E‘Jn % _[8]n on a compact Rilemann surface S of genus g = 2.

Then f can be expressed as the quotlent of a multiplicatilve
‘differential of the first kind with characteristic [g,]n and

an abellan differéntial of the first kind on 3.
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Tet a dlvisor of f be wu d[¢] & g=1 by the definition
of f, and hence i[C] z 1. Then there exlsts an abelian
differential du of the first kind on 3 such that L%?l is

lntegral, fdu is a multiplicative differential of the first

dv

‘kind with characteristic [e,] say dv, and f = T

We note that all the results in thils section for n = 2
can be found in [9) by Farkas.
1.2 Theta functions with rational characteristics.,

Definition 7.

Tet u = (ul,ug,...,ug:) € ¢®, 7 = (tia.) eBg, G = (Gl,Gg,,..,Gg)

and H = (Hl,Hg,.;.,Hg) € cB,
The function defined by

(10) e[f{](u,rﬂ) = 3 g 6XP 2Hi[%(N+G)T(N+d)+(N+G)(u_+H)]

18 called (the first order) theta function with characteristic

[g] and theta matrlx T, where Z ls the rling of 1ntegers.

The theta constant with characteristlc [H] at T is
(11) 6181(0,m) = 6781 |

B[g](u,T)-converges absolutely and uniformly on compact

subsets of Cg x[;g, and hence it is an analytic function on
g 5 '
B, | |
- ' G € € N
In particular, if [7] =[], = {¢,] (see Definitions 2
and 3}, 6[2,](u,T) is even or odd function of u depending on

whether [g,] 1s even or odd. Consequently, all the odd theta
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constants vanish at any T EE}Q,'while the even theta

constants are not iIn general., Therefore, all mentions of

theta constants wlll mean even theta cohstants, There are

28 first order theta functions with half integer characteristics

of which Eg“l(2g+l) are even and Qg_l(2841) are odd.

‘pefinition 8.

The period matrix of the theta functions wlth characteristic
o _ .
L .
matrix, we define the periods {g,] and the nth periods (z,)n,

] and matrix T is g x 2g matrix (Ig,T). With this perlod

nz 2, by exactly the same ways 1n Definitlon 1.

For any n & 2, the followlng properties of theta functions

_ e _
with characteristic [2,]n = Pt Hg were glven in [14, 15].
LI B -w-g...
| n_ | A
e+ - 2l _— €
(12) Reduetion formula; G[E,iﬁu‘]n(u,T).z exp[=—= (6'“')]e{et]n(u’T)'

(13) Functional equations Q[Z, (u+{t,},T)

]n_
= expﬂi[%(e-u'~e'cu)f2u'uquu]8[§f]n(u{T)-
(1) 8¢, ] (~u,m) = 8178, (u,T). -

Temma 5.

For any n, m 2 2,

(15) 011, (wt () T) = expltfe Lot - (et )= Faeu) I

me-+nu ‘ 'g
[m€‘+nu’]nm(u’T) for u € C* and T EG;ga

Proof.

By the definitlon, since

My - Lles uty _u! u
(u’)m -I-I’I-(Ig’T)(U. ) - "I:ﬂ“ + Tﬁ':
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_ el 3 2y v, e!
TY = 3 expni[(N+n)T(N+n)+2(N+ﬁ u+~-+m-+_ )N

NG 7 m n

me--ny )
nm

00g0 1, (o) s

m,+nu

ms+nu)( +me‘+nu'j
nm

)+2(N 1 ni

T(N*

= 3 _explil (N
- nezB
x ....g._. . {IRWER | _:C:_ .
“;EHTU nmu(e i) m u) ]
. 1 2 ' 2  m€+n
= exPIA[ Sy uae gpme (Mt )= gueal [yl o)

).

nm (

We note that (15) is true for any complex g-vectors

¢, e', u and u', not necessarlly for integer g-vectors.

Corollary 1. (Substitution formula)

For any n & 2,

(16) 8[g, 1, (u+ (]

o o
W)WT)=emmH""1ﬂw"@u4ewuﬁwﬁwuy
n .

B[ETiu']n(uﬁT) for u € ¢% ang T Géag.

Proof.

Letting n = m in (15), (16) is immediate consequence.

-Corollary 2,

For n & 2,

0[¢, 1, (ut (M), oy el ()
17) —g expZlifue (51 -c1)] —5i

e[5t]n(u+(u!)n,T) 'n o 9[61+ut]n(u’T)

'T)

Proof.

By {16), (17) 1s trivial.
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Lemma 7-,
For any n, m z 2, if (Z|)n = (E')ﬂ + {3,]»
‘(18)‘ 9[(§t)n+(2,)m](u?T) = expalli[&(u- v‘)+%(ﬁ-v')]9[(u,) RADIRICH oF
Proof.
Let 4 be the least common multiple of n and m, and
L = nn' = mm', Then
(2‘)n+(g')m - (a‘)n+[3‘}+(§')m - (gzgf)nn' (g:g)mmr(i:‘)L
), e
OL(E, )+ )T (am) = apPyim bty ()

2 13
'exp—%i{(n pm' 8 ) vr]e[” “ﬁ?m 6‘]&(H’T)

il

il

(by (12)) -expBHi[%(u'v')+%(6-v’)]9[( PRLIMICROF

(18) is & modified one of the Reduction formula (12).

Definition 9.

- Let S be a compact Riemann surfacé_of-genus g £ 2 with =

.canonical homology basis Yl,yg,...,vg; 838, 50ues

& on i1t.
g

The (Riemann) theta function wlth characteristic

g G1, G, H€ o8, associated with & and (v,5) 18 the first order
theta function replaced u € Cg.by u{p), where p € S and
u: S — J(8), and T by 1.

We review here some of the important facts about the
Riemann theta functions on 8 for future discussion. For any

characteristic [H], e[ J(ulp),l) is eilther identically zero




18

on 8 or-it hag a divisor { = plpg..'.pg of zeros on § sueh
that w({)+K = -H-lIG, where K 18 the vector of Riemann

congtants depending dn the base polnt P, € 8 and (v,5). Any

0
Integral dlvisor A of degree 2g-2 1s a divisor of an abelian
differential of the first kind on § if and only 1f u(p) = -2K.
All the zZeros of e[o](u(p),ﬂ) = 8(u(p),I) are of the form

I +K, where Wg“l 1g the image in J(S) under u of all 1htegral

divisors of degree g-l. In particular, 8(K)} = 0.

We need also to recall the Riemann vanishing_theorem;
Tet e € ¢&, If 0(e) 4 0, then there exists a unigue integral
divisor ¢ of degree g such that e = u(¢) + K and 1({) = 0.
If B(ej = 0, then there 1s an integral divisor { of degree
g=l such that e = u(¢{)+K and 1(C) = s, where s, 1 = s = g-1,
is the least integer with B(W'-w5-e) 4 0. Furthermore, all
partial derivatives of G of order less:thén s vanlsh at e,
‘while at least one partlal derivatiﬁeiof Qfder 3 doeé not'vanish
at e, The integef 8 1ls the same for botﬁje and -e, and 1t is

called the vanishing order of 6 at e.

The proofs of these facts are found in [17], -and [14, 15,
oli, 26] are recommended for further references about various

results of the theta functions.
Lemma, 8.

€ M
For any.characteristics [e,]n and [u‘]n’.n z 2,

€
e[e']n(u( p), ) is multiplicative function on S with
grt : .

oL 1, (u(p),1) |
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iacharacteristic [

e'au']n

Consequently, 8_[€t]n(u(p),n) is a meromorphic functilon

ASTCIES

ffon S,
iProof,

An&lytically continuing along Yk’ kK = 1,2,0..,8, by (13}

O..,..n.O ‘ '
e 1100776157101 ) < expZLh e 101%,) (ulp),0)
| ()

{
Oy 1 (u(p)+ {8”55_5”8} )

exp[=g, 10, 1 (w(p) 1)

|

eXP[QHi(e “Uk)]e[et] (u(p),H)
01,1, (u(p),T)

Similarily along-ék, k = 1,2,.,.3g,

61, 1, (u(p)(Q: 0200y 1y _ el Z84( er 1002, (u(p),1)
0,.010...0
[w] (u(p)+gr 7 e ghum) exp[-i‘-&(-w )18[%, 7, (ulp),1)

oA
Xp[ ("G!k""p"i{)]

8cs 1, (u(p),0)
61 1, (ulp),1).

e
Therefore, 9[6,]n(u(p) ) has the characteristic [Ceﬁu,]n
8L 1, (ulp),m)

and the singienvaluedness of ° [e,]n(u(p),ﬂ) 1s obvlous.
n, u .
g {M;]H(U(P):n)

Noting that elther 8[2,]n(u(p),ﬂ) = 0 on S or 1t hag a

divisor ¢ of zeros of degree g on S such that u{{)+K = ~(§i)n’




20
c .
aff8leri (ulp),m) - (:zfipr)n_
8 1, (u(p),T) |

For.the partlcular cagse n = 2, 1lts characteristic and the
Image under u of ite dlvlsor are same, i.e., [Zfiu,] and
ety

(el.}_uf)o




CHAPTER II SMOOTH COVERINGS OF COMPACT RIEMANN SURFACES

2], _Period'matrices of smooth coverings. We consider a
compact Rlemann surface 3 of genus g 2 2 with a canonical

‘homology basis Ylﬂyz’"”Yg361?62’°°f’6g° For our convenilence,

we will denote Y2 = YOl""’Yg % YO(g~1)362:=601""’6g = 5O(g~l)

‘and the unlquely determined normalized basis for the vector
spéce Al(S) of Abellan differentials of the first kind on 8

by dul’dUOl""’duO(gel) with respect teo the given homology
basis (y,5).

Let n & 2 be a positive integer and v = exp[g%i . For

each J, J = 1,2,...,0=1, by Lemma 4 there is a basis

OOOOIGO

dv AV .nseoe,dv.y for Q
Jl’ JE, ? J(g"l) [J‘O...,O,]l’l

(1), which 1s the vector

space of multiplicative differentials of the first kind on &

with characteristic'[gg“'g > such that
av,, = A, .
Ivom Jk Jkm?
J‘ dV. _:B- ‘, J = 1,230;131’}-"15
_ 6Om ‘Jk Jkm

kKom = 1,2,.,.,8~1.
At this point; we construct a compact Riemann surface
ﬁ which will be an n—-sheeted smooth covering of S. For n = 2,
this kind of surface 9 was constructed by Farkas and Rauch

[9,10,11,24,25], We follow a similar construction for é,

More precilsely, we take first n coples of & (as a surface

in a space), then cut all the coples along Yoo and then Join

21



22 .

them along the boundariles, idenﬁifying'the poihté on the

boundaries, in the obvlious manner.

In thls way, we have a compact Rlemann surface % of genus
g which 1s ann-sheeted smooth covering of S. By Riemann-
Hurwitz formula,.Q(gaul)_= 2n(g=-1), and ﬁence g = n{g-1)+1,

Furthermore, it is possible for us to choose a canonical
homology basis (¢,Q)on 8 from the canonical homology basis
(v,8) on 8 in the natural way. 8 admits a fixed point free

automorphism T of order n, i.e. a covering transformation,

which is Just the interchange of the "sheetg" cyclically in 8,

If we denote a covering map from é onto S by T, we can

11ft the differentials dul, duOk 3 dvjk’ k = 1,2,.,7ﬁgmlr
and J = 1,2,...,n=1, on 8§ through f to the differentials
du,l*ﬁ duOk* 3 dvsk* on g defined by

e
{
=
Cl
[ad

dvjk(f(g)),rif ﬁ ig on the 4th copy of 8,
Where 't’ = 0313725.-.31‘1"‘1.

These important properties are assembled in the followlng

lemmata,

Temma O,
g.admits a fixed point free automorphism T of order n such

that a canonical homologybasis (Q,%) on 8§ satisfies the felations
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(20) T("/(\l) ~ ¢l, : T(gl) ~ {S\lﬁ
T(¢Lm) ~ Q(&+l)m’ T(@Lm). -%(L+l)m’
T(¢(n—l)m ~ <f\Om’ T(g(nnl)m)'N QOm’

where 4 = 0,1525000 =13 m = 1,2,,,,,g=~1, and "~" means

homologous to,

du, ¥, dug, *s av ¥y g = 142eve,n=l, k = 1,2,..,,a-1, are

linearly independént abellan differentlals of the first kind
on @ with

(21)  T(dqu,*) = dul*,'

du,._*

T{du OK

il

OK *)

= wn Jdv

T(dvjk’) jk s

where T 1s an 1nduced linear transformation acting 6n Al(%)

by a covering transformation T on g, defined by T{dv) = dv(T”l)
for any-dv € Al(g)

Proof.

Exéept (21}, 1t is clear by the construction of g from 3.
Tewlttes proved in [16] that any automorphlsm T on @ Induces
a linear transformation T (we use the same notation with the

_1)

automorphism T) on Al(g) defined by T{dv) = dv(T for any

av € A, (8). For each j, k and P € A,
ey g RN _on=j A
(2(av ;) (B) = av, * (1)) = wav 2 (B),
since T“l(ﬁ) and ﬁ can be jolned by a -curve (homologous to

8, on $) on 8.
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Theorem 2,
Let S be a compact Riemann surface of genus g & 2 and

nz 2 a positlve Integer.

Then for each J, J = 1,2,...,0=1, theré exlsts a basis

. _OO..O
dvjk’ k = 1,2,...,g=1 for Q[jO,.O (1) such that
7(22) qv,, = Avgp = & oom = 1,2,,.,,g-1,
j"\"m+1 Jk IYOm JK km ,
Proof.

For each J, let dv s Kk = 1,2;..., -1, be a basis for
Jk

0.00.,0, (1) by Lemma L4 and let A, = dv ,, = . dv
[30. 70T o o Jkm jYOm jk IYm+1 JK
and A, = (Ajkm).

Then dvjk% are abelian differentials of the first kind

on Q, - Furthermore,

(23) jA av % = IT(A T(dvjkf) - n“JIA dvj
, . Yy)
and hence

shmeuﬁﬁ}:emﬂuggd]4=&

Similarily, for each 4, 4 = 0,1,2,...,0-1,

s n=4 oy _ n=d(net) '
(25) f@bmdvjkf = §Tn_4(¢Lm)T (dvjk?) = w . Qomdvjig

Ji
= dv =
IYOm Jk

In the computatlons, we used a well known fact that

n - : ' |
j ¢ = Jdm | % du
Jpdu IT(C)T(du) for any closed curve C, abellan differential
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of the filrst kind and'automorphism T on a compact; Riemann

surface 8 (Lewittes [16]),

Now, we have a followlng table of perlods of dvjk*‘on
, On Qy
A A
Y1 Ytm
(26)  avy* [0 mJLAJKm].

We want to show that Aj 2‘(Ajkm) 1s nonésingular; l.e.,
et Ay 4 o TP det Ay = O, then there 1s & non~trivial solution

(cjl’CJE""’Cj(gwl)).for a gimultaneous homogeneous linear

g~l ' :
equatj.ons K l Jk ka = O, m = 1325 o c’. ’g"‘ll
g-l '
Iet dv, = k Then dv, is a nonwzero multiplicative
3720 J

differential of the first kind on § with characteristic

[OO..O]

30. .0 and the 1ift dv,* on g of dv, on S through a covering

3 € g
map f 18 an abellan differential of the first kind on é by

Lemma 9. Now,

) g=1 .
¥ = . N e
and o
gl ) g =1 ) gal JL
A a = A N | * = ¥ o= IO A
IYLm v IYLm k;ngk VJK jkIYLm Jk k~l jk Jkm
. _l )
I

- Slnce all the Q-periods of dvj* on @ are Zero, dvJ is

identically Zero on @ This implies that dv, 1s ldentically

J

zZero on S, in particular, which 1s a contradictilon,
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Consequently, Aj = (A ) 1s nonw~singular and there

, 1 Jkm
' T = (A . i
exists AJ ( jkm) for each j
Let dv“jh = kil A’Jhkdvjkj h = ,1325...3g"'l.

Then av' i, are linearly independent in n[oo...o] (1)
: : Jo...0’n

and , , ,
gl gl
A ghkdVyk = 2 A

dvt,, = av?
XY Jh I Jn X? el

oo A
w1 Y om g™ Jkm

Om

= Syme
_This conpletes a proof of the theorem.

Defini ifon 10,

The basls in Theorem 2 is call & normalized basis for

[OO... ] (1) of 8 and the given homology basis (v,5) on S.
jO.,.O ,

For this normalized basis, we call (gnl) x (g-1) matrix

Ty - (Tjkm), where Tjkm = Ia dvjk = IBOdeJK’ 3= 1,2,...,0=1,

mi1
kK ,m =-l,2,...,gul, the period matrix of & normalized basis

av,, for 0,.00...0, (1).
Ik [50.. .00

We remark that in a discussion from the'beginning of this

chapter to Lemma 9 a basis dv i for Q OO..O " ecean now be

gessumed normal without any loss of generality.

Tremma 10.

The perlods of dul*, duok*, dvjk*, j = 1,2;..;,n—l}




kK = 1,2,...,8=1, over the canonlcal homology basis

A A A }
Yl}y\m;al,%m,a 0,1,25«+.,n=l,m = 1,2,...,8-1, are
’ A A A A
Y1 Yim °1 Ptn
7 -dul* 1 O _ nﬁll Hl
(27) _duOk* 0 Igml nil, - I,
1 Ju 0 It
dvjk O w Ig'ﬂl iy T,j L]
Ty T4 . | :
where I = ﬁi"r-ﬁév isrthe perigd matrix of dul’_duOk'Of S eand
N - .
(y,5) and T; = (Tjkm) is the period matrix of dvjk on 8 with-
Tkm " Ibomdvjk (Definit;on 10).
Proof.
Using (20), (21) and (22),
I3, ai® - fyld.ul -1,
. ' C ed ) . ,
A odu ¥ = [ ped A Y qu.®) = [p qud = du, = O
IYLm 1 I? (me) - 1 I 0 1 IYOm 1 ’

>
1 1 11
A du* = [n-t A T (qu*) = [p du* = du, =TI
I_%m 1 IT (84 L jaOm 1 IGOm 1 l(m—!—U.
I¢lduo.k Ylduok 0,
-4 - - :
IA du. ¥ = I n-4 A i (dun,*) = fA du, . * = j - du =0, .,
Yom Ok T Yy ) Ok Won Ok Jdygys Ok km

f%lduoﬁ = _nfsldu_ok = Mpeyyr =l (1)

A au * = I'nQL A Tn~L(du ) = [A au e du
oy, Ok 0T (8,0 ' Ok 8g, 0K “réom Qk

(k1) (mr1),
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- n -]
jAldv. _ jT av;, %) J% dvjk ,
and hence IA dv = 0, since w™ + 0.
. 2 n-Jj{n-t) ,
A v -4 pt? %) = J %
o " = gt YT (vt = 1§, 23k

JA hL?
av,, = 5
w IYOmVJK W Okm>

A. byl _ - _ n_J - _
j&ldvjk* = jT(@l)T(vaK*) =W jgldvjk*,

“and hence [p dv,.* = 0,

gk
- ; n=j (ned) k
A dv n-b A AT gy, %) = W A dv . ¥
I Ill (Lm) jk jéOm Jk
0
dv,, = wdvr .
IéOm Jk Jkm
Theorem 3.
A 3
(28) (au; = du*,
A - N1 T o
au ). = %[duok* + hzlw“ hadvjk*], 3= 0,1,2,..0, 01,

_ ‘ k = l,2,...,g—l;
1s the normal basis for Ai(g) wlth a canonical homology basls

A A ) A
(¥,0) (Lemma 9}, and the period matrix f or 8 ang (Q,G) 1s

A
| 81 Spm
(29) du, nll ;¢ | Iy
A N1 " :
dujk- M, -{n + hzlmh(* J)Th] , 4= 0,1,2,...,n=1,

m = 1;23--~9g"ls

where ”11’ Hl, HO and_Th-are the gsame ag in Lemma 10.
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Proof, .

This 1is an lmmediate consequence of Temma. 10, and we omit
here all the computations.
Temma 11,

tTh = T h h = l,2,...,nml. In particular, 1f g=2
- . bl + g -
then there are [2] mutually distinet Th g guch that Th 'anh’
and 1f n = 2 then ° re UA means a transpose of a

Ty = #l, whe

matrix A and [x] = max{m € Z|n

Proof.

By Theorem 3, since'ﬁ Eégn

symmetric, ((J,k),(4,m)) and ((
equal. Consequently,

| -1 .
t,1 et p(d-1)
(5T, + ilw 1)

Now,

n=1
Z

1

t(%{[no"" - h(uj)"'hD

1
ot

This implies that = wh(L“J)(t
' h=1 :

T

=

x}.

(g-1)+1° l.e., 1t 1s complex

L,m),(j,k)) entries in ft are

n-1 .
RAGED

1
Lo 4
4] 0 h=l

0 +

~T

h n=h
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n-~1

In particular, for 4 = 0, = mmhj(tvh~T ) = 0.
' ' : - h=l n"h
QHi
Noting that det Y4 0, 0w = exp [ ]3 follows
t L
that T gen = Q.
Tf g = 2, then Th‘s are simply 1 x 1 matrices and
- oo n : '
™= "™h ™ Tpen Therefore, there are D§] Th's in this case.
= : here - and frl om o a
If n = 2, then there is the only one Tl_dnd Ty = Tooy = Tqe
We remark that for n & 2 t(T +T ) = t¢ +t¢ = T
, h'  n-h n  ne=h n-~h h’

i.e., complex symmetric, and it wlll be used later. For

Temma Lg.

For each hy, h = 1,2,...,0~1, T, has a positive definite

h

h>> 0.

imaginary part, 1.e., Im T
Proof,
To prove this, we appeal to the Riemann s billnear relation

(30)  [Paaw = j¢ldxj6 dHFIA dxjA au) + m; jA dXIA du-jgfgjggg),

where %‘is the boundary of the-simply connected normal form of
é Obtﬁined by a cancnical dissection in a usual fashlon using
the canonlcal homblogy basis (Q,@) on é, A is a functlon on
the normal.form and du is a differentlal which ig regular in

, A
& nelghborhood of each point on the boundary T.
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g-1
We take d\ = 2 Ry
k=1
but not all zero, and du = dx.

dvhk* for each h and‘xk are resls

Then

jf}du = [par

7 . 8=l n=1 =
= (j¢ ax kajg dxjA ax )+ zl &io ¢&mdkjé&m S B0y
gnl nml i
= 21Tm[ jA dxjA ax)+ zl o IA£de§6Lm )]
gl n—l gwl ne, g=1 h
= 24Im[ = 2. { 5 x.w 6 ) W= Ky T ) ]
mel 4=0 k=1 © gl i
| n=l gwl g-l
= 2iIm[ £ = ¥ XX Ty ]
120 mey key KM bk
S g (T
= onl = % x.x (TmT
el kel k hkm
g-1 g1 ( ).
= w2nl 3 2 Xy K Tr
el kel k*m hkm

On the other hand, since ijekmf 0 and d:x 1= a non~2ero-

abelian differential of the first kind on S

g=l gl ( ).
by Z X TmT > 0
el kel k®m hkm s

whilch proves Im Ty >>0.

Theorem 4. _ |
For any.n 22, T, + Tn—h Eé;g_l for each h = 1,2,...,n-1.
In particular, if n = 2, then T, e{;g“l (4in this case, we

slmply denote T, by ). If g =2, then ¢h €£;l for ‘any h

such that Th e Tn~h'
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Proof.
By Lemma 12, since Im_Th?>O for each h and

Im (T, + 7 =Im 7 +Im7T o, Im (7, 4+ 7 ) > 0. We

n»h)

already gave a remark that t(Th + T ) =T 4T Hence

n=h h n=h"

Th ¥ Theh egagml‘ Ali the other statements are oblvious,

2.2 Two=sheeted smooth coveringé° In fhis secﬂion, we
primarily concern about the case n = 4 in thé previbus
discussion.

Suppose'that 3 ié g compact Riemann surface of genus
& =z 2, Y13Y0m361’60m5 m = 1425 400,8=~1, 18 a cgnénical homology
basis on 3, dul, duOk’ k= 1,2,e00,8~1, 18 the uniquely
determined normalized basis fpr Al(S) wilith respect to 7
(y,é),'ﬂ 18 the period matrix of § and (Y,é),idvjk, 3 = 1,2,3,

are normalized basi for Q[OO.,O] {1), and that Ty are the

JO..07°4
perlod matrlces of dvjk‘
Note that w = exp[E%Q] = exp[%% =1 =4~1 for n = I,
) : ‘ Y
From S, we construct a compact Riemann surface g of genus
A : . .
g = 4{g-1) + 1 which is a four~sheeted smooth covering over S,

as already shown in 2-1,

On the other hand, we first construct % of genus

A
g = 2(gel) + 1 = 2g~1 which 18 a two sheeted smooth coverin

A A :
over S, and then q orf genus g = 2(g~1) + 1 = 4(g~1} + 1 from
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@ which is algo a two~sheeted smooth covering over g and hence

1t is a four-sheeted smooth covering over 8.

Slmply congidering the identity mapping between two
A
differently constructed surfaces @'s, we easlly see that

they are conformally equivalent to each other.

_We.observe that therlifts dul%, duok*; v, X on_g are

linearly independent in Al(é) and 1t makes possible to find

- the normallzed basils dﬁl, dﬁ , J = 0,1, k = 132,.,.,gwl,

, Jk
for Al(g) wlth respect to the canonical homology basis
Qi’Q&msgl’%&m’ 4 =0,1, m=1,2,...,g~L, chosen by_the 1ifts

of {y,8) on 8., We denote the period matiix of 8 and (Q,@)

by ﬁ.
We next observe that the lifts dvlk%’ avq, * on 815 a

basis forﬁ[oo..o](l) on @. We normalize it tb find the
: lO..O ’ ) .

normalized basis d¥,, h = 1,2,...,8k-1), for ﬁ[oo..o] (1) with

2
h 10..0

' A A \ A
respect to (¥,9) and we denote its period matrix by T

(Definition 10 and Theorem 1),

By Lemma 10, the perlods of dul*, duok*; dv ., * over

i

(Q,g) oﬁ gjare given by |
Ql Qdm ¢lm él %Om glm
aw* |1 0 0 - oemy, Mo Hi"
o o T, 'ijggwl L0 FERECL
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By Theorem 3,
A
L, = Araw F o+ (o) av ®1, 4 -
dujk - ?[ uOK o= dka 1 - 0,1, k= 1,2,..,,z~1.
To find'%, let |
A _ 1 s
dvh = §[dv3K* + dle%],
dq\f = ..,j,,"_,[dv -'gF.H av ;\*} k = 1.9 -1
(gel)+e — ZL%V3K™T VK4 225000581,

T A A Y R :
Then the perlods of v, dv(gul)+k over_(¢,6) on é are

D A : A
Ql Y om Y1m - é1 gOm 5lm
v i T 0 ! ' T AT (T, =r,)
k ] gwl | I 1 3 13
A N ‘ | i WT-' 2
| \ 1 i
dv(gnlﬁk ! 0 Ig~1 N ) 1(T3m¢1) T+,
} ii ! 2 Al
. T ‘ .
In particular, we have
A T ]
To= | Tyt i(Tluwg)
2 23
1(T35Tl) T T, ,
T 27 |
If g = 2, then by Theorem 4 Ty = T4 and
N .
T=f7, O . T3 0
0 Tl Q ¢3 .
A
By Theorem 4 again, T eé§2g_2.
_ Mo TR G |
In particular, for g = 2 7T = T 0 € o This is an
O T
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interesting fact. We summarize these in a'foIlOWing theorem;

Theorem %5,
Let S be a compact Riemann surface of genus g 2 2,

Yos¥ous Oqs0g,s ™= 1,2,...,8-1, a carnonical homology

basls on S and dyjk,

00,.04 (1) with the period matrices T,.,. Further,
(j0..00n K -

J=1,3, k= 1,2,.,.,g~1 normalized

basi for 0O
suppose that @ is a two-gheeted smooth coverlng over S of
genus é = 2g~1 with a canonical homology basis

A |
¢1’¢Lm5 8156&m, L =0,1, m=1,2,,..,8~1, chosen by the lifts

of (y,5) on 8. Then

AL . &
(32) dvy, = §[dv3k +odvy 1s
% = Lrav, % < av, %] k= 1,2,. gel
(g-1)+k ~ BLt%V3xk 1k 2 2Ea e >
where dvjk* are the 11fts of dvjk onto @,-is a normalized
ik, N
basis for Q[OO..O] (1) on 8, with the period matrix
Uyo..0 - '
(33) % =] 173 1{ry-74) b, ..
A 2 T &
i(TsnTl) TFTg
2 2 ]

Definitlon 11,

The Schottky theta function 7, associated with a compact
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Riemann surface S of genus gz 2, wtth (complex (g=1)-)

characteristile [g] is

'(35) _ﬂ[%](v,T) = Ngzg?lexp2ﬂi[%(N+G)T(N+G}KN+G)(v+G)],

wherefrE(Sg_l and v € o871,

o .
(36) n[j1(0,7) = n[;]
1s called the Schottky theta constant,

Thus we now have two kinds of theta functions 86 and n
agsoclated wlth a compact Riemann surface S of genus g & 2,
We will denote these functions associated with é by 6 and %‘
It 1s very useful to review éome of recent important results
about these two kinds of theta functions, primarily done by
Farkas and Rauch [5,8,9,10,11,24,257, Tor a compact Riemann
.surface S of génus g z 2, ngz(gg-l_l) even theta comstants
on @ | |
(a7). Bi.s 1) = 0

lete!
. e o
Tor all reduced odd (g~l)~characteristics [¢1]. Consequently

from thls fact, on 8§

(38) mlplery) _ .

o287 (2n)

constant

forrall reduced (gml)-charactefistics [g], and.furthermore,
the Schottky ~ Jung relation on 8

(39) ng[g,](Tg) | -

0[oc, 1(m)er5e, 1(m)
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for all reduced even (g-1)~characteristics [G

e1]+ Besldes,

Accola eétablished the quotieﬁt of two theta functions on.a
‘smooth abellan covering é over 3 and on 8, respectlvely,
‘which seems to be a geﬁeralization of (39),in (1T, and Fay
~also derived a quotient, very similar torone by Accola, of
these two theta functlons in [12]. But we independently
derived such a quotilent almost at the same time‘slightly

in a different'way, We found recently that this computational
method was used once by Farkag ("Relations between quatratic
differentials”, Advances in the theory of Rlemann surfaces,

Princetion University Press, 1971, pp. 141.156.)

We need two formulas; for any g = 2
A 8108 A A (5+p)eb' p gy0+p_
(M'O) e[h 6!6!](11) ) = 2 gnl(“‘l) ﬂ[o](ngTg)e[h O ](ujgn)s
1 : p622 1

where [hl].is any reduced l-characteristic, [g,] is any
1

A 2=l

reduced (8“1)—charactETisticj u € Cg, v e-cg“l € C

Kl
LA A1 : T A Y

such that U = uy Y —,§(uL+VL_l), u(gul)+& = §(uL VLml)’
4 =2,3,...,2, and the summation runs over all the Eg"l

(g-1)=vector p wilth entries O and 1. The proof of {(40) can
be found in [9].

N
(81) e1g,1(w,2T)6[E, 1(0,2T)
A A .
=3, ol S e G,
2 ‘

. A :
where g 2 1, T EE;g, u € Cg, [z,] and [z,] are any reduced
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g~characteristics and the summation runs over all the gwvectors

6 with entries 0 and 1. The proof of (41) 1s in [13].

Lemma, 13

00..0
[lO O](Qulsubsu$§ﬁ)
O..O 00..0
? ke[ (u )e[lo O]( lpu&in)

where (ul,u%) € Cg, L= 2,3,..0.,8 and k is. given by (38),

Proof, _
Let 8, (8) = {p € Z lp 5 = 0 {mod 2)} and

-] e
Sl(é) = {p € Zg lp5 = 1 (mod 2)} for any 6 € Z% L

Letting v = 0 € Gg”l in (10) and applying (41),
00...
8170; 10 (2ug vy sfh)

=2 gmln[p](ET )0135] (Pu, ,2u, 3211)

pEZ > |
=k [Op](en)e OP](a 2, 321 )
218010 [1pitauy,2u 3
pGZQ
- 1 (81,8)-(0,p), 0 2p .
- k3 g-17g 2 ger (=100 7 T8 st g ](ul’ua’“)
pEZ 2 6EZ o 2p
6‘€Z 9[5'6 ]( Jsumﬁﬁ)
k 0 0..0 0 0..0 o
= el .Z {2 a8l 5100 ol (upswy sy, oo gl (uy s, 31)
7 622 pCZ
+ 3 ( )P0 1)P- 5)9 (g 21X
ofes z5™ pes(s) sy (5] SRR |

0519 (uy 1y 11)}]

0..0

90 -09 ()11, 519077 0 (s, 57)

- 2[8[10 0

+ 9[8“81( 1»”&5“)9[28::81( ug 51) ]
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0..0 00, 0

= kB[o ol vy sy 38y T (uy 5y 51,

' Theorem 6,

e B e & :
(42) B [l+€15|571(2u13utﬁu¢3ﬁ = ke[etég](ul,ub§ﬁ)9[l+6,5](u1,ub3ﬂ),
5 A
'.where [g,] is‘any reduced lw-characteristic, [g,] lg any redgced
:(gal)—characteristic, (ul,uﬁ)'E'Cg, L = 2,3,...,2 and k 1s

the same as in Temma 13.

Proof.

By Substitution formula (16) in Corollary 1 with n = 2,

e & b
[14.9!5!5!}(?111: ‘{.9 ﬁ

_ exp[Aﬂi] [oo,.oo.,e](wgﬁ)g

10..00,.0
wh 1 5 ﬁ 1 ! A1 R1
where A = n{e,ﬁ, M(e,5,8) + a(e; 6,8)«(1+e?,81,81)
+ (e,&,é)}(Eul,u ,u%)
= Le, o)1 (e 8 )Hediie & 146 + 5 TbRe . 426 + 1
7 2 JTEEAE ' 1 L
and _
n Y 1 ¢ .6 &
W o= 21}.1 "[""2‘-‘ [6’6'6‘] | J.‘
u%,
o
_ ) el € & b r ™)
= r?(ul'f"zr- +Hll(=§-)+nl'('é')) = QVl
5t )
6 ey ) '
y \

And we obtaln
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~ -ﬁ f A (=) -(ﬁ) = [u ‘2 (e b
5 I L i i DR PACE -2 I R
&1t & o) : ) et
vy Uty < (m)Hl e (5) Yy, 0]

Then, by Lemma 13 and again applying (16),

A 00..00..0 _ A.00..00..0
010, 00..01¢ M) = %l10..00..0

0..0 00..0
B[SOV v 38 L gt (T (v vy 51

i9)

I

IE

e b 8
kexp[Bﬂi]G[e,é,](ui,uﬁgﬂ)e[l+2,6,](ul,u i),

1 2 1 SEA
where B = “H(eﬁé)n(esé)”‘é’“(.636)"("2““"36!)”(esﬁ)o(ulﬂu&)
1 oy 1 ' |
”E(ejé)n(eza)“?‘é’(935)'(14"%"’36t)“(635)'(111511,{/)
=u%(eﬁﬁ“eﬁ)fiewiwfw‘mm%ufQGWL{

2 2 1
Since A + B = 0, 1{ follows that

A e & &
e[l+e t.&!@i](guijuLﬂu&jﬁ)

: & §
keXP[(A+B)Hi]B[215: ](ulﬁu{,BH)e[l.g_zl@I ] (ul:u{‘;ﬂ)

2 : .z

i

e b e b , :
KO e 1511 (05w 30Ty g1 gy 1{ugsuy 3T,

2 . 2

i

Theorem 7. .
lFor a four-sheeted smooth coverlng é of gernug g = 4(g»l)+l
over a compact Riemann surface S of genus g 2, 2g«2(2g~l"l)

even theta-constdnts

A ' A
6 .
(13) 8195 grgigi 1) = 0

for any reduced odd (g-l)—characteristic [g,].

Proof.
A

Ag we mentioned in the very béginning of this sectlon, 8
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- . _ A .
i1s & two-sheeted smooth covering over S which 1is also a
two-~gheeted smooth covering over S. Repéating exactly the

'same argument as a proof of Theorem 6, we can. obtaln the
A

‘same result on é as on @ That 1is, setting ul =0, U =0
“and eﬂH e! = 0, _ '
A
06 &6 6 & A 06 6 06 6
(4h) e[m,a,6 rar] ﬁ) kB0, 0 1B, 2 1),
°1(2h)
where Q = congtant = for any reduced
i O]( )
(2g»2)~characteristic [o 1,
However, 9[05 8 ](ﬁ = 0 by (87), and hence Qg“’e(eg”’lnl)

16168
even theta constanfs 6[gg,glgtgt](§) = 0 on @.

The signlficance of Theorem 7 1s that 2 Cgml)“l( Hgml)”i)
even theta ca;stants B[lBB] ﬁ) 0 on A for 81l odd reduced
E(gwl)-characteristics [B] by (37), and that, in addition
o them, theré are more Qg“Q(Eng—l) vanighing even theta
constants [gg,g,g,z,](ﬁ) on é for any odd reduced (g-1)-
characteristic [6!] such that 2(g~l)-characteristic

[g] = [g,g,] is even,

Corollary 3.

/\ ,
()45) [igtgrg 21](4111:‘1,{,311{‘911 21 L’ﬁ)
9[321](ul:umiﬁ)e[léy](ulau&in)e[lbg](ul:uL5 )8[3611( 12 LJF)
z _ z

= (-1)%RK",
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where ¢ = 0 or l,_[gl] 1s any reduced (g-l)-characteristic,

(u‘l,u}b) E Cg’ {4 = 233,;01:_9%3
& [ %1 (oh) for any reduced 2(g=l)-characteristic
;e:[?f;](z??)

[%], P 1g glven by (33) and k 1s given by (38).

- Proof.
— A

Rememberihg the relation° between g, @ and S as In the

proof of Theorem 7, we apply (42) repeatedly'to obtain

©[§212f212|](uu u‘b,ub, {,3U{lsﬁ)
= ﬁ@[ggrg:] Eul,u sU L’ﬁ)e[ig 2,](21} sUy s ,t§ )
= (-1)KA0, 5 0000 (2 Jz,’uwﬁ)e[igrg'](2“1"%’%5&)
= (-1)%hx" e[lﬁ.]( u,sm)ee }( Juy 1OTEY, Ty suy st
: 2 2
8[1611(113311 .91'_[)3
which gives a quotient we wanted.
Temma 14, .,
(46) ﬁefaze:](” = R kP
0l ggt 1185, 1(1)8[5,, (T )e[gé.l(n)

P 7
~ for any even reduced (g-l)-characteristic [g,],‘where & and k

are the same as in Corollary 3.

Proof,

Schottky - Jung relation on é'is'
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(47)' . %?[212|}(é) | _ ﬁgg
B0 e (MBS, 5, 1)
vy (42), |
8l0srar 10555 1) = w00y 1m)erge, 1morGy  I(m)er
: ' 7 )
Now, & quotient (46)715 obvious.,
Corollary I,
If g = 2, then | |
(18) 15 105y) _ 422
8Log1 (MM 154 1 (19155, 1 (1)8 055, 3(M)
5 5

' b
for any even reduced lwcharacterlstic [611'

Proof.
A Tlo
For g = 2, T =|, v by (34) in Theorem 5.
NS &0, Ay A, 6 b 5 ... By/b'd
ﬂ[t‘)!{)i](T) = pX - 1expl’ii[-=( g,M+-§)'T(N+§5M+*§) (N'!‘”é",M""“)("é*s"p"
. N, MCZ : )
1. ) 8 54,01
- 3 exp 2T [ Nebap) T o (Wb )+ { bz) (5 ) ]
Ngzg-gl 2 271 i ? it
3 g xRN ()T, (M) (03) (5)]
* MER ,
A2 ol
= [5:]

and (46) imply (48).
The quotient (U48) gives us a theta ildentlty for g = 2
with rational characteristlcs, l.e., from
Yoo, B2, 4
n'gl-n Tgl-n []] = 0, we get

(49) '9[88149[18149[901 | [ oly - 910014007 21,0155 1,81350,

0B
151

().
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CHAPTER IIT PERIOD RELATIONS ON HYPERELLIPTIC SURFACES

3.1 Period relation of Schottky type.

If a compact Riemann surfacé 3 of génué g & 1 does admit
'a meromorphic functlion Z which assumes each complex value
‘twlce, then S is a two;sheeted branched-covering over the
sphere Sy, and 1s usually called a hyperélliptic (Rilemann)
surface. For a moment, we pay an attention on this kind of

surface, especially tryihg to establlsh a period relation.

On a hyperelliptic surface S of genus g & 1, a meromorphic
function w on S can be found, satisfylng an irreducible

algebraic equation

(50) w° = z(zml)(z_xl)(z“xg);,.(Z~x2g_l),

where k35 J = 1,2400642g=1, are mutually distinct finlte

dlfferent from O and 1, and thus S can be realized as the
Riemann surface of én algebraic funetion w. By Riemann ~
Hurwitz formula, there are 2g+2 branch points 0, 1, » and
Xy
are precisely 2g+2 welerstrass polnts on S‘with the gap

-] = 1,2,.;.,2g~l,'0f order 1. Furthermore, these polnts

sequence (1,3,...,2g-1). g differentials, defined by

F

k

(51) av = 222 k= 1,2,... e,

1s & base for Al(S).

Suppose that g = 4, We choose a canonical homology hasls

(vy,8) on 8 as in Figure 1.

b5
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Figure 1

Now, taking a polnt PO.(with'Z(pO) = 0) on S'as a base
point and finding the uniqﬁely determined normalized basis
dw, s k = 1,2, 0,8, FOT Al(S) with respect to the choéen |
(Y,é) on 8, we have a mapping u from S to its Jacobi varlety
J(S). In particular, we can find all fhe images of 2g+2

branch points under u in J(g);

w0) = (G001 we) = GRS,

I

w0) = (26601100 wlhag.g) = (G361 D),
- u02) = (hog0lli))s wlhagea) = (Gioon: 11D

(52) | | |

20) = (G1020.010)  ulhg) = (Gio00: 1 50

204) = (10200100, ule) = (60581 10)

w05) = (G1706:710)s

w06) = (1100 :10)

20) = (5io0%0:::0)>




by

in which they are all half perlods. A vector XK of Rlemann

constants with respect to & base point P, 18 given by

y

1l

(gulggmggﬂgg“}‘Lo 4 08 l)
3

g
(53) K= 3 ulx 1gl 1 1....1

o T epe

which 1s the sum of all g odd half periods, The proofs of

(52) and (53) are found in [14]. (Chapter 10, §1 and §2 )]

“Now, at Z = O the local parameter t is glven by

t =47, and
Z = t°, 4z = 2tdt, ]
SRY- D= 2 . 2 £ 2 2
wh[t(tmlﬂtnM)”.ﬁ;qéglﬂl B[ (£7=1) (£ )

2 2

LN B t }\- L]
e gg_l)]

At Z = 1, the local parameter ¢t 1s t W.JZ 1, and

1+t°, a7 = otdt,

NN
Il

1
z

=
i

[(t2+l)t2(t2+lnkl).,.(t2+lwx2gmﬁ]

il

t[(t2+l)(t2+l~kl),..(t2+lwk2g_l)]§:

o
[xd
S
no
-
>

J=1,2,...,2g=1, the local parameter t is

7 = AoHt", 47 = 2tdt,

o fg-l 5 o
J,n (+ +xj—le)1
J14J |

D o 2g-1 o '%

£ (t +xj)(t #,-1) T (% X = e,

| J:;1 J
J

At 7 = 5, the.local parameter t 1s ¢ ﬁV%’ and

[(¢ +AJ)(t +x ~1)t

=
Il

I

4
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7 = &y, A7 = =3, 4t
t 1 1
281 2ge-1
1 1 T L 2 2,7
W = [“ (mo=1) T (=o=h )]° = S [ (1=t5) T (L=x,t)7°,
$° t° 4=l t2 y2atl _ g=1  d .

I'rom these, we have a following table of ofders of
zeros (or poles) of warious functions and differentials at

-each branch innfs;

: o -1 A 3
dz 1 119 .3
M 2u 0 0wy Jo= 1,2,0..,28-1,
W 11 1 "f(gg"}'l) Moo= 0,1,2,0.00,8-1,

Table 1.

Let ¢ = P, I 2.,.Pg 1g an integral divisor of g dlstinct

branoh points, We want to show that 1(¢) = o.

Suppose that there is an element du of Al(S) such that

its divisor;(du) 1s a multiple of (. Then du vanishes at
k-l

Pl""’?g‘ Since dvk = Z = dZ} k=1,2,...,8, 18 a basis
for Al(S), there exlist constants Cy such that
o 7 _
du.: Zlckdvk
. g k 1 g '
a7

and E(e, (% >)< P) = (2 ¢eav, )(P) = du(p, ) = o,

k=l K - 2 e " h

h=1,2,...,8. If Ph 4+ w, h = 1,2,...,g, then

set(0v, (1)) = aot((E92) () = T2z, )-aes(757) (7))
247

= S P) L (2(2)-2(F, ) 4 o,
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dZ

gince 34( ) 4 0 for 12 + o and.P, are mutually distinct

h
If any one of Ph’ h=1,2,...58, 18 the branch point 0, 8ay

P, = o, then

1
w1
det(av, (P ) = det ((Z —22) (P, ))
gml .
(-1)EH1ZE - dZ(P Vo ff dZ(Ph)°det 1 Z(pg)...fzg-E(PE;

h=2"w

od e dad b b ke e e

2
1 72(P Y....z28 % (p
: ( g) _ ('%L

+ 0,

- vy o _
since dvl(Pl) = dvg(pl),w ces = dvgnl(pl) = 0 and dVg(Pl) + 0.

In any case, det(dvk(Ph)) + 0 and hence Co = 0, k= 1,2,.,,,8.

o

This 1mplies that du = 3 Cpdv, = 0, and that 1({) = O.
, k=1

If we let e = u({) + K, then 8[e](ulp),n) 1s a non-zero
theta function assoclated with S and (v,5)., Furthermore,

€ 1s precisely the divisor of zeros of 8[e](u(p),n).

Applying this argument, we can £ind many non-zero theta

functions assoclated with S and (v,8). In particular,

Theta functlons zéros
01000... ' '
e[_llOOO _ O]( u(p),n) O’YE’Y)-L’Y6’Y8""’Y2g-2’
01000...0 . '
0 [OOOOQ. . .O] (U(P)sn) msxgs)\u:k6:l8’ . -37\2%“2:

-, +01000...0 | |
%lo1010. . 01 (ulp),1) Oshpadgahysereshog yo



hO

01000. ..04, : |
%Lo0010. .0l (up).M) Pahpahgadgn e shon s
01000...0,, 4 |
801100, . 0l (ulp)sm) Oshgshiyshoseeesho, 35

01000., .0
%ootoo. ..ol (ulp)0

A

'm,KE,KA,KT,;..,Kgng,

01.000.:.,.0 ' ‘ ' '

Olyy110, . Lol (ulp)om) Oshgshpysroseeesho, )
OlOOO-..O .

e[_‘Lo:Llo...o](u(p)_’ﬂ) m’KS?hﬁ’KT""’KQQHl’
00000, . .0 '

' a[gigggn‘ag](u(p)zn) lskgskupk63--eak2gm29

9lo0000. .0l (ulp),T) S R kg e s eshn, oo

00000, , .0 ' '

8{8%838"’O](u(p)sn) | 13K25X5,1730,.,K2gu1,

e[OOOlO:::O](u(p)’H) .“:l29k59179~-u>l2émlj
00000, . .0 o

e[OllOO..,O](u(p)’n) 191237\743)‘7300v:7\2g“’13

A r01000,..0-

8[00100’.°Oj(u(p)9n) : m:lgskuﬂlTJssﬁslgg“ls
00000, .. 0+ /. 43

e[llllo...o (U(P),ﬂ) 13l33luﬂk73"‘3k2gw13
01000...0 :

8[101l0..,o](u(p)’n) : ”>K3’lu’l7’“'°’K2g~1'
01000. . .0 - |

e[OlOOO.,.O](u(p)’H) 1s a non-zero multiplicative function on
01000, ..0 ' . '

%Toooco. « .ol (ulp),m)

3 wlth characteristic [OOOOO“‘g] by Lemma 8, with a zero O

01000, .,

and a pole . On the other hand, we easily see that4}Z is a

OOOOO...O]
O

multiplicative functlion on & with characteristic (61000

and with a zero O and & pole &, Consequently, for a constant

Cs |
- 01000...0
¢®lolooo. - o) (u(P)sT) o

e[OlOOO...O](u(p)’H)

00000, .,.0



Putting P with Z(p) = 1,

01000., .04, ,01000...0
9[000000e.O]((OOOOO..,O)’H)
OIoOTT o0 1( (OT000.7. 0y )
01000...0" *00000.,.0’?

C

It

6 [

1 02000. . .0
Z explifm gl s 10 [ 000 T 0]
T 000, T, 0
exPni[“Trnzz“i?15[01000..,01

oOooo...o]
00000, ,.0
o[eIo[6Ie PINS)

9[01000...01

191

u

Hence, we have

00000. , .05 -01000. . .0+, ,01000. . .0
Jy = 1®Looooo. .+ 0 % loroo0. © ol ({17000 5)-1)
9 [00000. 2207 ¢ TOT000 - =07 ({01000 + 05 1)
01000. .08 looooo. - .ol {100, [0/

e[OOOOO....O 02000,

00000. . .0l exPIi[- E. op-118]

12000...0]

e[OOOOO..,. 02000,

01000. | 101 &P L= ll= 5 10135000° "

‘ 00000, , .0+, 00000, . .0
&'e[OOOOO,‘.O]e[lOOOO..,O]

01

5 [ 00000 07¢ 00000, .. 07
01000...07"11000.. .0

We 'do the similar.compﬁtations to obtaln the following express-

ilons ofq/ anda/l -1 3

ooooo... 00000. , .0
.(55)4) 1= ®Too000. . .0'%l10000. © 0]
6 (000000 ]e[ooooo... .
01000...0'%111000,..0

e[OOOOO...O]e[OOOOO...O]
00010...0 100610,..0
e[OOO‘OO‘..., ]B[OOOOO... ]

01010...0 11010...0

H
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‘e[ooooo.., ]e[ooooo 0,
= %loo100. .0l%t1o100...0
B0000 B 00000 0
®lo1100. . 019[11100,.,03
00000, . .0+, -00000. . .
= loo110. 0190110, o]
SO0 0 000000
e[01110.,,019[11110... ]
| 01000, . .04, 01000, ..0
(56)/%,-1 = %[ 00000 - . Je[10000 o]
[ Se[OR SISl
8[01000...0]9[11000,..0]
01000. . .0+, -01000. . .0
- 9[00010,,,0]9[1001o.°.o]
01601670 PO PO o736 ST PPN
e[OIOIO,e.O]e[llOlo...O]
01000, .,.04,.01000...0
= 800100, - .00 10100 - 0!
BOTO0 O OO
8[01100 0811100, . 0]
01000. . .0, .01000. . .0
= loo110. - 01810110, 0]
BO000 00000
9[01;10;,.019[11110 .20}

For (56), we only need to consider a multiplicative

function

a zZero 1 and a. pole =,

Z~1 on 8 with characteristic [

giggg ol and with

Since for any complex number A A-{i~1) = 1, and hence

(57) ] 5y oy Iy iy

Putting (55) and (56) in (57),

(58) (‘} 1’1 i'/ I'E E A/ I'3
G[OOOOO...O

- where ry = 00000...0
00000, ., .0

¥ ®loo100.. 0

i‘dexlul Ahg=1 -1 Hy-1

we get

= 0,

18]
l1ef

00000. ..
10000. o]e[
00000.:.0,,
10100...0181

00000.

OOOOO...O]
10010...0
OOOOO...O]
10110...0

000610, °'o]e[
00000. .0y
00110...0

+]1.
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| 01000, . .04, 01000, . .05 01000, . .04, 01000, , .0
(59) r, = °looooo...01[10000:. 01%Loco10. .0 10010 1 0]

01000, « .0+ . 01000, « .0 s 01000, « . 0r 01000 . .
X 9[00100...o]efloloo..,o]9[00110...039[10110...013
00000. . .0+ 4 -00000. + .0~ 00000, 00000.
- 9[01000...0]9[11000,,.019[01010.,.o]e[llolo...o]
900000 £ 107 -00000. - 015100000 - .04 00000. . 10
X ®lo1100...0/% 91100, . 0% 01110, .0 % 11110, . 0

Tor g = 4, (58)7becomés a period relatlon of Schottky
type (of three terms ) derived by Farkas and Rauch.[Q,lO,ll].
In this polint of view, we could call (58) a period relation
of Schottky type on a hyperelliptic Rlemann surface S of

genus g g 4,

Theorem 8,

On a hyperelliptic surface 8 of genus g 2 4 with a
canonleal homology basis (v,6) shown in Figure l, a perilod
relation of Schottky type/ r, & J}; & J?; = 0 holds, where
r k = 1,2,3, are given by (59).,

In fact, Theorem 8 is a generallization to genus-g > 4
of a work which was recently done by Farkas. We now know

that & relation (58) for g > 4 can be obtained from a

relstion for g = 4 simply by adjolnning a (g-l)~characteristic

00. .0
Loo. .0

a hyperelllptic surface.

] to -each l-characteristic in a relatlon for g = 4 on

3-2 Period relations of Schottky type for genera 6 and 7.

- Definition 12.

. R
Two (reduced g-theta) characteristics [e] = [e% 'e%]

1



Bl

s

6uueab
and [8] = [6} 6‘]’ gz 1, are 5a1d to be syzygetic (or
azygetic) if " % (é §3meld ) % (e, 82+eld )
=1 5k k'k o1t KK ko k
(60) le,8] = (-1) =(=1)""" =1 (or-l).

Any three characterlstics [e], [8] and [w] are sald to be

' Syzygetic (or azygetic) if -

(61)  fe,b,ul = fel 8] Jul Jetttu] = 1 (or-1),
| (e ) el (ekB)
where [e46+u] = [(6+6+u5h,... o5-Hy) é] is define@ by
(62) (e+bd+p o = 6D 4u Emod 22,
(e+6+u'% = e‘+6$+uk mod 2), Kk = 1,2,.0058,

and |e] 1s the character of [e] (Definition 3.)
Tt was proved in [14,15] that
(63) ’Gsa;U, = ]G,5|'l5,u|'|u,€

In particular, any three characteristics are syzygetic (aZygetic)

-

1f any two of them are syzygetic (azygetic).

Definition 13.

2g+2 {reduced guﬂleta) characteristics [el],[eg],...,[€2g+21,
g £ 1, 1s called the fundamental system of theta characteristices
(abbriviated by F.S. of Th. Ch.) if any mutually distinct

three of'them are azygetic.

Farkas and Rauch [9,10,11] obtalned a period relation of

Schottky type for g = 5 in the followlng steps; First, choose

0000 000 000
a syzgetic group G = {(ji45)> (0108),(8838),(0118)] of half
periods of degree 2 and an azygetic set {[8888],[%888]3[2888]Q

1001

[1001]} of four chharacteristics. Then, combining each
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characteristic in the later wlth G and'forming'fﬁé product'
of the four Schottky theta constants whosge characteristics

" are thus obtalned, a general theta ldentlty for g = 4 is
found, l.e.,

(64)

0000, 0000, 00000000 1000, 1000, 1000, 1000
00000100 00100110 * "Moooo!Mlo1001M o010 M 6110)

L0000, 0000, 0000, 0000, , . 1001, 1001, 1000, 1001
= 1100011001 10101 1110) * Mli007 M 1307 3070 M 31111

Finally, by Schottky - Jung relation (39), (64) implies

(65) {7y % 75 = A7 % f7y = O

00000 000600 00000 00000, , 00000 Q0000

where  ry = 8[55600190100001%1001001% 10100100010 l10010!

00000« - 00000
X 8[gp110/% 10110+ |
1010005, 01000+ 4 01000+ 5+ 01000+ 4 r 01000+ 5 01000
T = 8500001 % 1000018100100 ¢ 1010018 L0010 ¢ T10010!
01000+ . - 01000 | |
X 8501101101100
00000, , .00000+ ; 00000+ 5 -00000 5 - 00000+ ; 00000
ra = 9051000)801100018 0110018 1112018 0101018 [11010!

00000+ » » 00000
X 8lo111010l1117015 S
01001, 01001, 01001 ¢ 5 -0L0CL 4, - 01001 1, 01001

ry = 9[01001]8[%%88%]9[01101]9[11101]9[01011]9[11011]

01001 | ' :
X 0lo1111 80111111

on a hyperelliptic surface S of genus g & 1, all the even

half periods of the form

(66) e(n,d) = u(a?"a, A, ...A ) + K,

L3 g en

where Al’AE""’A2g+2 are branch polnts on 8, n 1s odd integer
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HiA

with 0 £ 2n = gul, Jp + 3, 1f k4 m, Ay is a base point and
K 1s the vector of Riemann constants, vanish, i.e., 8[e(n,3)] = 0
(iewittes [17]). In particular, for a hyperelliptic surface

S of genus g = 5 with a canonical homology basis as in Flgure

. . (01011 | . _ (01001 _ /01001
1, K= (17377) and ulighg) + X = (355070 ulighy) + X = {57707)s
Y . % = (01001 . _ (01001 ' L
u(l3l4) + K = (11111), u(n2l5) + K = (01011) are vanishing -

even half periods., Thls leads r; = O in (65), mnd consequently

(65) becomes‘(58) for g = 5.

Lemgéwiée
For g = 3 : _ _ _
(67 6'15001-8" o001-2 130918 (1301~ [ 1= 1337 ~ O
for an azygetic set (10001 (5001 15001+ (11015 [16115T1111)-
For g = 4 o . |
68 R4 I e 20
-0%1301010% 1191010 1100119 [17611-¢ 101108 [1131] = O

and for g = 5
(69) G[OOOOO]B[OOOOO]G[OOOOO]G[OOOOO]

00000° “ 1010007 00100”01100
-615000078 15200018 L0070012[01100]
SRS LI SSLITSEET
“61300701°[1701018[701101117720]
~8130001 18 (13001 18 [ 701011112 101]
10001 -

10001, , - 10001, - 10001 B
~0010017181 110171010111 19111210 = ©-

N



BT
Proof.

Tn Rlemann-theta formula [13,14,15]

P
(ro) = "Il oylen “[e)’
where
yra = oIt merme1(ul® e rmo1 () myernapsa () 1
xroq = 0121V morer 1 (0B myo e (4 w0 e-p-01 (O
(W= L[, 2, 30, o)
CD) A ED BN CORN € IN )
S ) ), 3) ()
B B RO IO BRNO NG
and‘p,chare arbitrary characterisgtics. u(l) :_u(g) = u(a) = u

implies v(l) = v(g) = V(S) ='v(4) = 0, If we denote the

left sides of (67), (68) and (69), respectively, by A, then
(70) 1leads us to the form 284 = -28°TA. & = 3,4,5, and hence
30 = 0, 1.e., A = O, | | |

Corollary 5.

For a compact Rlemann surface S of genus g = 6,

7) A S5 45 T T o

1000000+ , 000000+ , 0000005 » - 000000

where 1y = 8[1506001801000001 800100018 1010001 X
o 00 00000

5 [000000; 4 000000+ 4 0000001000000

000100 ¢ 100160! ?loo1100! 8l 101100
_ 70100004, 0100001 , 010000, = 010000
*2 = 8160000017160000) 10100018 [101000] X

010000+ 1 010000 ; - 010000+, - 010000
a[ooomo]e[10010019[oouoo]e[,1011001’




8

N 000000 000000+ 4 000000 '
B e[OJ_OOOO]B[Z’LlOOOO]e[

9[OOOOOO 000000 000000 C00000

01010012 17010018 01110018 L1 11100"

000000

01100018 [111000] ¥

r3

OlOOlO]e[01001019[01001018tOlOOlO
010010 110010 011010 111010
B[OlOOlO]e[OlOOlO]e[OlOOlO]eEOlOOlO] '
t0lol110 110110 011110 111110°°

o[ ] X

Ty

. 6[010011]8{010011]8[010011]6[OlOOll
010001 110001 011001-"+111001
9[010011]8[01001119[010011]8[010011]
010101 110101011101 111101°°

] X

_ 010001010001 1010001, 4010001
reg = %l5100111% 1100111 % Lo1101118 111011

5[ 010001 15 (010001 4 01000114 010001
o10111 18170111 8 Mo 111 190y 101 !

] X

Proof.

By Schottky « Jung relation (39), (71) immediately follows

from (69),
If 8 is hyperelliptic, then by (52) and (66) K = (igiggi)’
' e (010001 o '
and ulrghhg) + K= (575017) (%5 = 0) |
o (0L0012y . _ ree (0100104 ¢ 10

vanishing even half perlods {out of 364 such half periods).
Again (71) becomes (58) for g = 6. We can do a similar

work for g =17.

Temma 16,

For g = 4

L 0000, .4.1000
(72) eq[oooo]'eu[oooo
31111 1001
=8 [10011-% (1101

40000 | 13100 L 1110'

u[looo]‘ea[lloo]“eaflolo]
1011 1010 1101, ~
[11301-8 [11711-8 [1p11) = ©

16
18

for an azygetic set of ten U-characterlstics.
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For g =6

5 00000+ .2.00000. .2.10000

(73) 15000018 L0000 -8 Loonoo
' 5 00000200000, .2.10100+.2. 10100
=671 1600019 [110007-° " 1701001% [11700]

P 101104 ,2.10110- +2.10111-.2.10111
8707001078 [110101 = 13000178 (11001

> 10001 .2 1000L. .2.10011~.2.10011

-0 [1OJ_OLL]e [:L:Lflo:{_]“‘e [1011019 [111103
_2;1001072,10010, 4210101, 210101
01011118 Ti11111-% 3001108 T11011

210000
19 [OlOOO]

1 =0

and for g = 0

000000+ . - 000000 . - 000000~ » - 000000
(7% 806005001 Lo100001 8 Loo1000) ¢ 011000}
51000001 4100000 ¢ + 100000 ¢ 100000
0000001 ¢ Lo10000° ®Loo1000! P Lor1000
s [000000; 4 -0000001 4 000000, ¢ 000000,
100000- 1100001 ¢ [ 101000 ¥l 111.000
100100, 411001001, 1001007 ¢ 1100100
100100) 9111020018 t1011001 8111100
100110, . .100110. . 100110+ . 100110
1000104 %[11601018 (10101018 (111010}
10011 1x - - 10011« n - 100T1T . - 100111
16000118 1110001 18 110100118 (111001 ]
9100001, ¢ 160001 100001 ¢ 100001,
~8l100101! T 110101100 10110118 (111707
a0 20 508
(1000107100004 ¢ 1000101 1100010
1001118 [11012118 70117110 0711111
100101, 100101, 10010, 100101 _
61300011 ¢ [11001118 10101118 (111017 ) = ©-

B
0]
-8

As 4in Temma 15, if we denote the left sides of (72),
7(73)_and (74), respectively, by A, then by Riemann theta
formula (70) we have again EgA=u2g"lA, g=4,5,6, and hence
PA==A, 3A=0, i.e., A=0,

Corollary 6.

 For a compact Riemann surface § of genus g .= 7
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(75) = :i:"rk = 0,

where Tl ig the product of elght theta constants with

characdteristics obtained by adjoining [8]'and [g] as the

. first column to each characterigtic of kth term in (74),

and k 1s counted in order in (74).

Eroof.

By Schottky = Jung relation (39), (75) follows immediately

from (74).

.Again, if 8 is.hyperelliptic, then by (52) and (66)
s = (§197717) ena

u(hghghohs 4K = ($120001) (ry5=0)>
aligh hgh o0 = (§190810). (g0,

u(igh g M = (F19099), (rg=0),

u(dgh Aghg K = g%gggg%)’ (r,=0),

WA ah oW = (B185551)5 (70

“()‘3?‘5"8)‘12)'*‘1{ = (7190010)- (rg=0),
u(7‘2*,"57‘107‘12)*"K = (%8831_88), (ry=0),

are. vanishing even half pertods (out of 1366 such half periods).

Thus (75) reduces to (58) for g = 7.

According to our observations, we congecture that &

period relation of Schottky type for g = 5, Z h J_;
k=
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might have

m = 3+20+21+22+.n. eg - = 2(25“5+1)

terms by the induction on genus g.

3=3 Theta identity on hypefelliptic surfaces,

Let S be & hyperelliptic sgurface of genus g 2 1,.
s 2g+2
(76) w® = T (z),
J=1

where lj are mutually dlstinet finlte, 1ts concrete algebraic

representation and Yl,Yej...,Y-;

o 61,62,.,,,6g a canonical

homology beasis on 8 chosen as In Figure 2.

Figure 2

Kl

w

(77) av, =2

dz, k = 1,2,...,8,

19 & basls for Al(S), and we denote

(78) AKL = g dvka L = 132500':g5
£ '

(79) A = det(Ak&);



Teking the point Py on S wilth Z(pb)

f'fact, half periodsj

u(ry) = (90,
e
aby) = (BT,
-
a0y) = (O™,
‘ -2
alny) = (3O,
al) = (OO
5 ARAYCUAR KAV R
urg) = (OO,
by
) w0 = () D),

-2
alag) = (DG O,
alpy) = (R (D),
Whpgyy) = ((1(GE™),

Whpgep) = (N ).

= A

1

6o

ac & base

;?pcintj we can define a mapping u from S to its Jacobi variety
J{8) and, as in 3-1, all the images u(lj) in J(8) of all

the branch points Rj under u éan be computed, They are, in

According to Krazer's preseription (chapter 10, §1,
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Theorem 2 and'§2), the vector K of Rlemann constants with

respect to & chozen base point Py on § with Z(PO) = Xy 1is
given by
(81) X = (the sum of all odd half periods among u(k 1)
' 2g+1 2g-§~l ~
= (= _u()tj)) = 5 u()\J = (g gll gi- “..l)
j:B j=1 g -oel,
J=odd J=0da

As before, we also denote the period matrlx of S and
(Yaﬁ) by .
Suppose that for a g-characteristic [e] 8[e] = 6[¢](1)d0,

and that there are two complementary sets [, ,A. s....M0, )
' S - Jgt1,

and (A, oA gseoash. } of 2g+2 branch points
gty 1 _
1 gL

?\-j) 3 = 132’,0.;32%’{"2’9 With

g+l g+, ,
(82) [e] = [K+ z u(xJ V] = [Kt+ = u(l )1,
h=1 ° h

Then, Thomaet!s theorem [15, 31] tells us that
(83) 8[e] = A 4/A(x oh(hsy ),
SR N j dJd

g _
&
(emi)” , 1
where A{(X.) = det {1 X £ veae N = T (X, =X
J J1 d1 dy nt>m Om!
_ . .
1A P\ \
j2 Je 4 aaa Jg )
1 xi ' s x%
g+l g+l g1
=~ ~

and A(Kjt) is defined a8 A(Rj).
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y (80), we can easily see that 2g+2 characteristics

[u(r,)] form & ¥.S. of Th, Ch., and that there are g+2 even
half perist u(ll), ulx,,) (Xu),s,o,u(x2g+2) and g odd half

: ' : 2g42 00 o
periods u(ls),.u(AB),..,,u(k2g+l) with [jil u(kj)] = [o0. 7 0]
On S, any theta constant with characteristic
g+l
re] [K+ = u()\j )] for g+l branch Polnts A. A, s...,h,.
| h=1 9n ' | 1odeT T dpy
does not vanlsh by (66).. In particular, by {(80) and (81)
g1 Dg42 |
(x y] = [K+u(x1)+ Zs u(lj)] = [K+ 2 u(xj)],
J ==
J=o0dd J=even
(84) | -
| 2g+1 Dgt+2
ulhs, )7 = [Krulr,, )+ = u(x V] = [K+u(dg )+ = u(r,)].
ok 2k’" 2y | 172, MY
j=odd ' j=event2k
Iemme 17.
TS
(85) kilA(RS’hB’""x2kwl?l2k’l2k+1""’Kegﬁl)‘
‘5'(7‘1’}L B e e ppep Morerps n e e M agyp)
(Kl’ 3’K5""’h2g+1)'A(keﬁku’x6"°”kég+2)'
Proof.

By the definltion of A,

A(xl,x3,x5,...,ng+l)
_ - g+l | : .
A(xg,xu,x6,f.;,x2g+2) - k‘ijl(xgk,_luxgk,Hl)(xgk,meK). We use
= Skt=1,
ki>k

8 slmple notation for a proof, i.e., ( 2

15X,X ,.d._’Xg-) =

= (x) for
- any variable x.
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k< k! =g+ 1., then

If Ay = hpys 1S
g+l : |
Kila(xg,AS,,,.,xgkml,xgk,x2k+l,..,,x2g+l)-
Mhyshpshyseaesdoy podopppseeshogin)
g+l : '
R DN S Y = { A N + 1A M
o M 3 1 3 1
- Ay A ", - A,
\ i | | i i
1 i i
* Aoy
}
]
Mokel Moo || Poketl | Mokes Mokt | Pokian
Aok Aokto Mox Mogto Aoy Aok t4o
| ! t
l R
) i i
Mok Mokl | ok
, . |
| | | 1
| ’ ! Aoger | |
I | 4 i
i §
Mg Ly Mogrll | Pegre Mogr1 | Popeo




O

r Qd Y] ™
t + mw._
A A A it}
O ] Ql [/V] ad QY]
< < - - = e
% 4
r 1”“ _ T ™ .
+ —
- - L] +
hd L A ad O
< N Ta S aV: Ao o
, < ) < < R, )
S+
— T T
el Mt it a0
o — ol ol QJ Ql
o< _- = II«A\
” T T o) |
e L A 18] o
o 1@ [aN] [4\] o d
~ B ) e,
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4 AWHJ T ———

+ Qd

_ - - F

— Qd = o QJ Y| QJ

~< ) - .r\A L .......l\ALm O < T
4 pory —
&0 X <

[40] Y QO Ql
r\A Lo —_——_ - = P o <
P ——
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’ F‘)\ "} f_)\ y
= -1 0 1 -1 0 1 ‘
r “y K -f' T )\-
g 3 A3 3
) X A A
5 5 5 5
i i i ] 1
i [} i 3 . |
] i \ ¥ \
X, )\ \ )\
| 2gtly |2t A 2g+lf | 2a+L 7
ol A ’ “\
0 X, Ay {
A, 0 ay 5
: |
o i |
i
Aojnp
(KEK) kzk sz
: |
Mojtp ,
; :
h
O Pop | Coin) o
? !
! ;
Mogro o |
" “- \ 2%’]"2.1




{(ul)é(“i)(k’mk)+(k!@kul)} 0

>J -

"

Here, we used & fact that det(A)-det(B) = det(

2g+%

L

>"""-"w

o

1
i

IS

2k

2k

2g+2)
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AC

OB) for any

gquare matrlces A and B. Thus we showed that the lef't side

v

of (85) ts divided by the Pactors Mgy =hgs 1 B k < kP 2 g+ 1.

Similarily, 1f kzhiml = 12h~1’

22 h<n! 2g+ 1, then the

left side of (85) 1s zero and it is divided by the factors

ohtal ™ Pop.l

A(k33.155- e-o,}\.

X

2h~1,l°¢,}L x

2k~1’

2k+12 7 7?

A

In fact, for each k, k = 1,2,,..,g+1,

ot 17 pgrr) = O

for any h and h' with 2 = h < hf £ g + 1, which are the first

factors of each term.-in the summation of the left slde of (B5).

.
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Finally; 1 Ay 4 = hys h = 2,3,,0;,g+1, then we have to use
the induction on g to show that the left side of (85) is again
zero. TFor example, for g = 1, the left side of (85) 1s

BOupshg) b (g 0 )48 gy )-8 (hp ) =0 (hgady J o8 (o)

4 (hg 52 ) B (0

A _ua(xl,xg)a(xl,xq)
A (hq s hg ) A (N 50 )=0

1f Ay = dg. In this case, the sum willl be zero, but no each

- term in the sum will bg Zerc.

Therefore, both sides of (85) have the factors

g1
o (x
k,ki=1
ki>k

ot w1 Mok ) (Aopihop)e  In the right side of (85),

e s _ g gL g \gmlr .
the slgn of_the term X2g+1l2% 1...k3K2gF2u2 seody s (+),

taking all the filrst terms of the factors. Likewise, the sign
of the same term in the left side of (85) is also (+), since

the first term of the sum is A(xz,xB,xs,,.,px2g+l).

g gl g g1
(7\137\}459-03 o +2) and 7\2%_!_1)\2% 1«..7\3)L2g'~2}\2éan4.7ybr has the

sign {+) and 1t does not appear in any other terms in the sum.

This completes a proof of Lemma.

Theorem 9.
: 7 o 2c+2
For & hyperelliptic surface 8 of w™ = I (Zukj) of
. ‘ =1 :

genus g & 1 with a canonical homology basis as shown in
Migure 2,

h b
(86) o' Tu(r ”"lf”le ()] = o,
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where u 'is a mapping from S to 1ts Jacobi variety J(8) with

respect to a base point P, on § with Z(PO) =y

Proof, ' ' ' |
By (83), (84) ana (85)
T A 2 | i
¢ [u(ry)] = ((em.,)g> A(xl,xg,.,.ﬁmegﬁhl) A(xg,xw...,‘ngw) |
i : : !
: » el | ,
_ A 2 o

= (o )™ 2 A(}‘t%’)"!s"”’)\21{-»1’%1{”)‘21{4&"'°-")‘2g+1‘)

(eni1)® k=1

-t

A()\l’KQ’)\)Jr’ v ee ’)\21{-429‘)\-21("‘“25 e e 3_)\-’.‘%"}'2)

i
™
far
o
>

which is (86).




CHAPTER IV BRANCHED COVERINGS OVER THE SPHERE
J.l n-sheeted branched coverings over the sphere.

If a compact Riemann surface S of genus g £ 1 permits a
meromorphic function Z on 1t which assumes every complex
value n times, n & 2, then there is a meromorphlc function

w on S satisfying an irreduclble algebralc equation

e

N1 - ’_‘ .
+.a,+rnhl(2)w+rn(£) = 0,

(87)  T(Z,w) = wir, (Z)w" 4r

| 1 (7w

2

where rh(Z), h=1,2,...,0, are ratlional functions of 7,
such that any other meromorphlce function v on 35 can be
represented as a ratioral function of 7 and w,

_ n=l, N -
v = Rl(Z)W +R2(Z)W }'eov"l'rnul(z)w'—!'Rn(Z)s

where RJ(Z)ﬁ J = 1,23.,,;n are also .rational functions of
7.  The set of all such meromorphic functlons v on S is the
fierldI(8) of algebraic functions on § which is generated by

7 and w satlefying F(Z,w) = O. Furthermore; the mapping , |

p e (Z,w), where P € S, givés an oﬁééto~one conformal mapplng
from § onto the Rlemann surface of an algebralc functlon W(Z),
and hence & can now be realized as the Riemann surface of an
algebralc function w(Z). Conservely, all the Riemann surfaces
of algebraic functions are known as the compact Riemann

surfaces.

= .= r__,(z) =0 in (87), then

If rl"(z) = r( .

z)
F(Z,w) = w“+rn(z) =0 can be reduced to the form
' K

(88) W~ Al(Z-%y) ,
Y

T({Z-b
h h

T3




7l

where A 1g a'complex constant and 1 = My Dy

for all k and

.,
Writing m = nLk+ek’ N, = nqh+fh, where &k and q,, are

integers and 1 = ¢,, £, = n-1 for each k and h,

7=7, q
(89){ 1
@t o= 2y Ty
S ——
= k

| . o .
defines a birationsl transformation from Tl ($) onto {IL(s)

génerated by Z% and wt satlsfying an irreducible algebralc

équ&tion
e
- i k-
(90) Fr(zt,w!) = wila k(z‘“ak) = 0,
. _
1 h
p(% o)
Again,
(o1) {-.z"e zit
7 . - "o er A \
. W' o= Il}l(Zl ‘bh)wl

‘ - ' - s
defines a biratlional transformation from N (s) onto N(s)
generated by Z" and w" satisfying an irreducible algebralc

_function

1 e
(92) F'(Z", ") = w el (ZVeay ) Fom(2D,)

h

nThe o,

Note that 1 = nmfh £ n=~1 for all h, since 1 = fh = n-l., Since

a mapping defined by P e {Z,w) = (Z!',w') « (Z",w") 1s conformal,

'S 1s comformally equivalent to the Rlemann surface of an

algebraic function w'(Z") satisfying (92). Consequently, we
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may assume that a concrete algebraic,répreséntaﬁion of 8 given
compact Rlemann surface S ls for a particular case -
(93) Wn~: E (Z—a&)m&
£=1
‘where n'2 2, 1 =m, = n-l and\mx are ﬁutually distinét. 8 pan
now be realized &s an nwshéeted branched covering over the
gphere, We, further, asgume that

b
(o) = m, = 0 (mod n)
=1

to make the points on 5 over 2 = « ag regular polints.

FOI‘ e&Ch '{13 {J =-152,ooegb3 let

m h
N _ _ n
(95) n’ﬁ“ - ;}TE:’ (hfij{;) i 1 a.nd '}J-'L - ::}""'E,
' no_ 4 ‘
Then py <V, = n and, slnce y, = Gz,: ﬁzw My By = My for each 4.

on 3

NO'W" the_‘[‘e are LLL pOil’ltS A‘LleL_g’,nenﬁt--ec-o.aaa,A‘L-u |
: _ L |

over a point Z = a, such that each polnt Ay, ., k = 152savasbys

18 & branch point on S of order vi-l for each 4, By Riemann -

Hurwitz formula, the genus g of S 1s glven by
b

g2 = n{-2)+ Z(v “1)”L
‘ L=a
b
= =0 2( ] )i
=1 ¥ Vg
b 1 |
= w=2rhn Z(luﬁm) , -
and hence
n b 1
(96) & = 1om+l 3(1-gh).




Note that for g 2 1 and n & 2

by
(97)  2(l-z=)
: =1 L

I
e}

Tor each 4L, the local parameter t at A&Eg k = 132"‘°’HL’

is glven by
Vi
(98) Zwwy =t 7,
and hence N m, VT . y My y
. —ETTN ey
(99) w= M(Z8, )0 =t % ' (t % -, )"
L=1
h, b v My s
= t'{l H(t ft"*"av'&"*a{di)ﬂm,
4e=1
&&%L
Vel
(100) dz = v&t’g at.

At each point wi,mb,...,&n on S over the polnt Z = e,

the local parameter t 18 glven by

. 1
(101) % =&,

and hence

(102) Z"a'{/ == %‘ ""a.’b_g £ = 13230.¢n’b3
: b M b . My
(103) w = H(Zmab)7T = H(¥-?aL)TT
b ™,
- t"%’ 2, g(lma t)uﬁ_‘
R A
(104) az = - Hat.
t

From these,'we have a following table of orders of zeros

(or poles) of functions and differentialj
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| Arx “n

a7 vbml 2 M=1,2,,40,0l,

S b h=1,2,...,0
W iy, --%- 5 my k=l,2, 0005k,

&,zl ’{‘:lglgjaoogbﬂ
oy
_ hr={0, 1f L4347
Zeagt Vg Sppe 1, iF be=dr
' Table 2

A divigor of 2 meromorphic function w on S is
b 4 h
' ) '&Hl(}g 1%1‘) ’
105) (w) = L=l R=
(105) { ; )l -
( o In X m
b=l B =1 ¥

by Table 2.

At this point, we choose a canonlcal homology basils (y,6)
on 8 and an arbitrary point PO on S as & hase point. Denoting
a mapping from § to J(8) with respect to & base point Py on 8

by u as usuval, we have

_ b (25 A 1 b n '
(206) &ilh&(k‘ilu(%k)) = o 3 m'z’(hilu(mh))

by (105) and Abel's theorem.,

For each 4, 4 = l,2,...,b,rzmab 1s a meromorphlc function
on S with a divisor
"o | A
(107)  (ze2)) = lT_[f’ALk
k=1
n

E |
h=1 BT ‘ ]

and hence
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My

n :
(108) v, s u(A, )= Sulw ), & =1,2,...,b.
A ’
by My |
Note that, since VE = < 1L, 1 h& < Vo hL and vy are
integers, and hence
(109) 17 = h,{,,s'"f‘ \){, =Ly 4 = 1,2,...,5D.

‘We. now assume that

;b
(110) = = m, E 2.
D op=1

With this'aséumption, we can Find an abelian differential

dv of the first kind on S. First, we compute by (96)
b b b ‘

(111) 2g-2'= «2n+ 2 (v, =1)y, = «2nk % u,v,~ 3 |
b1 vTTE =1 P et

=1
‘ b
= (b"“g)n"" >:: M’E‘n
. ’t'ﬂl
Let _
o az
(3-12) dV— ":'N"’""e
Then its divisor is by Table 2 b
b M e’ L n (5 3 my-2)
(113) (av) = T (O Abk) N mh) L=1 .
: : L=l k=1 h=1
Its degree 1s
(1) d[(av)] = 3wy ( 3
11 af{dv)] = 2 u, (v, =1=h, )+ = m, -2n
N ) Lol LVYA £ bl L
‘(2) T o) b
= b= = 2 W, h,4+ 2 m,~2n
p=1 ¥ ooy Y b

i

(b=2)n- = b, = 2g-2.
: b=1

Therefore, dv defined by (112) 1s an abellan differential of

4
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the first kind on § and -2K(p,) = u((av)), where X(p ) is

o
the vector of Riemann constants with respect to a base polnt

P, on 8. We collect this result in the following theorem;
Theorem 10.

On a éompact Riemann surface 8 of an algebralc functilon
W =-L§§ZuaL)m&, where n 2 2, 1 & m, = nul? b= 1,2,...,0,

b - , m, hy
and &ilmL = 0 (mod n) of gegus'g z 1, let == = T (h&,v&)zl,

N A ; _ '
My, mvz‘ for each 4, and A&k’ k = l,2,°..,u&, be the branch

points on S over 7 = a, and mi’ ®pyseao s the polnts on 8

n

over % = =, Then the vector K(PO) of Riemann constants with
respect to a bage point ?O on 8 satisfies
: b W b ,
(115) «2K(p.) = ;2. ((v,=Ll=h,) £' (A ))+(1 5 om, ~2) g u(e, )
. = = Y L = [4x3 s
b
if %’ 2 22
L=17% 7 7°
Consilder two Riemann surfaces of w = I (an{) and
| b=l "
b : .
| 1 ‘
wh= 1 (Zﬁi&)n . They are conformally equivalent to
L=1
each other. TFor, if we denote the Rlemann surféce of
b ' ,
wil= T (Z.-a,) by S. and the Riemann surface of
n b ol -
Wy = LEl(ZQﬁaL) T by Spo then a mapping
Zl = Z'2
: (
0 {(Z,-8 )
g 2 1)
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defines & biratlonal transformation between two algebrale

function fieldswﬁl(sjj,-generated by 7. and w

N 15 and_”L(SQ),

1)
and hence

generated by 7, and w,. Consequently, a mapping (Zl,w
(ZE’WE) is o conformal mapping from S, onto 8.,
they are conformally eguivalent to each other. We do hot :

need~tb_make any distinctilon between those two Riemann

surfaces.,
‘ o] L e,
Tor the Rlemann surface S of w = T (Z-a,) ~,m, = n-l,v, =n,
‘ . o 4 Vi
hy = n~1 and By = 1, l.e., A& is a branch point on the surfacé
of order n~l over Z = a&; for each 4, 4 = 1,2,...,b.
‘ n
By (108), nu(A&) - hzlu(wh) for all 4, If we take &
. . n
branch point A, as a base polnt P., 0 = nu(4,) = nu(4,,) = Zulw, )
nt Ay 0 4 pr) 7 2y

for eny 4 and &', 4,41 = 1,2,...,b. Furthermoge, by Rlemann. -

Hurwitz férmula, 0 £ 2g~P = =2ntb{n~l) = «2n+ = m, for g & 1,
. L=1
. b iy
and hence = % m, = b{n-1) » 2.
- D gy h

Then, by -(115) 1in Theorem 10, sz(A{?) = 0, L.e., K(AL)

48 a half period.for each 4. , . /

Theta function 0[K(A,)1(u(p),l), where p € S and 1 1s the |
period matrix of 8 and (y,5), associated with § and (v,3) has

the same order_of vanlshing at the orlgin as the order of

0..0

vanishing of 8(u(p),l) = ] s

T{ulp),1) at K(AL).' We recall




81

that an‘odd fﬁnction alwaysvanishﬁéi the origin, and that
a'partial derivative of an even (odd) function. is odd
(even}. Therefore, an even function does have the even
order at the origin, while an odd functlon has the odd

order at the origin.
8ince K(A&) = u(A&g"1)+K(AL) and 9 vanlshes at K(AL)
with the order i(ALgMI) by Riemann vanishing theorem, &

half perilod K(A&) 15 even or odd depending on whether i(A&g”l)

is even or odd.

If a compact Riemann surface S of genug g 2 1 has
P

)1’1“’1

a concrete algebraic repfesentation-wn=L_;:l(Z»aL , nhis

the minimsl mumber for S and g = nt+l, then

1(2,8"1Y = (the number of gaps at Ay E gwl)

4

= g=(the number of gaps at A, <g-1)

= (n+l) - (n=1) = 2,

’ .

That is, K(AL) 18 an even half period and B[K(A&)] vanlshes with
the order 2 at the orlgin for each 4, 4. = 1,2,...,b.

Furthermore, for all &% and 4, 4',4 = 1,2,...,b,

K(Ag:)

il

(A, Mrula, BN = x(a, )rulal )

4,1

il

K(a, )+nu(a,,) = K(4,) = X,

This means that all the vectors of Rlemann constants With

respect to any brauch polnt are equlvalent to each other,

However, by (96),
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b = (the number of branch points on §)

Pe=24+2n  (Un-l)+ld yo §
el = ) = J—H' vy integer.

Hence n-1 = 1,2 or 4, Finally, we obtain three possible casges;
(1) n=2,g=3,.(2) n=3, g="24, (3) n="5,g=6, The first
case is & well known result (Lewittes [17]). For the second
cage, K 1s the only oné Vanishing even haif peribd on S of

genus g = 4, For, otherwise, S is hyperelliptic, i.e.,

n = 2, according to Farkas {[6], Theorem 11).
Similarily, if a compact Riemann surface 8§ of genug
_ b
g = 1 has a concrete algebralc representation wlo= 1 (ZmaL),
_ £=1 .

18 the minimal number for 8 and g = n + 1, then

n
0 2 2gn2 = ~2ntb{n~1) and L 2 my = 2 . In this cage, We can
Bg=2" "

ng%lij by Table 2

not apply Theorem  10, However, since 2 =
av = - 1
Vo= e dz
. W

1g an abelian differentlal of the first kind on S with a

divisor
| ((Eiilb_g)
o n 3
(av) = (0 ) :
_ | , _ |
Taking & branch point AL,'L = 1,2,...,0, &8 & base point PO on
- n
S, we have again 0 = nu(d,) = nu(a,,) = 2 ule_) for any 4 and
|
|

h

O’iIel ,.

h)

Lt &,Li = 1,2,..,,b.' Hence “QK(AL) =

= ((0=1)bm2r) Su(e
S [a=)
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K(AL) 18 avhglf period. i(A&gnl) = g-{the number of gaps

at A, < g-1) = (n+1l)=(n-1) = 2. This shows that K(h) s

an even half period for each 4. TFor any 4 and 41,

. _ &_1 _ i _ _ |
K(A&,) = K(AL)+u(A&,g )=K(A&)+nu(A&,) = K(AL) = K. Now,
‘ | _ b )
the rest of all arguments for wh= T (Z-wa.tt)nml is true for .
) b A=
wo= T (Z-a,).
A=

We summarize these in following theorems

Theorem 11,

Let S be a compact Riemann surface of

3 3

w= I (Zma&) (or w

= I (Zwa&)g) of genus g = U and X the
=1 .

vector of Riemann constants with respect to any branch

point ALg 4 o= 1,2,,.,,6, on S over 7 = By e Then K ig an

even half perlod and 8[K] is the only Onervanishing evern

theta constant agsoclated with 8 and arbirtarily chosen

canonlcal homology basis (v,8) on 8. 6[K] has the vanishing

order 2,

Theorem 12.

. | .5
" Let S be a compact Rlemann surface of w5 = (Zua&)(or W=
' L=1

7

of genus g = 6 and XK the vector of Rlemann constants with
regpect to any branch point 4,, £ = 1,2,...,5, on S over

7 = ay e Then K is an even half perlod and 6[K] is & vanishilng

even theta cdnstant dssociated with 8 and arbltrarlly chosen




8l

canonical homology basis (y,5) on'S. O[K] nas the vanishing

order 2.

In the next gection, we wlll find X in Theorem 11 for

a canonical homology basis,

Tewlttes [17] gzave a h&perelliptic surface of odd genus
as an eXample.of a surface ha#ing a property that any two
vectors of Riemann constants wilth reépect to any'twd branch
points are congruent to each other. For the Riemann surface

(Zna&)nml) of genus g = ngtl,

e
i—Nay
-t

of W= I (ZwaL) (or w' =
A=1 .

where g 1s an integer, t.e., g = 1 (mod n), n & 2,
g1 DQ)_
' !

)EK(A&)%M(A zK(A’L)+nqu(A“)EK(A’L)

K(ALl)EK(A&)+u(A& Iy

for any 4 and 4%, 4,4% = 1,2,,,.,b, since O = nu(A&)

n .
= nu(A&f) = 3 u(coh)e Thus, we have more examples having
h=1 D | - -

such & property. Indeed, our examples include Lewlttes! as a

special case,

L-2 Three-sheeted branched coverings over the sphere.

b m
In (93) who= T (ZwaL) L,_if n =3 then my = 1l or 2.

Hence we can rewrlte a concrete algebraic representation (93)

of a compactfRiemann surface S of genus g # 1 as follows;

J k |
3 1 (ZHQ&)Z 1 (Z"Bm):
L=1 - om=1

i

(126) w

where b = J + kK, ay and Bm are mutually distincet finite for
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all £ and m, 4 = 1,2,...,3, m = 1,2,...,k. Recalling a

b
condition = m, = O (mod n) on (93),
=1 Y |
(117) 25tk = 0 (mod 3).

Further, we may assume that

(118) 3 = k.,
For, If J » k, then dencoting the Riemanh surface of
3 4 o | ' e
wy = LEl(zl—a&,) 1El(zlmBm) by 8, and the Riemann surface of
3 _ 4 (7., ) 1 (2.8 )2 by s ' 1
w,, = v, = v a mapping
2 e 2 Y 2 2’
Zl 2'22
J k
Wy = &El(zgea&)mzézgmsm)
Yo

defines a birational transformation between algebralc function

fields]TL(Sl), generated by Z, and w,, and ﬂl(sg), generated

by Z, and w,. Then a mapping (Zl;wl) ~- (Zgﬂwg) ig a conformal

2

mapping from Sl onto Sg, and they are conformally equivalent

to each other.

By (116) and (95) in lel, v, = v

I

3 and My = by = 1

m n

ll

for all £ and m. But h, = 2 for all i

. 1,2,...,J end b= 1

for all m, m = 1,2,...,k, From Table 2, we have a following

tables

e - ta

%
2
%
i
i
%
i
s
i
i
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A& Bm “n
a7z 2 2 w2 h=1,2,3,
1 ‘{’5"9 = 1,2,0005d5
W 2 1 -w§{23+k) m,m! = 1,2,...,Kk
8440 w{o, 1f Addt
2
we ) o ~ w(23+k) - 1, 4f 4=4',
Zeyy 3844, O -1
Z-B.q4 O B -1
v
Table 3

In the table, A, and'Bm‘are branch points on 8 over Z = a,

and 2 = Bm? respectively.

By Riemann =~ Hurwitz formula,
(119) 2g =2 = 3(=2)+2{J+k),
and hence

(120) b = J+k=g+2,

it

(121) 72J+R=j+(j+k):j+g+2 0 {mod 3).

For g=1, b=j+k=3 and J+3 = 0 (mod 3). Hence j=0 and

k=3 1g the only one posgslble case and E%%E =1 < 2, but

2(2J+k) _
e T e

For g=2, b=Jj+k=l and J+4 = 0 (mod 3). Agailn, J=2 and

k=2 18 the only one possible case and E%;E = 2,

For g=3, b=j+k=5 and J4+5 = 0 (mod 3). J=1 and- k=l 1s the i

only one posslible case and Sy~ =2,
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e O , :
For g & 4, 2%;k = Jkgq“ = 2+%=é 2,

By thesge observations, we can fing many elements in

For g =_1,

(122) dv = ﬁ%
W .

is a basis for Al(S) and it has a divisor

(123) (dv) = 1 = unit divisor.

(moa'3), 1let j = SFQ r & 0 and

J 2 gr
&H(Z”@L) I (Z“Bm)
(lEl‘r) dv = =] m;l dZ.
W

Then

. J' . 3
(125) {(dv) = M A, T B

| g1 ¥ g1 W

I

and a[(dv)] = J+3(2qr) = 6q = 2(3q+l)-2 = 2g-2. Note that
kK = g+2w] = 3(g-r+1) 2 J = 3r, gq-2r+1 = 0 and

J  ke(2qer) = g-2r+3 E 2,

Tet
(126) dv = %%:. .
X 9 (J+g+2 -2)
(127) (av) = T 8-(T o)
and dl{dv)] = k+3(ii%i£-'-2) = j+K+g+2~6 = 2( g+2)-6 = 2g-2.

For g = 3g+2, q 2 0, 2J+k = J+g+2 = j43g+4 = 0 (mod 3).




In this case, dv = %%»is algo in A

88

I
J 2 Q=1
M(Z-c, ) T (Z-B_)
(128) dv = = a7 .
W
Then 7
J 2q-r
(129) (av) = fa,- 1 B,
=1 m=1

and 4 (dv)] = J+3(2q~r) = 6q+2 = 2(3q+2)-2 = 2g-2. Since

k = gt2e] = 3g=3r+2 & J = 3r+2, g=2r = 0 and k~(2q-r)=q-2r4+2 & 2,

(a8} and 1t has & divisor

Jbg2 1

1
(127), since smgem = §{3r+2+3q+2+2)

= (rq)+2 = 2,

0 {mod 3).

iy

For g = 3g+3, q & O; 2J+k = J+g+2 = J+3g+5
Tet i = 3r+l, r 2 O and

‘ (o, ) B (7ep )

, . (Zew, ) T 73
(130) av = =1 4 mél n

W
Then
: J 2g=r+l
(131) (av) = fla,- T  BS,
b= ¥ e m

and d[(dv)] = j+3(2q-r+1) = 6tk = 2(3¢+3)-2 = 2g-2, Since

kK = g+2-] = 3{qer)+l B § = 3r+1, q-2r+l 2 O and
ke(2gmrtl) = gu2re3 2 2, dv = 34 15 in A, (S) and 1ts divisor

18 given by {127), since %{j+g+2) = %{3r+1+3q+3+2) = (r4q)+e =

Theorem 13, _
Zma&)

==Y N

Let 8 be a compact Rlemann surface of WS =

(
=l

where ay and Bm aré'mutually distinct finlte, O §_j 2 k and
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il

2)+k = 0 (mod 3), and let A, and B are pranch points on g

over Z = ¢, and Z = B_, respectively. Then the vector K(PO)
of Riemann constants with respect to a base point Poron 3

‘satisfles
: -3 ( ) k.

= 2 ulh _
t=1 ¥ op=1 M

"
™
=8
txd
e

(132) uEK(PO)

where Py = A, if J 4+ 0 or B, 1f J = O.

ﬁnder the assugptionthat Py = Al or By, we have
3u(A&) = Su(Bm) = hzlu(wh) = 0 for all 4 and m. Since
meK(pO) = u((dv)) for ?v € Al(S), by (123), (125), (129)
and (131), ~2K(p0) = &ilu(AL). On the other hagd, by (127)
k
-HQK(pO) = milu(Bm),.

Corollary 7. ‘

. With the same ndtationsras in Theorem 13, 1f J = 0 ér l;
then-K(pO) is & half period and B[K(po)] vanishes with the
order i(P%"l). Hence'G[K(pO)j 1s even or odd depending on

whether i(p%“l) 1g even or odd.

Proof.

If j = 0, Py = Bi andrby (123), (1e5j, (129)and (131)
~2K(PO) = uQK(Bl) =0, If =1, then Py = A, and by (132)
eeK(PO) = MQK(Al) 5 u(Al) = 0, The rest of the assertion is

trivial by Riemann vanishing theorem.
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According to Theorem 13 and Corollary 7, if J = O then
K(Bl) 18 a half period and K(Bm) = K(Bl)+u(Bi"1) are all
'6th periods for all m, m = 2,3,..e;k. Tf j = 1, then K(Al)
18 & half period and K(Bm) = K(Al)+u(Bifl) are all 6th
"perlods for allm = 1,2,3,...,k. If J & 2, then K(AL) and
K(Bm) are all 6th periods for all 4 and m, 4 = 1,2,...,],

m = l,EJ-nngke

We return to the Rlemann surface S of
3

i

= ﬁ(z-am) (or W n(zma&)e)
m=1 4=1 '

(133) w
of genus g = 4 (3 =0 and-k = 6). In this case, we already
proved that K = K(Bm) with respect to any branch point

B, m = 1,2,...,6, are congruent to each other dhd it is the
only one vanishing half perlod on § such that 8[K] has the
vanishing order.é'at the origin in Theorem 11. This can

_aléo be checked by Corollary 7.

To find thle X, we choose & canonical homology basis

(v,8) on & as in Figure 3.
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We glve mnore éxplations about Figufe 3.
: on Sheet 1,
¢t on Sheet 2,

s § O Sheet 3,

<
i
|
i
1
\
\

o
)

\

S -
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Y2 and 62

chosen. The point 0 1s a point on S_such thaet no any two

are chosen in a ginilayr way that Y] and 61 are

branch points are collnear through C. The numbers 1, 2

and 3 are expressing the "sheets" of 3, on which the points
, A . . 5

are expressed by (ZO,W(ZO)), (Zo,pw(ZO)) and (Zojp W(ZO))
over 7 = ZO, respectivelijhere p = exp[m§m=o Rach pair

of (Ykﬁak)’ k = 1,2,3,4, meet on the sheet 2. This canonical

homology basis was found by Wellstein [33].

We denote an autbmorphism on 8 of order 3, which is

the cyelic interchange'of three sheets, by T. From Figﬁre L,

we have

(134)  Tyy) ~ = vyHy, T(6y) =Yy
{yy) ~ - Yt T(5,) ~ = v,
Tyg) ~ - Ygtbg, T(6,) ~ = Y_é,
T(vy) ~ = ¥yt T(5)) ~ vy

Hence, we know that

(135) (10,61) = (2(v), 7)) = M o (v,8) = (A2) o (v,0)




, P
it o ity Yy
- . .
o -1 : 1 >
R I A
S
-1, ! L
-1 : 51
] T 0 5
o0 1 1|0
84
\6)4)

1s agin a canoconical homology basls on 8. We further know
that M is an element of the Silegel modular group Sp(&,2z).
The period matrix 0! of -8 and (vyt,8%) is given by

M= Mo 1 = (AT+B)(CT+D)",

But, Torellits theorem tells us that
(136) ' =M o [ = 1.

On the other hand, there 1s a non~zero constant I such that

(137) M o [¢,1]1(MoN) = L o[¢, (1)

for any g~characteristic [g,], where

(138) wo[®,] = (D"C>(2,_>+<diag<c'§D})(moa 2), (Tgusa [13]).

~BA diag(A- "B
: k. k- k,.k '
Now, let X = (E,) = (k}k%kgk?)’ ky, k} =0 or 1, and
- 1727374

K! = MoK, Then, by (135) and (138),




. . - b
(139) K!' = 1 kﬁ +
0 b1 o
l 1 o
SR S ¢ INE= & B 4 0
-1 - K3
=1 0+ =1 o I'h -
. | k! |
T I 7Y N
1}2:*‘"3 wl
ka“ s.l-'l
. = sy ]
. s
. 2
K3
mkh
Lok L ‘m
o k]
N T
kyek il
N D
Koymkte]
LFM“kh+14
ki k! I8 | k
1 2 K3 b
= (v et fLT e 2 ) (half period),
kl%kikl_k2+k2+1lh34ké+l k) tkj+L
Furthermore,
(140) ki(kl+ki+l)+ké(k2+ké+l)+ké(k3+ké+l)+kﬁ(k&+kﬁ+l)
2 2 ' 2
= (klki+k2ké+k3ké+kukh)+(ki +ki)+(ké +k§)+(ké +ké)

+ ()]

- RPRRES" 1 4 Ple b ledge ‘
= (klki4k2k2+k3k3+kukﬁ)42(k1+52+k34kh)
= 0 (mod 2),

k

since K = (,,) 18 even and 4° = g for any d = 0 or 1, This

kt
shows ug thet K!' = MoK 1s also an even half perlod. By (137),




8K I(W) = e[k (1) = LO[KI(NI) = O

and K 1s the only one vanishing half period. Therefore,
K = K¥, From (139),

= 3 = - ¥ = i = -
kl. k13 k2 = RE, k3 | kg, kﬂ = Kkf,
t o= RIS E Y i = Jo ¥ e P o= iy = Jk i
kl kl4k +1, K2 ke%k24lg kg kB kB%lg kﬁ k) kL+l,

(mod 2)

and hence k, = ké =1 for all &4, & = 1,2,3,4 . Thus we

obtain
1111
K= (Y7330
Theorem 14, Tet S be & compact Riemann surface of
" B
W = 1 (stm) (or wo = T (ZmaL)z) of genus g = 4 wlth a
=1 : £=1

canonical homology basgis Yl,Yg,ngvagél,ég,asjéu as shown

in Flgure 3 and 4. Then, the only one vanishing even half

period;K, which is the wvector of Rlemann constants with |

respect to any branch point B , m = 1;2,.5.,6,7(or Bes & = 1,2,...,5)
on 8, is '

(1111)
11317
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