Algebraic patterns for dynamical systems

C. McMullen

Quasiconformal homeomorphisms and dynamics I. Solution of the Fatou-Julia problem on wandering domains

By DENNIS SULLIVAN

Introduction

If one perturbs the analytic dynamical system $z \xrightarrow{R} z^2$ on the Riemann sphere \overline{C} to $z \xrightarrow{R_a} z^2 + az$ for small a, the following happens: Before perturbation the round unit circle C is invariant under iteration of R and R is expanding on C(|R'(z)| > 1), R has dense orbits, and is even ergodic on C relative to linear measure. After perturbation R_a now preserves a unique Jordan curve C_a close to C and again R is expanding and has dense orbits on C_a . Now C_a is not a rectifiable curve. It is a fractal curve with Hausdorff dimension > 1 which increases with |a|. (Figure 1). The intricacies of C are of a self-similar nature

DENNIS SULLIVAN

These Poincaré deformations (1883) have been t

The Dictionary

Sullivan, 1970/80s

We close with a sample of the dictionary between analytic iteration and crete subgroups of $PSL(2, \mathbb{C})$ which lies behind this series of papers.

Complex analytic	Discrete subgroups
iteration	of $PSL(2, \mathbb{C})$
entire mapping	arbitrary Kleinian group
Blaschke product	arbitrary Fuchsian group
rational mapping, R	finitely generated Kleinian group, Γ
degree of mapping, d	number of generators, n
(2d - 2) analytic parameters	(3n - 3) analytic parameters
(2d-2) critical points	(?) ends of hyperbolic 3 manifolds
Fatou-Julia limit set ([8], [11])	Poincaré limit set (1880)

			Devellate			R	iemann surfaces	D
		Siegel disks/		Paralle		Fuchs	ian group $G \subset \operatorname{Aut}(\Delta)$	Blaschke p
Hyperbolic manifolds	INTERVAL MAPS	CIRCLE MAPS	Infinitely renormalizable $f(z) = z^2 + c, \ c \in \mathbb{I}$	$\begin{bmatrix} e & map \\ \mathbb{R} & f \end{bmatrix}$	Siegel linearizable r $f(z) = e^{2\pi i \theta} z + z^2, \theta$		asifuchsian group Γ	Mating $F(z)$ of
Discrete surface group	R-quadratic polynomial	Nonlinear rotation	Tuning invariant		Continued fractic	U.S.	tangent hundle $T(\mathbf{V})$	Diemonn au
$\Gamma \subset PSL_2(\mathbb{C})$	$f(z) = z^2 + c$	$f(z) = \lambda z + z^2$ or	$c = s_1 * s_2 * s_3 \cdots$		$\theta = [a_1, a_2, \cdots]$	Unit	tangent bundle $I_1(\Lambda)$	Riemann st
$M = \mathbb{H}^3 / \Gamma$		$\lambda z^2 (z-3)/(1-3z)$	P(f) = quasi-Cantor	set	P(f) = quasi-circ		Geodesic flow	Susp
Representation	Quadratic-like map	Holomorphic commutin	Quadratic-like map		Holomorphic pai		Closed geodesic γ	Periodi
$\rho:\pi_1(S)\to\Gamma$	$f: U \to V$	pair (f, q)	Feigenbaum polynom	nial	Golden mean polync		Length of γ	Log of the r
Ending lamination	Tuning invariant	Continued fraction	$(\mathbb{Z}_2, x+1)$		$(S^1, x + \theta)$	Lengt	h of a random geodesic	Growth of (f^n)
$\epsilon(M) \in \mathcal{GL}(S)$	$\tau(f) = \langle \sigma(\mathcal{R}^n(f)) \rangle$	$ heta=[a_1,a_2,\cdots],\lambda=e^{2\pi}$	$\begin{array}{c c} J & , n = 1, 2, 4, 8, 10, . \\ \hline & & (\mathcal{F}(f), J(f)) \end{array}$	<pre>f)) is unife</pre>	f', n = 1, 2, 3, 5, 8, 1 formly twisting	Weil-	Petersson metric on \mathcal{T}_{r}	Metric
Inj. radius $(M) > r > 0$	Bounded combinatorics	Bounded type	The critical point	The critical point of f is a deep point of $K(f)$			eccentration of 29	
Cut points in A	Postcritical set $P(f)$	$=\overline{\bigcup f^n(c)}, f'(c)=0$	Conjugac	Conjugacies are $C^{1+\alpha}$ on $P(f)$				Table 1.
$= \bigcup_{1}^{\infty}$ (Cantor sets)	= (Cantor set)	= (circle or quasi-circle		Table 2.				
(\mathbb{R} -tree of $\epsilon(M), \pi_1(S)$)	$(\lim_{\longleftarrow} \mathbb{Z}/p_i, x \mapsto x+1)$	$(\mathbb{R}/\mathbb{Z}, x \mapsto x + \theta)$		Dictionary				
Λ(Γ) is locally connected	J(f) is locally connected	J(f) is locally connected					·	
$\operatorname{area} \Lambda(\Gamma) = 0$	$\operatorname{area}(J)$	f)) = 0?	Klainian group $\Gamma \simeq \sigma$		$\pi_1(\mathbf{S})$	Quadratic like	map $f \cdot U$	
Inj. radius $\in [r, R]$ in core(M)	$(\mathcal{F}(f), J(f))$ is u	niformly twisting	IX.	- Kleiman group I =		$\pi_1(D)$	Quadratic-like	- map J . U -
Mapping class $\psi \in Mod(S)$	Kneading permutation	Automorphism $\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right)$ of $\mathbb Z$	2	Limit set $\Lambda(\Gamma)$)	Julia set $J(f)$	
Renormalization Operators			Borg gligo B-		Mandalbrat sat M			
$\mathcal{R}(ho)= ho\circ\psi^{-1}$	$\mathcal{R}(f)=f^p(z)$	$\mathcal{R}(f,g) = (f^a g^b, f^c g^d)$		Bers slice B_Y			Mandelbrot set A	
Stable	Stable Manifold of Renormalization		M	Mapping class $\psi: S \to S$		Kneading permutatio		
M = asymptotic fiber	f = limit of doublings	$\theta =$ golden ratio		$AH(C) \rightarrow AH(C)$		I(S)	Bonormalization operate	
Elliptic points deep in $\Lambda(\Gamma)$	Critical point $c_0(f)$	deep in $J(f)$ or $K(f)$		$\psi: AH(S) \to AH(S)$		I(D)		
$ ho\circ\psi^{-n},n=1,2,3\ldots$	$f^n, n = 1, 2, 4, 8, 16, \dots$	$f^n, n = 1, 2, 3, 5, 8, \dots$		Cusps in ∂B_Y		-	Parabolic bifurcations in	
Geometric limit of $\mathcal{R}^n(\rho)$	Quadratic-like tower	Tower of commuting pairs	s	Totally deconcret		roporato Infinitaly ropormal		normalizable
	$\langle f_i \ : \ i \in \mathbb{Z} angle; \ f_{i+1} = f_i \circ f_i$			rotariy degenerate		number y renormalizable polynomial $f(x) = x^2$		
Hyperbolic 3-manifold $S\times [0,1]/\psi$	Fixed-p	oints of		group 1			porynomiai	$J(z) = z^- +$
fibering over the circle	Renorm	alization	_	Ending lamination		ion	Tuning inv	
Conformal structure is $C^{1+\alpha}$ -rigid at deep points \implies Renormalization converges exponentially fast				Fixed point of ψ		Fixed point of R_p		
M is asymptotically rigid $J(f)$ is self-similar at the critical point $c_0(f)$		H	Hyperbolic structure on		Solution to Cvitanović-Feigen			

Smallest Salem Numbers, by Degree

			$P_d(x)$			
2	λ_2	2.61803398	$x^2 - 3x + 1$			
	λ_4	1.72208380	$x^4 - x^3 - x^2 - x + 1$			
	λ_6	1.40126836	$x^6 - x^4 - x^3 - x^2 + 1$			
	λ_8	1.28063815	$x^8 - x^5 - x^4 - x^3 + 1$			
	λ_{10}	1.17628081	$x^{10} + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1$			
	λ_{12}	1.24072642	$x^{12} - x^{11} + x^{10} - x^9 - x^6 - x^3 + x^2 - x + 1$			
	λ_{14}	1.20002652	$x^{14} - x^{11} - x^{10} + x^7 - x^4 - x^3 + 1$			

Conjecture (Lehmer) $\lambda_{10} = \inf M(\alpha)$ over all algebraic integers with $M(\alpha)>0$.

Theorem(2002). The spectral radius of any w in any Coxeter group satisfies r(w) = 1 or $r(w) \ge \lambda_{10} > 1$.

Proof: uses Hilbert metric on the Tits cone.

Entropy

Entropy of English = $h = about \log 3$ (or less)

Schneier, Applied Cryptography, 1996

Number of possible English books with N characters is about 3^{N} (not 26^{N})

X compact, $f: X \rightarrow X$ continuous

 $h(f) = \log \lambda \Leftrightarrow$

 $|\{\text{orbit patterns of length N}\}| \sim \lambda^{N}.$

Torus examples

 $X = \text{torus } \mathbb{R}^n / \mathbb{Z}^n$ f:X \to X linear map induced by A in GL_n(Z)

h(f) = log (product of eigenvalues of A with $|\lambda| > 1$)

= log [spectral radius of $f^* | H^*(X)$]

Lehmer's conjecture \Leftrightarrow h(f) $\geq \log \lambda_{10}$ for torus maps.

Entropy and Salem numbers

Theorem (Gromov, Yomdin)

cf. Shub's entropy conjecture

 $h(f) = \log [spectral radius of f|H^*(X)]$.

Corollary. For projective surfaces,

 $h(f) = \log [a \text{ Salem number } \lambda]$ = spectral radius on H²(X)

Flavors of Projective Surfaces

Theorem (Cantat) A surface X admits an automorphism $f: X \rightarrow X$ with positive entropy only if X is birational to:

- 4 a complex torus \mathbb{C}^2/Λ , $\log(\lambda_4)$
- 22 a K3 surface*, or ∞ • the projective plane \mathbb{P}^2 . $\left\{ \log(\lambda_{10}) \right\}$

(*or Enriques)

Q. What is the minimum of h(f) for each type?A. It is the minimum consistent with Lehmer's conjecture.

Theorem (Sullivan, 1971)

The mapping-class group of a simply-connected compact manifold X is an arithmetic group.

Synthesis Problem: Salem number ⇒ automorphism of Hodge theory ⇒ projective surface + map

Abelian varieties \mathbb{C}^2/Λ

Theorem. For a projective torus, one can achieve $h(f) = log(\lambda_4)$ and this is optimal. ($\lambda_4 = 1.722...$)

Synthesis: $f|H'(X,\mathbb{Z}) \simeq \mathbb{Z}^4 \Rightarrow \Lambda \subset \mathbb{C}^2 \Rightarrow \chi = \mathbb{C}^2/\Lambda$

 $f = \begin{bmatrix} 0 & \omega \\ I & I \end{bmatrix} : E \times E \to E \times E \qquad E = \mathbb{C}/\mathbb{Z}[\omega]$

Rational Surfaces

X = blowup of \mathbb{P}^2 at n points

 $H^{2}(X,\mathbb{Z}) \simeq \mathbb{Z}^{1,n} \supset K_{X^{\perp}} \simeq [E_{n} \text{ lattice}]$

Theorem. The Coxeter automorphism of E_n can be realized by an automorphism $F_n : X_n \rightarrow X_n$ of \mathbb{P}^2 blown up at n suitable points.

First case where $h(F_n) > 0$

Theorem (2005). The map F_{10} has minimal positive entropy among all surface automorphisms, namely $h(F_{10}) = log(\lambda_{10}).$

Rational Surfaces: Synthesis

X = blowup of n points on a cuspidal cubic C in \mathbb{P}^2

 λ eigenvector of $w \Rightarrow positions$ of n points on C

K3 surfaces/ \mathbb{R}

$$\begin{split} X \subset \mathbb{R}^3 & \text{defined by} \\ (I+x^2)(I+y^2)(I+z^2) + A \; xyz = 2 \\ & f: X \to X \; \text{defined by} \\ & f \; = \; I_x \; \circ \; I_y \circ \; I_z \end{split}$$

The map f is area-preserving!

K3 Surfaces: Synthesis

Gross-M, 2002

Input: Degree 22 Salem polynomial with $|P(\pm I)| = I$.

 $P(t) = 1+t-t^{3}-2t^{4}-3t^{5}-3t^{6}-2t^{7}+2t^{9}+4t^{10}+5t^{11} +4t^{12}+2t^{13}-2t^{15}-3t^{16}-3t^{17}-2t^{18}-t^{19}+t^{21}+t^{22}$

Output: K3 surface X and $f: X \rightarrow X$, with det(tl-f|H²(X)) = P(t).

X is not projective!

Islands over \mathbb{C}

Theorem. There exists a K3 surface automorphism $f: X \rightarrow X$ with positive entropy and an invariant island – a Siegel disk. Any such example is non-projective.

Theorem (Oguiso, 2003). Blowing up XxX gives a simplyconnected 4-dimensional counterexample to the Kodaira conjecture.

cf. Voisin

K3 surfaces and glue

Theorem (2009) There exists a K3 surface automorphism with $h(f) = log(\lambda_{10})$, and this is optimal.

 $(Gross-M - deg(\lambda)=22)$ $(Oguiso - \lambda_{14} = 1.2002...)$ $(\lambda_{10} = 1.176...)$

K3 automorphism with $h(f) = \log \lambda_{10}$

Projective K3 surfaces

Theorem (2009). For projective K3 surfaces, one can achieve $h(f) = log(\lambda_6)$.

Theorem (2011). In fact, one can achieve $h(f) = log(\lambda_{10})$, and this is optimal.

 $(\lambda_6 = 1.401... >> \lambda_{10} = 1.176)$

Projective K3 – entropy log λ_6

Opening the Kähler cone

