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This work is mostly joint with Henk Bruin.
It builds on earlier work with Weixiao Shen and Oleg Kozlovski.
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This works is inspired by several of Milnor’s papers.
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This work is mostly joint with Henk Bruin.
It builds on earlier work with Weixiao Shen and Oleg Kozlovski.

This works is inspired by several of Milnor’s papers.

The clarity of exposition (and depth of results) that Milnor
achieves in all his papers, is something that we all aspire for.
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This work is mostly joint with Henk Bruin.
It builds on earlier work with Weixiao Shen and Oleg Kozlovski.

This works is inspired by several of Milnor’s papers.

The clarity of exposition (and depth of results) that Milnor
achieves in all his papers, is something that we all aspire for.

With this in mind, Henk and | are rewriting our 2009 preprint; a
completely rewritten version should be in the arxiv in a few weeks.
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In their seminal paper 1977 preprint
On iterated maps of the interval: I,11.

Milnor and Thurston proved

The function

C%? 5 g — hiop(g) € RT

which associates to each mapping g € C>9 jts topological
entropy h:op(g) is continuous.
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In their seminal paper 1977 preprint

On iterated maps of the interval: I,11.

Milnor and Thurston proved

The function

C%? 5 g — hiop(g) € RT

which associates to each mapping g € C>9 jts topological
entropy h:op(g) is continuous.

e (29 stands for C2 maps of the interval with d non-degenerate
critical points (non-degenerate means second derivative non-zero).
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In their seminal paper 1977 preprint
On iterated maps of the interval: I,11.

Milnor and Thurston proved

The function

C%? 5 g — hiop(g) € RT

which associates to each mapping g € C>9 jts topological
entropy h:op(g) is continuous.

e (29 stands for C2 maps of the interval with d non-degenerate
critical points (non-degenerate means second derivative non-zero).

e Misiurewicz & Szlenk: exp(hiop(f)) = growth rate of the number
of laps of .
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In their seminal paper 1977 preprint
On iterated maps of the interval: I,11.

Milnor and Thurston proved

The function

C%? 5 g — hiop(g) € RT

which associates to each mapping g € C>9 jts topological
entropy h:op(g) is continuous.

e (29 stands for C2 maps of the interval with d non-degenerate
critical points (non-degenerate means second derivative non-zero).

e Misiurewicz & Szlenk: exp(hiop(f)) = growth rate of the number

of laps of .
e Milnor & Thurson: it is also equal to the zero of a meromorphic

function.
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About 25 years ago, Sullivan, Milnor, Thurston and Douady &
Hubbard all showed that

the topological entropy of x — ax(1 — x) increases with a € R.

exp(heop(fa)) ™%

I I I I I I
3.5 3.55 3.6 3.65 3.7 3.75 3.8 3.85 3.9 3.95 4 a
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In fact, it turns out that periodic orbits disappear when a increases;
moreover, as was shown later on (by Lyubich and Graczyk &
Swiatek) hyperbolic maps are dense within this family.

E EX] EX) EXG] EXC]

Figure: Bifurcation diagram
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In fact, it turns out that periodic orbits disappear when a increases;
moreover, as was shown later on (by Lyubich and Graczyk &
Swiatek) hyperbolic maps are dense within this family.

E EX] EX) EXG] EXC]

Figure: Bifurcation diagram

In this talk, | want to discuss a generalization of this statement.
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Of course monotonicity of
a— hiop(fs)
is equivalent to the statement that isentropes, i.e. the level sets
I(ho) :={a; heop(fs) = ho}

are connected, for each hg.
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Of course monotonicity of
a— hiop(fs)
is equivalent to the statement that isentropes, i.e. the level sets
I(ho) :={a; heop(fs) = ho}
are connected, for each hg.

This was observation is one reason for Milnor's conjecture on the
next slide.
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Milnor’s monotony of entropy conjecture

Consider the space P9 of real polynomials of degree d with
e all critical points of f are real and contained in (—1,1);
o f{£1} C {£1};

@ with shape €:

| 41 if f is increasing at the left endpoint of [0, 1],
| —1 otherwise.

Conjecture (Milnor's monotony of entropy conjecture)

Given e € {—1,1}, isentropes are connected in f € P?, i.e.,
the set of f € PY with topological entropy equal to h, is connected.

€
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Milnor’s monotony of entropy conjecture

Consider the space P9 of real polynomials of degree d with
e all critical points of f are real and contained in (—1,1);
o f{£1} C {£1};

@ with shape €:

| 41 if f is increasing at the left endpoint of [0, 1],
| —1 otherwise.

Conjecture (Milnor's monotony of entropy conjecture)

Given e € {—1,1}, isentropes are connected in f € P?, i.e.,
the set of f € PY with topological entropy equal to h, is connected.

€

Theorem (Milnor & Tresser)

The entropy conjecture is true when d = 3.
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Figure: Isotropies in entropy for cubic maps. The horizontal and vertical
axis determine the position of the first resp. second critical value.
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Milnor & Tresser’s analysis of parameter space

Milnor and Tresser \ T il
analyse bifurcation curves,

see figures on the right. Eé
They use planar topology |
to show ‘bones’ are connected. >3 s ——_ T
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The entropy conjecture for arbitrary d

The aim of this talk is to discuss a theorem proving Milnor’s
conjecture:

Theorem (Monotonicity of entropy, Bruin and SvS, 2009)

Fix e € {—1,1}. Isentropes in P¢ are connected.

Sebastian van Strien (Univ of Warwick) Monotony of Topological Entropy Happy Birthday Jack



The entropy conjecture for arbitrary d

The aim of this talk is to discuss a theorem proving Milnor’s
conjecture:

Theorem (Monotonicity of entropy, Bruin and SvS, 2009)

Fix e € {—1,1}. Isentropes in P¢ are connected.

We have not yet proved

Conjecture (Milnor)

Fix e € {—1,1}. Isentropes in P are contractible.

but are very hopeful, for reasons | will explain.
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Bill Thurston recently asked, can we generalize the theorem

Theorem (Density of hyperbolicity, Kozlovski, Shen and SvS, 2007)

For any d > 2, hyperbolic maps are dense in P9.

to
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Bill Thurston recently asked, can we generalize the theorem

Theorem (Density of hyperbolicity, Kozlovski, Shen and SvS, 2007)

For any d > 2, hyperbolic maps are dense in P9.

to

Question (Thurston)

Does there exist a dense set of level sets H C [0, log(d)] so that for
any hy € H, the isentrope I(ho) in PYcontains a dense set of
hyperbolic maps?

As usual, by definition hyperbolic maps are maps so that each
critical point is in the basin of a periodic attractor.
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How to analyse higher dimensional parameter space?

Higher dimensional parameter spaces are very complicated.

The approach we use in our proof is based on:

@ A generalization of the notion of hyperbolic component:
partial hyperbolic deformation space and showing these
sets are cells.
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How to analyse higher dimensional parameter space?

Higher dimensional parameter spaces are very complicated.

The approach we use in our proof is based on:

@ A generalization of the notion of hyperbolic component:
partial hyperbolic deformation space and showing these
sets are cells.

@ Following Milnor & Tresser we use stunted sawtooth maps,
which form a model for d-modal interval maps.
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How to analyse higher dimensional parameter space?

Higher dimensional parameter spaces are very complicated.

The approach we use in our proof is based on:

@ A generalization of the notion of hyperbolic component:
partial hyperbolic deformation space and showing these
sets are cells.

@ Following Milnor & Tresser we use stunted sawtooth maps,
which form a model for d-modal interval maps.

@ We restrict to admissable sawtooth maps (i.e. ‘absence of
Levy cycles') and prove that isentropes within this set are
contractible.
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How to analyse higher dimensional parameter space?

Higher dimensional parameter spaces are very complicated.

The approach we use in our proof is based on:

@ A generalization of the notion of hyperbolic component:
partial hyperbolic deformation space and showing these
sets are cells.

@ Following Milnor & Tresser we use stunted sawtooth maps,
which form a model for d-modal interval maps.

@ We restrict to admissable sawtooth maps (i.e. ‘absence of
Levy cycles') and prove that isentropes within this set are
contractible.

@ A discussion on how to relate the spaces of polynomials with
stunted sawtooth maps in a suitable manner.
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First ingredient: a generalization of rigidiy

One crucial ingredient for our proof is a result used by Kozlovski,
Shen and SvS to prove hyperbolic maps are dense in P9, for any d:

Theorem (Rigidity)

Let f,g € P9. Assume that f and g are partially conjugate and
that f, g are conformally conjugate restricted to their immediate
basins of periodic attractors. Then f = g.
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First ingredient: a generalization of rigidiy

One crucial ingredient for our proof is a result used by Kozlovski,
Shen and SvS to prove hyperbolic maps are dense in P9, for any d:

Theorem (Rigidity)

Let f,g € P9. Assume that f and g are partially conjugate and
that f, g are conformally conjugate restricted to their immediate
basins of periodic attractors. Then f = g.

In fact, we need a version of this theorem which gives a description
of the partial hyperbolic deformation space. (Generalising the
notion of hyperbolic component.)
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First ingredient: a generalization of rigidiy

One crucial ingredient for our proof is a result used by Kozlovski,
Shen and SvS to prove hyperbolic maps are dense in P9, for any d:

Theorem (Rigidity)

Let f,g € P9. Assume that f and g are partially conjugate and
that f, g are conformally conjugate restricted to their immediate
basins of periodic attractors. Then f = g.

In fact, we need a version of this theorem which gives a description
of the partial hyperbolic deformation space. (Generalising the
notion of hyperbolic component.)

Let B(f) consists of all points x so that ”(x) tends to a (possibly
one-sided) periodic attractor.
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Partial hyperbolic deformation space

e We say that two d-modal maps f,g: [-1,1] — [-1,1] are
partially conjugate if there is a homeomorphism
h: [-1,1] — [-1,1] such that
o h maps B(f) onto B(g);
e h maps the i-th critical point of f to the i-th critical point of g;
e hof(x)=goh(x) for all x ¢ B(f).
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Partial hyperbolic deformation space

e We say that two d-modal maps f,g: [-1,1] — [-1,1] are
partially conjugate if there is a homeomorphism
h: [-1,1] — [-1,1] such that
o h maps B(f) onto B(g);
e h maps the i-th critical point of f to the i-th critical point of g;
e hof(x)=goh(x) for all x ¢ B(f).

@ Let PH(f) be the set of maps which are partially conjugate
to f.
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Partial hyperbolic deformation space

e We say that two d-modal maps f,g: [-1,1] — [-1,1] are
partially conjugate if there is a homeomorphism
h: [-1,1] — [-1,1] such that
o h maps B(f) onto B(g);
e h maps the i-th critical point of f to the i-th critical point of g;
e hof(x)=goh(x) for all x ¢ B(f).

@ Let PH(f) be the set of maps which are partially conjugate
to f.

e PHC(f) consists of maps g € PH(f) with
e only hyperbolic periodic points and
@ no critical point of g maps to the boundary of a component of

B(g).
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Theorem (Description of partial conjugacy class)

Let f € PZ. Then

e PH°(f) is a submanifold with dimension equal to the number
of critical points in B(f).

o PH(f) C PH(F).
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Theorem (Description of partial conjugacy class)

Let f € PZ. Then

e PH°(f) is a submanifold with dimension equal to the number
of critical points in B(f).
e PH(f) C PHC(f).

Analogously to the Douady-Hubbard result for quadratic maps if
each periodic attractor has precisely one critical point in its basin.
Then PHC(f) is parametrized by multipliers at the periodic
attractors.
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Theorem (Description of partial conjugacy class)

Let f € PZ. Then

e PH°(f) is a submanifold with dimension equal to the number
of critical points in B(f).
e PH(f) C PHC(f).

Analogously to the Douady-Hubbard result for quadratic maps if
each periodic attractor has precisely one critical point in its basin.
Then PHC(f) is parametrized by multipliers at the periodic
attractors.

More generally, if there are several critical points in the basin of
one periodic attractor then PH°(f) is parametrized by Boetcher
functions (and for example critical relations unfold transversally).
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Theorem (Description of partial conjugacy class)

Let f € PZ. Then

e PH°(f) is a submanifold with dimension equal to the number
of critical points in B(f).

o PH(f) C PH(F).

In fact, bifurcations near f € PH(f) \ PHC(f) are also generic:
@ saddle-node (creation of one-sided attractor, which then
becomes becomes an attracting + repelling pair)

@ pitchfork (a two-sided attractor, which becomes repelling and
spins off a pair of attracting orbits)

@ period-doubling (multiplier -1)

@ homoclinic bifurcation (with a critical point hitting the
boundary of the basin)
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Second Ingredient: model for the parameter space, relating

polynomials with their combinatorics

@ Given a piecewise monotone d-modal map f with turning
points ¢y, ..., g, associate to x € [—1,1] its itinerary ir(x)
consisting of symbols from the alphabet

{/0, Cc1, /1, C,...,Cd, /d}'
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Second Ingredient: model for the parameter space, relating

polynomials with their combinatorics

@ Given a piecewise monotone d-modal map f with turning
points ¢y, ..., g, associate to x € [—1,1] its itinerary ir(x)
consisting of symbols from the alphabet

{/0, Cc1, /1, C,...,Cd, /d}'

@ x — if(x) is monotone w.r.t. signed lexicographic ordering
@ So the following is well-defined:

vi = lim ir(x)
XJ,C,'
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Second Ingredient: model for the parameter space, relating

polynomials with their combinatorics

@ Given a piecewise monotone d-modal map f with turning
points ¢y, ..., g, associate to x € [—1,1] its itinerary ir(x)
consisting of symbols from the alphabet

{/0, Cc1, /1, C,...,Cd, /d}'

@ x — if(x) is monotone w.r.t. signed lexicographic ordering
@ So the following is well-defined:

vi = lim ir(x)
XJ,C,'

e The kneading invariant v(f) of f is defined as
v(f):=(vi,...,v4q).

Any kneading sequence which is realized by some piecewise
monotone d-modal map is called admissible.
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A more pleasant space to work with

@ The space of kneadings with the natural topology is not
connected.

@ So it is easier to work in a better space, the space of stunted
sawtooth maps which are stunted versions of some fixed map
S with slope +A.

S
A A The sawtooth map S
Two stunted sawtooth maps,

with different third plateaus.

=

The space of stunted sawtooth maps is denoted by S9.
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Assigning a stunted sawtooth map to a polynomial

o To each map f € P9 we will assign a unique stunted sawtooth
map.

Sebastian van Strien (Univ of Warwick) Monotony of Topological Entropy Happy Birthday Jack



Assigning a stunted sawtooth map to a polynomial

o To each map f € P9 we will assign a unique stunted sawtooth
map.

o Let v(f) = (v1,...,vq) be the kneading invariant of f, and let
s; be the unique point in the (i + 1)-th lap /; of S such that
A A

limy g, is(y) = vi := limy| ¢, ir(x)
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Assigning a stunted sawtooth map to a polynomial

o To each map f € P9 we will assign a unique stunted sawtooth
map.
o Let v(f) = (v1,...,vq) be the kneading invariant of f, and let
s; be the unique point in the (i + 1)-th lap /; of S such that
A A

limy g, is(y) = vi := limy| ¢, ir(x)

=

@ Such a point s; exists, because all kneading sequences are
realized by S. It is unique since S is expanding and so
distinct points have different different kneading sequences.
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Assigning a stunted sawtooth map to a polynomial

o To each map f € P9 we will assign a unique stunted sawtooth
map.
o Let v(f) = (v1,...,vq) be the kneading invariant of f, and let
s; be the unique point in the (i + 1)-th lap /; of S such that
A A

limy g, is(y) = vi := limy| ¢, ir(x)

=

@ Such a point s; exists, because all kneading sequences are
realized by S. It is unique since S is expanding and so
distinct points have different different kneading sequences.

Associate to each polynomial the stunted seesaw map W(f)
@ which is constant on a plateau Z; with right endpoint s;

@ which agrees with S outside UZ;.
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What is good and bad about the space S9?

The map
P95 f s W(F)eS?

is non-continuous, non-surjective and also non-injective.

Nevertheless, there are several good properties:
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What is good and bad about the space S9?

The map
P95 f s W(F)eS?

is non-continuous, non-surjective and also non-injective.

Nevertheless, there are several good properties:

@ Let (; describing the height of the i-th plateau of T as in
figure:
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What is good and bad about the space S9?

The map
P95 f s W(F)eS?

is non-continuous, non-surjective and also non-injective.

Nevertheless, there are several good properties:

@ Let (; describing the height of the i-th plateau of T as in
figure:

@ T — hop(T) is monotone increasing in each parameter (;
(describing the height of the i-th plateau.
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What is good and bad about the space S9?

The map
P95 f s W(F)eS?

is non-continuous, non-surjective and also non-injective.

Nevertheless, there are several good properties:

@ Let (; describing the height of the i-th plateau of T as in
figure:

@ T — hop(T) is monotone increasing in each parameter (;
(describing the height of the i-th plateau.

@ Using this, it is easy to show isentropes are connected (and
even contractible)
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Addressing non-surjectivity of V: non-degerate sawtooth maps

@ Polynomial maps have no wandering intervals. Hence if the
endpoints of an interval containing two distinct critical points
have the same itineraries, then the interval is contained in the
basin of a periodic attractor.
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Addressing non-surjectivity of V: non-degerate sawtooth maps

@ Polynomial maps have no wandering intervals. Hence if the
endpoints of an interval containing two distinct critical points
have the same itineraries, then the interval is contained in the
basin of a periodic attractor.

o Analogously, S¢ C 89 consists of maps T so that if

e an interval J contains two plateaus and

e n>0isso that T"(J) is a point,
e then J is contained in the basin of a periodic attractor of . T.

(This corresponds to absence of a Levy-cycle obstruction.)
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Addressing non-surjectivity of V: non-degerate sawtooth maps

@ Polynomial maps have no wandering intervals. Hence if the
endpoints of an interval containing two distinct critical points
have the same itineraries, then the interval is contained in the
basin of a periodic attractor.

o Analogously, S¢ C 89 consists of maps T so that if

e an interval J contains two plateaus and
e n>0isso that T"(J) is a point,
e then J is contained in the basin of a periodic attractor of . T.

(This corresponds to absence of a Levy-cycle obstruction.)
@ This space S¢ will be crucial in our discussion.

o S9 is messier than the space S9, but still has the (rather
non-trivial property) property that:
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Addressing non-surjectivity of V: non-degerate sawtooth maps

@ Polynomial maps have no wandering intervals. Hence if the
endpoints of an interval containing two distinct critical points
have the same itineraries, then the interval is contained in the
basin of a periodic attractor.

o Analogously, S¢ C 89 consists of maps T so that if

e an interval J contains two plateaus and
e n>0isso that T"(J) is a point,
e then J is contained in the basin of a periodic attractor of . T.

(This corresponds to absence of a Levy-cycle obstruction.)
@ This space S¢ will be crucial in our discussion.

o S9 is messier than the space S9, but still has the (rather
non-trivial property) property that:

The space of maps in S with constant entropy is connected and
even contractible.
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Equivalence classes of sawtooth maps

Define the plateau-basin PB(T):
PB(T) = {y; T*(y) € interior(U?_; Z; 1)

for some k > 0}.

In order to ignore what happens within basin of periodic attractors,
define N 5
(T) ={T €S PB(T)=PB(T)}

and
[T] = closure((T)).

Sebastian van Strien (Univ of Warwick) Monotony of Topological Entropy Happy Birthday Jack



1

>

1
Figure: The case of a periodic component W of W(T) of period 1 + s,
so that W and the component W’ of PB(T) containing T (W) both
contain a plateau.
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V is almost injective, almost surjective and almost continuous

Proposition (Surjectivity)

For each T € 8¢ there exists f € P so that T € [W(f)].
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V is almost injective, almost surjective and almost continuous

Proposition (Surjectivity)
For each T € 8¢ there exists f € P so that T € [W(f)].

Proposition (Injectivity)
If i, fo € P4 and [V(A)] N [W(f)] # O then PH(f) N PH(f) # 0.
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V is almost injective, almost surjective and almost continuous

Proposition (Surjectivity)
For each T € 8¢ there exists f € P so that T € [W(f)].

Proposition (Injectivity)
If fi, f, € P9 and [W(A)] N[W(R)] # 0 then PH(A) N PH(f) # 0.

Proposition (Continuity)

Suppose f, € P9 converges to f € P?. Then any limit of V(f,) is
contained in [W(f)].
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V is almost injective, almost surjective and almost continuous

Proposition (Surjectivity)
For each T € 8¢ there exists f € P so that T € [W(f)].

Proposition (Injectivity)
If fi, f, € P9 and [W(A)] N[W(R)] # 0 then PH(A) N PH(f) # 0.

Proposition (Continuity)

Suppose f, € P9 converges to f € P?. Then any limit of V(f,) is
contained in [W(f)].
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The upshot

If K is closed and connected then V=Y(K) = {f;[V(f)] N K # 0}
is connected.
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The upshot

If K is closed and connected then V=Y(K) = {f;[V(f)] N K # 0}
is connected.
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The upshot

If K is closed and connected then V=Y(K) = {f;[V(f)] N K # 0}
is connected.

Since f and any map in [W(f)] have the same topological entropy
we get in particular:

Isotropy sets in P9, i.e. level sets of constant topological entropy,

are connected.
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Are isentropes contractible?

Probably yes, but this is work in progress.
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