Renormalization and the Teichmüller theory

Mitsuhiro Shishikura

(Kyoto University)

Geometric and Algebraic Structures in Mathematics
A Conference to celebrate Dennis Sullivan's 70th birthday
Simons Center for Geometry and Physics, Stony Brook University June 4, 2011

Cuasi Conformal Momeonorphisen and Dysamice Solution of the Fatou-Jelia Froblem on Unetoring Dosaise

Denals suctrvas

Cosstructed by J. Curry, L. Carnett,
asd D; Sallivan [1982] (to be discussed
is III).

Koebe Distortion Theorem

Official: Let $f(z)$ be a univalent (holomorphic injective) function on

$$
\mathbb{D}=\{z \in \mathbb{C}:|z|<1\} \text {. If } f(0)=0 \text { and } f^{\prime}(0)=1 \text {, then for }|z|<1 \text {, }
$$

$$
\begin{aligned}
& \frac{1-|z|}{(1+|z|)^{3}} \leq\left|f^{\prime}(z)\right| \leq \frac{1+|z|}{(1-|z|)^{3}} \\
& \frac{|z|}{(1+|z|)^{2}} \leq|f(z)| \leq \frac{|z|}{(1-|z|)^{2}} .
\end{aligned}
$$

Sullivan:

Sullivan ICM 1986: proposed the use of Teichmüller space for the convergence of renormalization.

Want contraction on $W^{s}(F)$

$$
d\left(\mathcal{R}^{n} f, \mathcal{R}^{n} g\right) \rightarrow 0
$$

Schwarz-Pick Theorem. If $f: \mathbb{D} \rightarrow \mathbb{D}$ holomorphic, then

$$
d_{\mathbb{D}}(f(x), f(y)) \leq d_{\mathbb{D}}(x, y) . \quad \text { non-expanding }
$$

Royden-Gardiner Theorem. If $f: \operatorname{Teich}(S) \rightarrow \operatorname{Teich}\left(S^{\prime \prime}\right)$ is a holomorphic mapping between Teichmüller spaces, then

$$
d_{\text {Teich }\left(S^{\prime}\right)}(f(x), f(y)) \leq d_{\text {Reich }(S)}(x, y)
$$

non-expanding Kobayashi metric
Real bounds \longrightarrow Complex bounds \longrightarrow Contraction in Teich (\mathcal{L})

$$
\bmod \left(U_{n}^{\prime} \backslash U_{n}\right) \geq m>0 \quad \mathcal{L}=\text { Riemann surface lamination }
$$

This talk:

Parabolic/near-parabolic renormalization

 study bifurcation of parabolic fixed point linearization, Siegel disks, Cremer points(satellite renormalization for MLC???)

a priori bounds and renormalization horseshoe

 difference from polynomial-like renormalization: unbounded geometry, no complex bounds as poly-like mapsUse Teichmüller theory to get contraction
Dictionary: parabolic per. pt \leftrightarrow cusp \quad Lavaurs map \leftrightarrow geometric limit large coeff. in continued fraction \leftrightarrow short closed geodesic

Another proof of Lyubich, Graczyk-Swiatek rigidity for infinitely renormalizable real quadratic polynomial using universal Teichmüller space

Bifurcation of parabolic fixed point

$$
\left(f\left(z_{0}\right)=z_{0}, f^{\prime}\left(z_{0}\right)=1\right)
$$

$$
\begin{aligned}
& f_{\frac{1}{4}}(z)=z^{2}+\frac{1}{4} \\
& \xrightarrow{\text { perturb }} f_{c}(z)=z^{2}+c
\end{aligned}
$$

OR

$$
\begin{aligned}
& f_{0}(z)=z+z^{2} \\
& \quad \xrightarrow{\text { perturb }} f(z)=e^{2 \pi i \alpha} z+z^{2}
\end{aligned}
$$

Discontinuous change of Julia sets
Creates complicated/rich Julia sets

$$
\text { Thm. } \exists c \in \partial M H D\left(J\left(f_{c}\right)\right)=2 . \quad H D(\partial M)=2 .
$$

Parabolic Implosion (Douady-Hubbard-Lavaurs)

E_{f} depends continuously on f (after a suitable normalization)

$\chi_{f}(z)=z-\frac{1}{\alpha}$
$f^{\prime}(0)=e^{2 \pi i \alpha}$
α small $|\arg \alpha|<\frac{\pi}{4}$

Return map can be understood via the horn map $E_{f_{0}}$ and rotation number α
first return map
$\tilde{\mathcal{R}} f=\chi_{f} \circ E_{f}$
\sum_{5}

Parabolic Renormalization

Near-parabolic Renormalization

For $N \in \mathbb{N}$, let $I r r a t_{N}$ be the set of irrational number of high type:

$$
\operatorname{Irrat}_{N} \ni \alpha= \pm \frac{1}{a_{1} \pm \frac{1}{a_{2} \pm \frac{1}{\ddots}}} \quad \text { where } a_{i} \in \mathbb{N} \text { and } a_{i} \geq N
$$

ค

For a neighborhood V of 0 , define $P(z)=z(1+z)^{2}$ and

$$
\mathcal{F}_{1}=\left\{f=P \circ \varphi^{-1} \mid \varphi: V \rightarrow \mathbb{C} \text { is univalent (with qc extension) }\right\}
$$

Theorem (Inou \& S.): For some V and N, the near-parabolic renormalization \mathcal{R} from

$$
\left\{e^{2 \pi i \alpha} f: \alpha \in \operatorname{Irrat}_{N}, f \in \mathcal{F}_{1}\right\}=\operatorname{Irrat}_{N} \times \mathcal{F}_{1}
$$

to itself is well defined. Moreover $\mathcal{R}\left(e^{2 \pi i \alpha} z+z^{2}\right)$ belong to the above set for $\alpha \in \operatorname{Irrat}_{N}$.
It is hyperbolic; expanding along α direction and uniformly contracting along \mathcal{F}_{1} direction.

Applications

Theorem (Buff-Chéritat): $\exists \alpha \in \mathbb{R} \backslash \mathbb{Q} \operatorname{Area}\left(J\left(e^{2 \pi i \alpha} z+z^{2}\right)\right)>0$.

Theorem (S.): If $f=e^{2 \pi i \alpha} h, h \in \mathcal{F}_{1}, \alpha \in \operatorname{Irrat}_{N}$ and f is linearizable at 0 (Brjuno condition), then the boundary of its Siegel disk is a Jordan curve.

Theorem (S.): If $f=e^{2 \pi i \alpha} h, h \in \mathcal{F}_{1}, \alpha \in \operatorname{Irrat}_{N}$ and f is not linearizable at 0 , then there exists an invariant set Λ_{f} (maximal hedgehog) such that f is homeomorphic on $\Lambda_{f} ; \Lambda_{f}$ contains 0 and a critical point; $\Lambda_{f} \backslash\{0\}$ consists disjoint arcs ending at 0 .
Moreover for two such maps with the same α, there exists a quasiconformal map conjugating on Λ_{f}, which is asymptotically conformal at the critical orbit.

A Priori Bounds

Claim: The parabolic renormalization \mathcal{R}_{0} is well-defined in \mathcal{F}_{1} and the image is contained in \mathcal{F}_{1}.

By the continuity of the horn map, the near-parabolic renormalization \mathcal{R}_{0} is well-defined as a self map of $\left\{e^{2 \pi i \alpha} h: \alpha \in \operatorname{Irrat}_{N}, h \in \mathcal{F}_{1}\right\}$ for large N.

Idea of proof:
Why $P \circ \varphi^{-1}$?
Since the construction of $\mathcal{R}_{0} f$ involves the uniformization of the cylinder (a transcendental operation), we can't compute the derivatives of $\mathcal{R}_{0} f$, etc. Try to characterize it by a (partial) covering property.

In order to justify the following arguments, one has to check many inequalities using Koebe distortion theorems and variants.

Basic checkerboard pattern for $f_{0}(z)=z+z^{2}$

$$
F_{0}(w)=w+1+o(1)
$$

$$
z=\tau_{0}(w)=-\frac{1}{w}
$$

$$
\sqrt{e^{2 \pi i z}}
$$

Truncated pattern induces a cubic-like covering

$P \leftrightarrow$ pattern (universal) $\varphi \leftrightarrow$ shape of domain (depends on f)

Proof of Contraction

How to prove that $\mathcal{R}_{0}: \mathcal{F}_{1} \rightarrow \mathcal{F}_{1}$ is a contraction. (The proof for \mathcal{R}_{α} is similar.)
Don't Recall the definition of \mathcal{R}_{0}
$f(z)=z+a_{2} z^{2}+\ldots\left(a_{2} \neq 0\right)$

black box operation

$$
\longrightarrow \mathcal{R}_{0} f(z)=z+\ldots
$$

But we can't even compute $\left(\mathcal{R}_{0} f\right)^{\prime}(0),\left(\mathcal{R}_{0} f\right)^{\prime \prime}(0)$ etc.
Remember

$$
\left.\begin{array}{c}
\mathcal{F}_{1}=\left\{f=P \circ \varphi^{-1} \mid \varphi: V \rightarrow \mathbb{C}\right. \text { is univalent (with qc extension) } \\
\varphi(0)=0, \varphi^{\prime}(0)=1
\end{array}\right\}
$$

ψ extends conformally to a larger region V^{\prime}
\mathcal{R}_{0} is holomorphic: a holomorphic family φ_{λ} gives a holomorphic family ψ_{λ} on V^{\prime}

Proof of Contraction: part 2

$$
W:=\mathbb{C} \backslash V \ni W^{\prime}:=\mathbb{C} \backslash V^{\prime} \quad\left(\text { both isomorphic to } \mathbb{D}^{*}=\mathbb{D} \backslash\{0\}\right)
$$

Teichmüller space of W :
Teich $(W):=\left\{\mu(z) \frac{d \bar{z}}{d z}\right.$ on $\left.W\right\} / \sim$ ("same boundary value" for qc map)
Teichmüller infinitesimal (Finsler) metric

$$
\|\mu\|_{\text {Teich }}=\sup \left\{\iint_{W} q(z) \mu(z) d x d y \left\lvert\, \begin{array}{r}
q(z) d z^{2} \text { integrable holomorphic quadratic } \\
\text { differential with } \iint_{W}|q(z)| d x d y=1
\end{array}\right.\right\}
$$

Identify \mathcal{F}_{1} with Teich (W)

$$
\mathcal{F}_{1} \ni f=P \circ \varphi^{-1} \longrightarrow \varphi \longrightarrow \mathrm{qc} \text { extension } \tilde{\varphi} \longrightarrow\left[\left.\mu_{\tilde{\varphi}}\right|_{W}\right] \in \operatorname{Teich}(W)
$$

Proof of Contraction: part 3

$\Xi: \operatorname{Teich}\left(W^{\prime}\right) \rightarrow \operatorname{Teich}(W)$

$$
\text { induced by } \mu \mapsto \mu^{\prime}= \begin{cases}\mu & \text { on } W^{\prime} \\ 0 & \text { on } W \backslash W^{\prime}\end{cases}
$$

Claim: $\left\|D_{\mu} \Xi\right\|_{\text {Teich }} \leq \lambda:=\exp \left(-2 \pi \bmod \left(W \backslash W^{\prime}\right)\right)$.
follows from modulus-area-inequality and isoperimetric inequality for holomorphic quadratic differential on a punctured disk.

$$
\Longrightarrow d\left(\mathcal{R}_{0} f, \mathcal{R}_{0} g\right) \leq \lambda d(f, g)
$$

Another Application of Teichmüller contraction: Rigidity

Theorem (Lyubich, Gracyk-Swiatek): Suppose that $f=f_{c}$ and $\hat{f}=f_{\hat{c}}\left(c, \hat{c} \in\left[-2, \frac{1}{4}\right]\right)$ are combinatorially equivalent (or topologically conjugate) and that they are infinitely renormalizable. Then f and \hat{f} are quasi-symmetrically conjugate on their postcritical sets.

Consequences:

qs-conj. on their postcrit. set \Longrightarrow quasiconf-conj. on $\mathbb{C} \Longrightarrow$ conformally-conj on $\mathbb{C} \Longrightarrow c=\hat{c}$

Hyperbolic parameters are dense among real quadratic polynomials.

1st reduction to one step renormalization

By the Complex Bounds (Levin-van Strien, Lyubich-Yampolsky, GraczkSwiatek, Sands) the rigidity theorem reduces to:
Theorem: For any $m>0$, there exists $K \geq 1$ such that if $f: U \rightarrow U^{\prime}$ and $\hat{f}: \hat{U} \rightarrow \hat{U}^{\prime}$ are real (symmetric) quadratic-like mapping with $\bmod \left(U^{\prime} \backslash U\right), \bmod \left(\hat{U}^{\prime} \backslash \hat{U}\right) \geq m$ and if they are (once) renormalizable with the same type and period >2, then there exists a K quasiconformal partial conjugacy (defined later).

Here K depends only on m and is independent of the combinatorics (e.g. period).
partial conjugacy: $\varphi: U^{\prime} \rightarrow \hat{U}^{\prime}$, such that $\varphi \circ f=\hat{f} \circ \varphi$ on $U \backslash W$, where W is a puzzle piece containg 0 such that $f^{p}: W \rightarrow f^{p}(W)$ is a renormalization.

2nd reduction to a critical piece

Theorem: $\forall m, \exists K$ for f and \hat{f} as before, $\exists W, \hat{W}$ critical puzzle pieces for f and \hat{f} such that
(a) $f^{p}: W \rightarrow f^{p}(W)$ is a renormalization;
(b) $\exists \varphi: W \rightarrow \hat{W} K$-qc preserving the canonical marking on the boundary.

Given φ on W, first construct a map on each piece of a fixed level to its counter part preserving the marking. Then refine these maps by pulling-back these maps by the dynamics. There are three kind of points: eventually land on W, eventually land on $U^{\prime} \backslash U$ and the rest. The 1st kind will have the same bound K as the above theorem; the 2 nd kind also have a bound by $K_{0}(m)$; the 3rd kind has measure 0 .

In general, the boundary of W can be very complicated!

Interpretation in the universal Teichmüller space
Take any qc-extension $\varphi_{0}: W \rightarrow \hat{W}$ of the canonical marking. ($K\left(\varphi_{0}\right)$ large!)

$$
\begin{aligned}
& \operatorname{Teich}(W)=\{\varphi: W \rightarrow \varphi(W) \text { quasiconformal }\} / \sim \\
&=\left\{\mu_{\varphi}=\frac{\bar{\partial} \varphi}{\partial \varphi} \text { Beltrami differential }\right\} / \sim \\
& \varphi \sim \psi \Longleftrightarrow \exists h: \varphi(W) \rightarrow \psi(W) \text { conformal such that } h=\psi \circ \varphi^{-1} \text { on } \partial \varphi(W)
\end{aligned}
$$

Want: $d\left(\left[\varphi_{0}\right],[i d]\right)=d\left(\left[\mu_{\varphi_{0}}\right],[0]\right) \leq C($ depending only on $m)$.

2nd refinement: pull-back construction within W

$$
\begin{aligned}
& \text { escape to } U^{\prime} \backslash U \quad \text { rest (measure } 0 \text {) } \\
& K_{0}(m)
\end{aligned}
$$

For real maps, $N=2$ and the base annulus $A_{N}^{f}(0)$ has a $K_{1}(m)$-qc map respecting the boundary marking. This induces $K_{1}(m)$-qc maps on good annuli.
By combinatorial a priori bound,

$$
\sum \quad \bmod (A) \geq m^{\prime}=m^{\prime}(m) \quad(i=0,1, \ldots)
$$

A : good annulus surrounding V_{i}

$$
\left[\varphi_{0}\right]=\left[\varphi_{1}\right] \text { in } \operatorname{Teich}(W)
$$

$\stackrel{\text { En }}{\text { En }} V_{0} \xrightarrow{2 \text { to } 1} W$

- $V_{i} \cong W(i>0)$
(good annuli

Define $\Theta: \operatorname{Teich}(W) \rightarrow$ Teich (W) by

$$
\Theta([\mu])= \begin{cases}\left(f^{n_{i}}\right)^{*}(\mu) & \text { on } V_{i} \quad(i>0) \quad\left(f^{n_{i}}: V_{i} \xrightarrow{\simeq} W\right) \\ \mu_{\varphi_{1}} & \text { on the rest (including } \left.V_{0}\right)\end{cases}
$$

Then Θ is well-defined and we have:
(a) $\Theta\left(\left[\mu_{\varphi_{0}}\right]\right)=\left[\mu_{\varphi_{1}}\right]=\left[\mu_{\varphi_{0}}\right]$;
(b) $d(\Theta([0]),[0]) \leq C($ depending only on $m)$;
(c) $d(\Theta([\varphi]), \Theta([\psi])) \leq \lambda d([\varphi],[\psi])$, where $\lambda<1$ depends only on m.
$\|\nu\|_{\text {Teich }}=\sup \left\{\operatorname{Re} \iint q \nu: \iint|q|=1\right\}$
Modulus-area inequality holds for the area form defined by $|q|$.
Hence $d\left(\Theta\left(\left[\varphi_{0}\right]\right),[0]\right) \leq \frac{C}{1-\lambda}$ (depending only on m).

Happy Birthday, Dennis!

