Boundary Behavior of Thurston's Pullback Map and Pilgrim's conjecture

Nikita Selinger

Jacobs University Bremen

Banff, February 2011

Notations

- f: S² → S² is an orientation-preserving branched self-cover of S² of degree d_f ≥ 2
- Ω_f is the set of critical points of f
- P_f is the postcritical set: $P_f = \bigcup_{i \ge 1} f^i(\Omega_f)$.

Notations

- f: S² → S² is an orientation-preserving branched self-cover of S² of degree d_f ≥ 2
- Ω_f is the set of critical points of f
- P_f is the postcritical set: $P_f = \bigcup_{i \ge 1} f^i(\Omega_f)$.

Definition

A branched cover *f* is called *postcritially finite* or a *Thurston* map if P_f is finite. Denote $p_f = \#P_f$.

Definition

Two Thurston maps *f* and *g* are Thurston equivalent if and only if there exist two homeomorphisms $h_1, h_2 : \mathbb{S}^2 \to \mathbb{S}^2$ such that the diagram

commutes, $h_1|_{P_f} = h_2|_{P_f}$, and h_1 and h_2 are homotopic relative to P_f .

Theorem (Thurston's Theorem)

A postcritically finite branched cover $f: \mathbb{S}^2 \to \mathbb{S}^2$ with hyperbolic orbifold is either Thurston-equivalent to a rational map g (which is then necessarily unique up to conjugation by a Möbius transformation), or f has a Thurston obstruction.

Some further notations

- T_f is the Teichmüller space modeled on the marked surface (\mathbb{S}^2, P_f)
- *M_f* is the corresponding moduli space
- Recall that *T_f* can be defined as the quotient of the space of all diffeomorphisms from (S², *P_f*) to the Riemann sphere. We write *τ* = ⟨*h*⟩ if a point *τ* is represented by a homeomorphism *h*
- Q(ℙ, h(P_f)) is the cotangent space at a point τ = ⟨h⟩ in the Teichmüller space T_f which is canonically isomorphic to the space of all integrable meromorphic quadratic differentials on the marked Riemann surface corresponding to τ

Thurston's iteration

We define Thurston's pullback map using the following diagram.

Thurston's iteration

We define Thurston's pullback map using the following diagram.

Definition of Thurston's iteration

Fixed Points of σ_f

Definition of Thurston's iteration

Lemma

A Thurston map f is equivalent to a rational function if and only if σ_f has a fixed point.

Definition

The push-forward operator is locally defined by the formula

$$g_*q|_U=\sum_i g_i^*q,$$

where g_i are all inverse branches of g.

Definition

The push-forward operator is locally defined by the formula

$$g_*q|_U=\sum_i g_i^*q,$$

where g_i are all inverse branches of g.

Lemma

 σ_f is a holomorphic self-map of \mathcal{T}_f and the co-derivative of σ_f satisfies $(d\sigma_f(\tau))^* = (f_{\tau})_*$ where $(f_{\tau})_*$ is the push-forward operator on quadratic differentials.

Metric definitions

For a meromorphic integrable quadratic differential on $\ensuremath{\mathbb{P}}$ we define

its Teichmüller norm

$$\|oldsymbol{q}\|_{ extsf{T}}=2\int_{\mathbb{P}}|oldsymbol{q}|$$

and

its Weil-Petersson norm

$$\|\boldsymbol{q}\|_{\boldsymbol{WP}} = \left(\int_{\mathbb{P}} \rho^{-2} |\boldsymbol{q}|^2\right)^{1/2}$$

Estimates on the norm of $d\sigma_f^*$

Lemma

 $\|(\boldsymbol{d}\sigma_f)^*\|_T \leq 1.$

Estimates on the norm of $d\sigma_f^*$

Lemma

 $\|(\boldsymbol{d}\sigma_f)^*\|_T \leq 1.$

Proof.

$$\int_U |g_*q| = \int_U |\sum_i g_i^*q| \leq \sum_i \int_U |g_i^*q| = \sum_i \int_{U_i} |q|$$

Estimates on the norm of $d\sigma_f^*$

Lemma

 $\|(\boldsymbol{d}\sigma_f)^*\|_T\leq 1.$

Proof.

$$\int_U |g_*q| = \int_U |\sum_i g_i^*q| \leq \sum_i \int_U |g_i^*q| = \sum_i \int_{U_i} |q|$$

Corollary (almost)

There exists at most one fixed point of σ_f , hence the uniqueness in Thurston's theorem follows.

$$\|(\mathbf{d}\sigma_f)^*\|_{WP} \leq \sqrt{\mathbf{d}_f}.$$

$$\|(\mathbf{d}\sigma_f)^*\|_{WP} \leq \sqrt{\mathbf{d}_f}.$$

Proof.

$$\int_{U} \frac{|g_*q|^2}{\rho^2} = \int_{U} \frac{|\sum_i g_i^*q|^2}{\rho^2} \le d \sum_i \int_{U} \frac{|g_i^*q|^2}{\rho^2} = d \sum_i \int_{U_i} \frac{|q|^2}{g^*\rho^2} \le d \int_{g^{-1}(U)} \frac{|q|^2}{\rho_1^2},$$

$$\|(\mathbf{d}\sigma_f)^*\|_{WP} \leq \sqrt{\mathbf{d}_f}.$$

Proof.

$$\begin{split} \int_{U} \frac{|g_*q|^2}{\rho^2} &= \int_{U} \frac{|\sum_i g_i^*q|^2}{\rho^2} \leq d \sum_i \int_{U} \frac{|g_i^*q|^2}{\rho^2} = \\ &= d \sum_i \int_{U_i} \frac{|q|^2}{g^*\rho^2} \leq d \int_{g^{-1}(U)} \frac{|q|^2}{\rho_1^2}, \end{split}$$

Corollary

 σ_f is Lipschitz with respect to the WP-metric.

a closed curve γ is *essential* if every component of S² \ γ contains at least two points of P_f

- a closed curve γ is *essential* if every component of S² \ γ contains at least two points of P_f
- a *multicurve* is a finite collection of pairwise disjoint and non-homotopic essential simple closed curves

- a closed curve γ is *essential* if every component of S² \ γ contains at least two points of P_f
- a *multicurve* is a finite collection of pairwise disjoint and non-homotopic essential simple closed curves
- f⁻¹(Γ) is the multicurve of homotopy classes of all essential preimages of curves in Γ

- a closed curve γ is *essential* if every component of S² \ γ contains at least two points of P_f
- a *multicurve* is a finite collection of pairwise disjoint and non-homotopic essential simple closed curves
- f⁻¹(Γ) is the multicurve of homotopy classes of all essential preimages of curves in Γ
- A multicurve Γ is *invariant* if $f^{-1}(\Gamma) \subseteq \Gamma$

- a closed curve γ is *essential* if every component of S² \ γ contains at least two points of P_f
- a *multicurve* is a finite collection of pairwise disjoint and non-homotopic essential simple closed curves
- f⁻¹(Γ) is the multicurve of homotopy classes of all essential preimages of curves in Γ
- A multicurve Γ is *invariant* if $f^{-1}(\Gamma) \subseteq \Gamma$
- A multicurve Γ is completely invariant if $f^{-1}(\Gamma) = \Gamma$

• The augmented Teichmüller space \overline{T}_f is the set of all noded stable Riemann surfaces of the same type

- The augmented Teichmüller space $\overline{\mathcal{T}}_f$ is the set of all noded stable Riemann surfaces of the same type
- *T*_f is a stratified space with strata S_Γ corresponding to different multicurves Γ on (S², P_f). In particular, T_f = S_∅.

- The augmented Teichmüller space \overline{T}_f is the set of all noded stable Riemann surfaces of the same type
- *T*_f is a stratified space with strata S_Γ corresponding to different multicurves Γ on (S², P_f). In particular, T_f = S_∅.
- Each point in the stratum S_Γ is a collection of complex structures on the components of the corresponding topological noded surface with marked points.

- The augmented Teichmüller space $\overline{\mathcal{T}}_f$ is the set of all noded stable Riemann surfaces of the same type
- *T*_f is a stratified space with strata S_Γ corresponding to different multicurves Γ on (S², P_f). In particular, T_f = S_∅.
- Each point in the stratum S_Γ is a collection of complex structures on the components of the corresponding topological noded surface with marked points.
- S_Γ is the product of Teichmüller spaces of these components.

- The augmented Teichmüller space $\overline{\mathcal{T}}_f$ is the set of all noded stable Riemann surfaces of the same type
- *T*_f is a stratified space with strata S_Γ corresponding to different multicurves Γ on (S², P_f). In particular, T_f = S_θ.
- Each point in the stratum S_Γ is a collection of complex structures on the components of the corresponding topological noded surface with marked points.
- S_Γ is the product of Teichmüller spaces of these components.
- Within each stratum one can define its own natural Teichmüller and Weil-Petersson metrics.

- The augmented Teichmüller space $\overline{\mathcal{T}}_f$ is the set of all noded stable Riemann surfaces of the same type
- *T*_f is a stratified space with strata S_Γ corresponding to different multicurves Γ on (S², P_f). In particular, T_f = S_θ.
- Each point in the stratum S_Γ is a collection of complex structures on the components of the corresponding topological noded surface with marked points.
- S_Γ is the product of Teichmüller spaces of these components.
- Within each stratum one can define its own natural Teichmüller and Weil-Petersson metrics.
- The quotient $\overline{\mathcal{M}}_f$ of $\overline{\mathcal{T}}_f$ by the action of the mapping class group is compact.

Theorem (Masur)

The augmented Teichmüller space \overline{T}_f is homeomorphic to the WP-completion of the Teichmüller space.

Theorem (Masur)

The augmented Teichmüller space \overline{T}_f is homeomorphic to the WP-completion of the Teichmüller space.

Corollary

 σ_f extends continuously to $\overline{\mathcal{T}}_f$.

We represent points in \overline{T}_f not only by homeomorphisms but also by continuous maps from (\mathbb{S}^2 , P_f) to a noded Riemann surface that are allowed to send a whole simple closed curve to a node. Consider such an *h* representing some point in \overline{T}_f . We represent points in \overline{T}_f not only by homeomorphisms but also by continuous maps from (\mathbb{S}^2 , P_f) to a noded Riemann surface that are allowed to send a whole simple closed curve to a node. Consider such an *h* representing some point in \overline{T}_f .

We complete this diagram as before

Action of σ_f on $\overline{\mathcal{T}}_f$

Theorem

The map σ_f as defined above is continuous on $\overline{\mathcal{T}}_f$.

Remark.

Note that by definition σ_f maps any stratum S_{Γ} into the stratum $S_{f^{-1}(\Gamma)}$, therefore invariant boundary strata are in one-to-one correspondence with completely invariant multicurves.

Thurston matrix and obstructions

Definition

Every invariant multicurve Γ has its associated *Thurston matrix* $M_{\Gamma} = (m_{i,j})$ with

$$m_{i,j} = \sum_{\gamma_{i,j,k}} (\deg f|_{\gamma_{i,j,k}} \colon \gamma_{i,j,k} \to \gamma_j)^{-1}$$

where $\gamma_{i,j,k}$ ranges through all preimages of γ_j that are homotopic to γ_i .

Thurston matrix and obstructions

Definition

Every invariant multicurve Γ has its associated *Thurston matrix* $M_{\Gamma} = (m_{i,j})$ with

$$m_{i,j} = \sum_{\gamma_{i,j,k}} (\deg f|_{\gamma_{i,j,k}} \colon \gamma_{i,j,k} o \gamma_j)^{-1}$$

where $\gamma_{i,j,k}$ ranges through all preimages of γ_j that are homotopic to γ_i .

Definition

Since all entries of M_{Γ} are non-negative real, the leading eigenvalue λ_{Γ} of M_{Γ} is real and non-negative. The multicurve Γ is a *Thurston obstruction* if $\lambda_{\Gamma} \geq 1$.

If $\Gamma = \{\gamma_1, \gamma_2, \dots, \gamma_m\}$ is a completely invariant simple obstruction, then S_{Γ} is weakly attracting.

If $\Gamma = \{\gamma_1, \gamma_2, \dots, \gamma_m\}$ is a completely invariant simple obstruction, then S_{Γ} is weakly attracting.

Lemma

If $\Gamma = \{\gamma_1, \gamma_2, \dots, \gamma_m\}$ is a completely invariant multicurve and $\lambda_{\Gamma} < 1$, then S_{Γ} is weakly repelling.

Pick any starting point $\tau \in \mathcal{T}_f$ and consider $\tau_n = \sigma_f^n(\tau)$. Take an accumulation point in $\overline{\mathcal{M}}_f$ of the projection of τ_n to the moduli space on the stratum of smallest possible dimension. For simplicity we assume that τ_n accumulates on some $\tau_0 \in S_{\Gamma}$. Pick any starting point $\tau \in \mathcal{T}_f$ and consider $\tau_n = \sigma_f^n(\tau)$. Take an accumulation point in $\overline{\mathcal{M}}_f$ of the projection of τ_n to the moduli space on the stratum of smallest possible dimension. For simplicity we assume that τ_n accumulates on some $\tau_0 \in S_{\Gamma}$.

• If $\Gamma = \emptyset$ then τ_0 is a fixed point of σ_f .

Pick any starting point $\tau \in \mathcal{T}_f$ and consider $\tau_n = \sigma_f^n(\tau)$. Take an accumulation point in $\overline{\mathcal{M}}_f$ of the projection of τ_n to the moduli space on the stratum of smallest possible dimension. For simplicity we assume that τ_n accumulates on some $\tau_0 \in \mathcal{S}_{\Gamma}$.

- If $\Gamma = \emptyset$ then τ_0 is a fixed point of σ_f .
- If Γ ≠ Ø then Γ must be a Thurston obstruction. Otherwise,
 S_Γ is weakly repelling and therefore τ_n can not have an accumulation point there.

Pilgrim's theorems

Definition

The *canonical* obstruction Γ_f is the set of all homotopy classes of curves γ that satisfy $I(\gamma, \sigma_f^n(\tau)) \rightarrow 0$ for all $\tau \in \mathcal{T}_f$

Definition

The *canonical* obstruction Γ_f is the set of all homotopy classes of curves γ that satisfy $I(\gamma, \sigma_f^n(\tau)) \rightarrow 0$ for all $\tau \in \mathcal{T}_f$

Theorem (Canonical Obstruction Theorem)

If for a Thurston map with hyperbolic orbifold its canonical obstruction is empty then it is Thurston equivalent to a rational function. If the canonical obstruction is not empty then it is a Thurston obstruction.

Definition

The *canonical* obstruction Γ_f is the set of all homotopy classes of curves γ that satisfy $I(\gamma, \sigma_f^n(\tau)) \rightarrow 0$ for all $\tau \in \mathcal{T}_f$

Theorem (Canonical Obstruction Theorem)

If for a Thurston map with hyperbolic orbifold its canonical obstruction is empty then it is Thurston equivalent to a rational function. If the canonical obstruction is not empty then it is a Thurston obstruction.

Theorem

For any point $\tau \in T_f$ there exists a bound $L = L(\tau, f) > 0$ such that for any essential simple closed curve $\gamma \notin \Gamma_f$ the inequality $l(\gamma, \sigma_f^n(\tau)) \ge L$ holds for all n.

Theorem (Canonical Obstruction Theorem)

If for a Thurston map with hyperbolic orbifold its canonical obstruction is empty then it is Thurston equivalent to a rational function. If the canonical obstruction is not empty then it is a Thurston obstruction.

Theorem

For any point $\tau \in T_f$ there exists a bound $L = L(\tau, f) > 0$ such that for any essential simple closed curve $\gamma \notin \Gamma_f$ the inequality $l(\gamma, \sigma_f^n(\tau)) \ge L$ holds for all n.

Theorem (Canonical Obstruction Theorem)

If for a Thurston map with hyperbolic orbifold its canonical obstruction is empty then it is Thurston equivalent to a rational function. If the canonical obstruction is not empty then it is a Thurston obstruction. — the accumulation set of τ_n is a subset of S_{Γ_f}

Theorem

For any point $\tau \in T_f$ there exists a bound $L = L(\tau, f) > 0$ such that for any essential simple closed curve $\gamma \notin \Gamma_f$ the inequality $l(\gamma, \sigma_f^n(\tau)) \ge L$ holds for all n.

Theorem (Canonical Obstruction Theorem)

If for a Thurston map with hyperbolic orbifold its canonical obstruction is empty then it is Thurston equivalent to a rational function. If the canonical obstruction is not empty then it is a Thurston obstruction. — the accumulation set of τ_n is a subset of S_{Γ_f}

Theorem

For any point $\tau \in T_f$ there exists a bound $L = L(\tau, f) > 0$ such that for any essential simple closed curve $\gamma \notin \Gamma_f$ the inequality $l(\gamma, \sigma_f^n(\tau)) \ge L$ holds for all n. — projection of the accumulation set of τ_n to the compactified moduli space is precompact in $S_{[\Gamma_f]}$

Recall that the action on any invariant stratum is given by pullbacks of complex structures by a collection of maps σ_{f^C} for all components *C* of any surface in the stratum. Combinatorics of the process is very simple: we have a map from a finite set into itself, every component is pre-periodic. The whole action, therefore, can be characterized by studying cycles of components. For each cycle *Y* there are three cases, the composition f^{Y} of all coverings in the cycle is either of the following:

- a homeomorphism,
- a Thurston map with a parabolic orbifold,
- a Thurston map with a hyperbolic orbifold.

Theorem

If a cycle Y of components a topological surface corresponding to the stratum S_{Γ_f} has hyperbolic orbifold then f^{Y} is not obstructed and, hence, equivalent to a rational map.

Theorem

If a cycle Y of components a topological surface corresponding to the stratum S_{Γ_f} has hyperbolic orbifold then f^{Y} is not obstructed and, hence, equivalent to a rational map.

Idea of the proof

We may assume that our component is mapped to itself. Take an accumulation point $\tau_0 \in S_{\Gamma_f}$ of $\sigma_f^n(\tau)$. Let τ' be the coordinate corresponding to *Y*. Let Γ_Y be the canonical obstruction for f^Y .

Theorem

If a cycle Y of components a topological surface corresponding to the stratum S_{Γ_f} has hyperbolic orbifold then f^{Y} is not obstructed and, hence, equivalent to a rational map.

Idea of the proof

We may assume that our component is mapped to itself. Take an accumulation point $\tau_0 \in S_{\Gamma_f}$ of $\sigma_f^n(\tau)$. Let τ' be the coordinate corresponding to *Y*. Let Γ_Y be the canonical obstruction for f^Y .

Then the accumulation set of $\sigma_{f^{Y}}^{n}(\tau')$ must be a subset of the closure of $S_{\Gamma_{f}\cup\Gamma_{Y}}$. On the other hand, it is clearly a subset of the accumulation set of $\sigma_{f}^{n}(\tau) \subset S_{\Gamma_{f}}$. This means Γ_{Y} must be empty.