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Overview

Overview

Parameter spaces and moduli spaces :
The parameter space RatD of all degree D rational maps
f : P1 → P1 is a smooth affine algebraic variety of dimension
2D + 1.
The group of projective transformations Aut acts on RatD by
conjugation, and for D > 1 the quotient moduli space ratD is an
orbifold of dimension 2D − 2.

These spaces have various dynamically significant subspaces,
determined by such conditions as the existence of :

specified critical orbit relations,
points of specified period and multiplier,
parabolic points of specified degeneracy and index,
Herman rings of specified period and rotation number.

Concerning these loci, we might ask :
Local Questions : Are they smooth ? Of what dimension ?
Are their intersections transverse ?
Global Questions : Are they nonempty ? Are they connected ?
How do they behave near infinity ?
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Overview

Case Study

Milnor’s inspiring paper

Geometry and dynamics of quadratic rational maps

makes a study of rat2 using elementary algebraic methods.

Consider the symmetric functions

X = αβγ, Y = αβ + βγ + αγ, Z = α + β + γ

of the fixed point multipliers α, β, γ.
The Holomorphic Index Formula yields the relation Z = X + 2.
The map

rat2 3 [f ] 7→ (X ,Y ) ∈ C2

is an isomorphism.
For n ≥ 1 and ρ ∈ C, the locus Pern(ρ) ⊂ rat corresponding to
maps which possess a (formal) n-cycle of multiplier ρ is an
algebraic curve : in particular, Per1(ρ) is a line.
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Overview

Per1(e2πi/10)
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Overview

Manifesto

We :

Develop language for posing, and methodology for answering,
such local questions ;
Propose that aspects of this formalism may also be useful in the
study of certain global questions ;
Contend that the abstraction and generality reveal unexpected
unity.
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Overview

Unity

‘A un moment où la mode mathématique est au mépris de la
généralité (assimilée à "des généralités" gratuites, voire à des
bombinage), je puis constater que la force principale manifeste à
travers toute mon oeuvre de mathématicien a bien été la quête du
"général". Il est vrai que je préfère mettre l’accent sur "l‘unité", plutôt
que sur "la généralité". Mais ce sont là pour moi deux aspects d’une
seule et même quête. L’unité en représente l’aspect profond, et la
généralité, l’aspect superficiel.’

Grothendieck, Récoltes et Semailles
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Overview

Origins

Kodaira-Spencer’s fundamental results in complex analytic geometry,
concerning the relation between deformation theory and cohomology.

The space of infinitesimal deformations of a compact complex
manifold is canonically isomorphic to the first cohomology of the
sheaf of germs of infinitesimal automorphisms.
Idea : Variation of hW ,U ◦ hV ,W ◦ hU,V = I yields a 1-cocycle.

Thurston’s fundamental results in complex analytic dynamics,
concerning the relation between branched covers on topological
spheres and rational maps on P1.

A postcritically finite branched cover F : Σ→ Σ is combinatorially
equivalent to a rational map f : P1 → P1 if and only if there is no
obstruction.
Idea : Seek a fixed point in the deformation space of (Σ,P(f )).
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Overview

Ideology

For dynamically significant loci as above :
Local properties - smoothness and transversality -
are manifestations of Thurston’s Rigidity Theorem.
Global properties - nontriviality, irreducibility, homotopy type, ends -
are manifestations of Thurston’s Existence Theorem.

Transversality is most naturally phrased, studied, and proved in
deformation spaces obtained by a functorial construction from first
principles in Teichmüller theory.
These deformation spaces are finite dimensional, and there are
explicit verifiable conditions for the nonsingularity of the canonical
maps to moduli space.
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Overview

Scope

Transcendental Dynamics. The deformation space construction
is available, and the transversality principles are valid, for
finite type maps - exp, tan, ℘, λ, j , parabolic renormalizations,
skinning maps . . . - some of which belong to evident finite
dimensional parameter spaces, and others of which do not.
Arithmetic Dynamics ? The transversality principles are largely
algebraic, and the underlying cohomological formalism is available
over any algebraically closed field of characteristic zero. The core
infinitesimal rigidity principle is a striking example of a purely
algebraic statement only known via transcendental techniques
applied over C.
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Overview

Finite Type Maps

An analytic map of complex 1-manifolds

f : W → X

is of finite type if :
X is compact,
f is open,
f has no isolated removable singularities,
S(f ) is finite.

Here S(f ) is the set of singular values : the points x ∈ X such that no
open neighborhood of x is evenly covered. For a finite type map, this
set consists of the critical values and the asymptotic values.

Adam Epstein ( University of Warwick ) Transversality Principles in Holomorphic Dynamics Banff, February 2011 10 / 27



Deformation Spaces

Teichmüller Spaces

Let X be a compact oriented real 2-manifold, and let E ⊂ X be finite.
The Teichmüller space Teich(X ,E) consists of all equivalence
classes of complex structures on X , where structures are
identified if they are related via pullback by a homeomorphism
which is isotopic to the identity relative to E .
Teich(X ,E) ∼=

∏
Z∈π0(X)

Teich(Z ,E ∩ Z )

Teich(X ,E) is a finite dimensional complex manifold. If X is
connected of genus g then

dim Teich(X ,E) =


max(#E − 3,0) if g = 0

max(#E ,1) if g = 1
3g − 3 + #E if g ≥ 2
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Deformation Spaces

Serre Duality

If X is a complex 1-manifold then Teich(X ,E) has a basepoint •.
The cotangent and tangent spaces at • have canonical descriptions in
terms of sheaf cohomology :

T ∗• Teich(X ,E)× T•Teich(X ,E)

∼=×∼=
��

// C

H0(X ,Ω⊗ Ω⊗OE )× H1(X ,Θ⊗O−E ) // H1(X ,Ω)

∼=

OO

Ω is the sheaf of germs of holomorphic differential forms
Θ is the sheaf of germs of holomorphic vector fields

The isomorphism H1(X ,Ω)→ C is given in terms of a residue sum.

Such a cohomological discussion is available over any
algebraically closed field of characteristic zero, for example Q.
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Deformation Spaces

Dolbeault Isomorphism

H1(X ,Θ⊗O−E ) ∼= Bel(X )/belE (X )

where

Bel(X ) = {(−1,1)-forms on X}
belE (X ) = ∂̄{vector fields on X which vanish on E}

In terms of this description, the pairing

H0(X ,Ω⊗ Ω⊗OE )× H1(X ,Θ⊗O−E )→ C

takes the form
(q, [µ]E ) 7→ 〈q, µ〉 =

1
2πi

∫
X

q · µ
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Deformation Spaces

Quadratic Differentials

We denote by Q(X ) the C-linear space of all meromorphic quadratic
differentials on X with at worst simple poles :

Q(X ) =
⋃

finiteE⊂X

Q(X ,E)

where
Q(X ,E) = H0(X ,Ω⊗ Ω⊗OE ).

Q(X ) consists of all meromorphic quadratic differentials q on X
such that

‖q‖ =

∫
X
|q|

is finite.
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Deformation Spaces

Forgetful and Pullback Maps

Let A and B be finite subsets of a compact complex 1-manifold X .
For A ⊆ B there is a forgetful map

p : Teich(X ,B)→ Teich(X ,A)

with coderivative the inclusion

Q(X ,A) ↪→ Q(X ,B)

For finite type f on X , if f (A) ∪ S(f ) ⊆ B there is a pullback map

σf : Teich(X ,B)→ Teich(X ,A)

with coderivative the pushforward operator

f∗ : Q(X ,A)→ Q(X ,B)

given by

f∗q =
∑

branches h of f−1

h∗q
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Deformation Spaces

Deformation Spaces

If A ∪ f (A) ∪ S(f ) ⊆ B then p and σf share domain and codomain.

DefBA(f ) 99K Teich(X ,B)⇒Teich(X ,A)

DefBA(f ) =
{
τ ∈ Teich(X ,B) : σf (τ) = p(τ)

}
.

Theorem
Assume that

(?)


f is a finite type analytic map on a compact Riemann surface X ,
f is not an automorphism, Lattès example or toral endomorphism,
#A ≥ 3 if X has genus 0, and #A ≥ 1 if X has genus 1,
A ∪ f (A) ∪ S(f ) ⊆ B.

Then DefBA(f ) is a #(B \ A)-dimensional C-analytic manifold.
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Deformation Spaces

Contraction Principle

By the Implicit Function Theorem, the above follows from

Proposition (Thurston, Douady-Hubbard, McMullen, E)
Let X and Y be compact Riemann surfaces, and f : W → Y a finite
type analytic map where W ⊆ X. For q ∈ Q(X ) :

‖f∗q‖ ≤ ‖q‖.
Equality holds if and only if f ∗f∗q = (deg f ) · q, whence deg f <∞.

∇f = I − f∗

Corollary

Under assumptions (?) :
∇f : Q(X )→ Q(X ) is injective,
T ∗•DefBA(f ) is canonically isomorphic to Q(X ,B)/∇fQ(X ,A).
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Deformation Spaces

Global Properties

If dimQ(X ,A) = 0 then DefBA(f ) ∼= Teich(X ,B).
If codimQ(X ,A) = 0 then DefBA(f ) is a point.

In these extremal cases DefBA(f ) is contractible.

Is DefBA(f ) always contractible ?
Is DefBA(f ) always connected ?
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Transversality Principles

Transversality Principles

Theorem

Under assumptions (?) the loci in DefBA(f ) corresponding to
specified singular orbit relations,
points of specified period and nonrepelling multiplier,
parabolic points of specified degeneracy and nonrepelling index,
Herman rings of specified period and Brjuno rotation number,

are smooth and pairwise transverse.
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Transversality Principles

Variations

[∇f q] where q has simple poles, some of which lie outside A.
These describe the breaking of orbit relations.
[∇f q] where q has appropriate multiple poles along cycles in A.
These describe the variation of multipliers, and further quantities
associated to parabolic cycles.
[∇f q] where q has rotationally invariant discontinuities along
Herman ring cycles. These describe the annihilation of such ring
cycles.
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Transversality Principles

Invariant Divergences

0→ Q→M→ D → 0

Q(X )f

��

M(X )f

��

D(X )f

��
0 // Q(X ) //

∇f
��

M(X ) //

∇f
��

D(X ) //

∇f
��

0

0 // Q(X ) //

��

M(X ) //

��

D(X ) //

��

0

Q(X )f M(X )f D(X )f

0→ Q(X )f →M(X )f → D(X )f Hf−→ Q(X )f →M(X )f → D(X )f → 0
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Transversality Principles

Dictionary

If x is superattracting then Df
x is 0-dimensional.

If x is attracting, repelling or irrationally indifferent then Df
x is the

1-dimensional space spanned by
[

dζ2

ζ2

]
x

where ζ is any local
coordinate vanishing at x .
If x is parabolic with multiplier a primitive n-th root of unity then Df

x
is the direct sum of the ν-dimensional subspace Df

x spanned by[
dζ2

ζ2

]
x
, ... ,

[
dζ2

ζ`n+2

]
x
, ... ,

[
dζ2

ζN−n+2

]
x

and the 1-dimensional subspace spanned by[
dζ2

(ζN+1 − βζ2N+1)2

]
x

=

[
dζ2

ζ2N+2 + 2β
dζ2

ζN+2 + 3β2 dζ2

ζ2 + O
(

dζ2

ζ

)]
x

where ζ is any local coordinate in which f is given by

ζ 7→ ρζ( 1 + ζN +
(N+1

2 − β
)
ζ2N + O(ζ2N+1) ).
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Transversality Principles

Injectivity of ∇f

mass creation at source mass destruction at sink

mass cancellation from phase incoherence
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Transversality Principles

Fatou-Shishikura Inequality

γ(f ) is the number of cycles of f , counting 〈x〉 with multiplicity

γ〈x〉(f ) =


0 if 〈x〉 is repelling or superattracting
1 if 〈x〉 is attracting or irrationally indifferent
ν if 〈x〉 is parabolic-repelling

ν + 1
if 〈x〉 is parabolic-attracting

or parabolic-indifferent

δ(f ) is the number of infinite tails of postsingular orbits.

The inequality γ(f ) ≤ δ(f ) follows from a dimension comparison :

γ(f ) D̆(X )f ↪→ D(X )f ∞

injective Hf ↘ ↙Hf surjective ?
Q(X ,P(f ))/∇fQ(X ,P(f ))

δ(f )
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Transversality Principles

Herman Rings

Let ~(f ) be the number of Herman ring cycles.

The injectivity of ∇f persists in a larger space in which each
Herman ring cycle contributes one additional dimension,
corresponding to rotationally invariant discontinuities, and the
above argument yields the improved inequality γ(f ) + ~(f ) ≤ δ(f ).
The sharp inequality γ(f ) + 2~(f ) ≤ δ(f ) is obtained after a
supplementary argument involving a description of the
infinitesimal quasiconformal deformation space, part of a larger
discussion including results such as :

The canonical maps from quasiconformal deformation spaces to
deformation spaces are immersions.
Finite type maps have no wandering domains.
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From Deformation Space to Moduli Space

From Deformation Space to Moduli Space

An element of DefBA(f ) determines a conformal conjugacy class of finite
type maps similar to f . In particular, for rational f : P1 → P1, if
ϕ : (P1,B)→

(
P1, ϕ(B)

)
represents τ ∈ DefBA(f ), then there are

a unique ψ : (P1,A)→
(
P1, ψ(A)

)
representing p(τ) = σf (τ),

agreeing with ϕ on A and
a unique rational map Fϕ

such that the following diagram commutes :

(P1,A)
ψ //

f
��

(
P1, ψ(A)

)
Fϕ

��
(P1,B)

ϕ //
(
P1, ϕ(B)

)
Moreover, if ϕ and ϕ̂ represent the same point in DefBA(f ), then Fϕ and
Fϕ̂ are conjugate by the unique projective transformation M such that
ϕ̂|B = M ◦ ϕ|B.

Adam Epstein ( University of Warwick ) Transversality Principles in Holomorphic Dynamics Banff, February 2011 26 / 27



From Deformation Space to Moduli Space

From Deformation Space to Moduli Space

There is an induced map DefBA(f )→ ratD whose derivative at • is the
connecting homomorphism for the diagram :

T•DefBA(f )

��
0 // H0(P1,Θ) //

I−f∗
��

H0(P1,Θ/Θ−B) //

I−f∗
��

H1(P1,Θ−B) //

I−f∗

��

0

0 // H0(P1,ΘΓ(f )) //

��

H0(P1,ΘΓ(f )/Θ−A) // H1(P1,Θ−A) // 0

T[f ]ratD

Here Γ(f ) is the (multi)set of critical points.
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