Kleinian groups and the Sullivan dictionary III

Dick Canary

University of Michigan

June 3, 2011

Dick Canary Kleinian groups and the Sullivan dictionary III

Deformation Spaces of Hyperbolic 3-manifolds

- Let *M* be a compact, orientable, atoroidal 3-manifold with boundary.
- **Simplifying assumption:** The boundary ∂*M* of *M* contains no tori.
- Let AH(M) denote the space of (conjugacy classes of) discrete faithful representations ρ : π₁(M) → PSL₂(ℂ).
- If $\rho \in AH(M)$, then

$$N_{
ho} = \mathbb{H}^3 / \rho(\pi_1(M))$$

is a hyperbolic 3-manifold and there exists a homotopy equivalence

$$h_{
ho}: M \to N_{
ho}$$

such that $(h_{\rho})_* = \rho$.

۲

 $AH(M) \subset X(M) = \operatorname{Hom}(\pi_1(M), \operatorname{PSL}_2(\mathbb{C})) / / \operatorname{PSL}_2(\mathbb{C})$

The interior of AH(M)

• Conversely, given a homotopy equivalence $h: M \to N = \mathbb{H}^3/\Gamma$ from M to a hyperbolic 3-manifold, one obtains a discrete, faithful representation

$$\rho = h_* : \pi_1(M) \to \pi_1(N) = \Gamma \subset \mathrm{PSL}_2(\mathbb{C}).$$

- So, *AH*(*M*) is the space of marked hyperbolic 3-manifolds homotopy equivalent to *M*.
- (Marden, Sullivan) The interior int(AH(M)) of AH(M)consists exactly of the convex cocompact representations, i.e. representations such that N_{ρ} (or $\rho(\pi_1(M))$) is convex cocompact, since $\rho \in AH(M)$ is structurally stable if and only if $\rho(\pi_1(M))$ is convex cocompact, and convex cocompact representations are quasiconformally stable.

伺 ト イ ヨ ト イ ヨ ト

Marked homeomorphism type

- Associated to a convex cocompact representation, there is a well-defined marked compact 3-manifold (*N̂_ρ*, *h_ρ*).
- Let $\mathcal{A}(M)$ denote the space of marked compact 3-manifolds homotopy equivalent to M, i.e. pairs (M', h') where M' is a compact 3-manifold and $h: M \to M'$ is a homotopy equivalence. We say two pairs (M_1, h_1) and (M_2, h_2) are equivalent if there exists an orientation-preserving homeomorphism $j: M_1 \to M_2$ such that j is homotopic to $h_2 \circ h_1^{-1}$.
- We define

$$\Theta$$
 : int $(AH(M)) \rightarrow \mathcal{A}(M)$

by letting $\Theta(\rho) = (\hat{N}_{\rho}, h_{\rho}).$

Components of int(AH(M))

- (Thurston) Θ is surjective.
- Marden's Isomorphism Theorem: If $\rho_1, \rho_2 \in int(AH(M))$, then ρ_1 is quasiconformally conjugate to ρ_2 if and only if $\Theta(\rho_1) = \Theta(\rho_2)$.
- Idea of Proof: If ρ_1 and ρ_2 are quasiconformally conjugate, then the quasiconformal conjugacy on $\widehat{\mathbb{C}}$ can be extended to a bilipschitz conjugacy on \mathbb{H}^3 , so \hat{N}_{ρ_1} and \hat{N}_{ρ_2} are homeomorphic.

On the other hand, if \hat{N}_{ρ_1} and \hat{N}_{ρ_2} are homeomorphic, one may upgrade the homeomorphism to a bilipschitz homeomorphism from N_{ρ_1} to N_{ρ_2} . This homeomorphism lifts to \mathbb{H}^3 and extends to a quasiconformal homeomorphism of $\widehat{\mathbb{C}}$ conjugating ρ_1 to ρ_2 .

(人間) (人) (人) (人) (人) (人)

So, components of int(AH(M)) are in one-to-one correspondence with marked homeomorphism types in $\mathcal{A}(M)$ and each component is a quasiconformal deformation space. We parameterized quasiconformal deformation spaces in our first talk, so we obtain:

Parameterization Theorem: If $\pi_1(M)$ is freely indecomposable, then

$$\operatorname{int}(AH(M)) \cong \coprod_{(M',h')\in \mathcal{A}(M)} \mathcal{T}(\partial M').$$

(Canary-McCullough) In this setting, $\mathcal{A}(M)$ is finite, so $int(\mathcal{AH}(M))$ is homeomorphic to a finite union of open balls.

In general,

$$\operatorname{int}(AH(M)) \cong \coprod_{(M',h')\in \mathcal{A}(M)} \mathcal{T}(\partial M') / Mod_0(M').$$

(McCullough,Canary-McCullough) Typically, if $\pi_1(M)$ is freely decomposable, $\mathcal{A}(M)$ is infinite and $Mod_0(M')$ is infinitely generated.

Recall that $\operatorname{Mod}_0(M')$ is the group of isotopy classes of orientation-preserving homeomorphisms of $\partial M'$ which extend to homemorphisms of M' which are homotopic to the identity.

(McCullough) $Mod_0(M')$ is called the **twist group** since it it is generated by Dehn twists about compressible curves

Examples

If M = F × I, then |A(M)| = 1, since every homotopy equivalence between F × I and a compact 3-manifold is homotopic to an orientation-preserving homeomorphism. Moreover,

$$\operatorname{int}(AH(F \times I)) = QF(F) \cong \mathcal{T}(F) \times \mathcal{T}(\overline{F})$$

• If *M* is acylindrical, then $|\mathcal{A}(M)| = 2$, since every homotopy equivalence from *M* to a compact 3-manifold is homotopic to a homeomorphism, and

$$\operatorname{int}(AH(M)) = \mathcal{T}(\partial M) \coprod \mathcal{T}(\partial \overline{M}).$$

• $|\mathcal{A}(M_n)| = (n-1)!$ (see blackboard.)

Introductory Bumponomics

- (Anderson-Canary) Any two components of $int(AH(M_n))$ bump, i.e have intersecting closures.
- This implies that homeomorphism type is not locally constant on *AH*(*M*).
- (Anderson-Canary-McCullough) If *M* has freely indecomposable fundamental group, one can characterize exactly which components of int(*AH*(*M*)) bump. Roughly, two components bump if their marked homeo types differ by removing primitive solid torus components of the characteristic submanifold and reattaching the complementary pieces in a different order. (This operation is called a primitive shuffle.)
- Example: There exist manifolds M'_n such that $int(AH(M'_n))$ has (n-1)! components and no two components bump.

- 4 同 ト 4 ヨ ト 4 ヨ ト

The bumping construction for M_n

- Form \hat{M}_n by removing the core curve of the solid torus and let \hat{N} be a hyperbolic 3-manifold homeomorphic to $int(\hat{M}_n)$.
- If M'_n is homotopy equivalent to M_n , there exists an immersion $h: M'_n \to \hat{N}$ such that the cover of \hat{N} associated to $h_*(\pi_1(M'_n))$ is homeomorphic to $\operatorname{int}(M'_n)$.
- Let N_i be the result of hyperbolic (1, i)-Dehn surgery on \hat{N} (topologically N_i is obtained by attaching a solid torus to \hat{M}_n such that the meridian is glued to a (1, i)-curve.) Each \hat{N}_i is homeomorphic to $int(M_n)$. There is a natural associated map $r_i : \hat{N} \to N_i$.
- If $N_i = \mathbb{H}^3/\Gamma_i$ and $\hat{N} = \mathbb{H}^3/\Gamma_\infty$, then Γ_i converges to Γ_∞ . Moreover, $(r_i)_* : \Gamma \to \Gamma_i$ converges to the identity map.
- If $\rho_i = (h \circ r_i)_*$ and $\rho = h_*$, then $\rho_i \to \rho$, but $N_{\rho_i} \cong int(M_n)$ for all *i* and $N_\rho \cong int(M'_n)$.

イロト イポト イヨト イヨト

Intermediate bumponomics

- (McMullen) QF(F) = int(AH(F)) self-bumps, i.e. there exists a point $\rho \in \partial QF(F)$, such that any sufficiently small neighborhood of ρ in $AH(F \times I)$ has disconnected intersection with QF(F).
- An embedded annulus A in M is a **primitive essential** annulus if $\pi_1(A)$ is a maximal abelian subgroup of $\pi_1(M)$ and A is not homotopic (rel boundary) into ∂M .
- (Bromberg-Holt) If *M* contains a primitive essential annulus, then every component of int(*AH*(*M*)) self-bumps.
- (Bromberg, Magid) $AH(F \times I)$ is not locally connected.

伺 ト イ ヨ ト イ ヨ ト

Conjectural bumponomics

- **Conjecture:** (Bromberg) If *M* has non-empty boundary, then *AH*(*M*) is not locally connected.
- In pictures of one-dimensional deformation spaces, e.g. Bers slices of punctured torus groups, the boundary appears to be quite fractal.
- **Conjecture:** (McMullen) The Hausdorff dimension of the boundary of a Bers slice of punctured torus groups lies strictly between 1 and 2.
- **Theorem:** (Shishikura) The boundary of the Mandelbrot set has Hausdorff dimension 2.
- **Problem:** Explore the fractal nature of $\partial AH(M)$ in general.
- **Problem:** Understand how the components of int(AH(M)) bump when $\pi_1(M)$ is freely decomposable.

直 と く ヨ と く ヨ と

A cool argument

Theorem: (Thurston) If N is convex cocompact and $\partial_c N$ is non-empty, and N_0 is a cover of N with finitely generated fundamental group, then N_0 is convex cocompact.

Proof: If
$$N = \mathbb{H}^3/\Gamma$$
, then $N_0 = \mathbb{H}^3/\Gamma_0$ and $\Gamma_0 \subset \Gamma$.

Since N is convex cocompact, its convex core C(N) is compact. Therefore, the diameter D of C(N) is finite. It follows that if $z \in CH(\Lambda(\Gamma))$, then

 $d(z, \partial CH(\Lambda(\Gamma)) \leq D.$

Since $\Gamma_0 \subset \Gamma$, $\Lambda(\Gamma_0) \subset \Lambda(\Gamma)$, so

 $\textit{CH}(\Lambda(\Gamma_0)) \subset \textit{CH}(\Lambda(\Gamma))$

Therefore, if $z \in CH(\Lambda(\Gamma_0))$, then

 $d(z, \partial CH(\Lambda(\Gamma_0)) \leq D.$

It follows that if $x \in C(N_0)$, then

 $d(x, \partial C(N_0)) \leq D.$

Since Γ_0 contains no parabolics, Ahlfors' Finiteness Theorem implies that $\partial C(N_0)$ is compact.

It follows that $C(N_0)$ has bounded diameter, and since $C(N_0)$ is closed in N_0 , that $C(N_0)$ is compact. Therefore, N_0 is convex cocompact as claimed.

If we combine this with Thurston's Geometrization Theorem, one obtains.

Corollary: (Thurston) If M is compact, irreducible and atoroidal and ∂M is empty, then every cover of M with finitely generated fundamental group is topologically tame.

The outer automorphism group

$$\operatorname{Out}(\pi_1(M)) = \operatorname{Aut}(\pi_1(M)) / \operatorname{Inn}(\pi_1(M))$$

acts naturally on the character variety

 $X(M) = \operatorname{Hom}(\pi_1(M), \operatorname{PSL}_2(\mathbb{C})) / / \operatorname{PSL}_2(\mathbb{C})$

via

$$\alpha(\rho) = \rho \circ \alpha^{-1}$$

where $\rho \in X(M)$ and $\alpha \in Out(\pi_1(M))$.

- AH(M) is preserved by the action.
- If C is a component of int(AH(M)) and $\Theta(C) = (M', h')$, then the stabilizer of C is identified with a subgroup of $Mod(\partial M')/Mod_0(M')$.
- Since $C \cong \mathcal{T}(\partial M')/\mathrm{Mod}_0(M')$ and $\mathrm{Mod}(\partial M')$ acts properly discontinuously on $\mathcal{T}(\partial M')$, $\mathrm{Out}(\pi_1(M))$ acts properly discontinuously on $\mathrm{int}(AH(M))$.
- Question: Is int(AH(M)) a maximal domain of discontinuity for the action of Out(\(\pi_1(M))\) on X(M)?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- (Johannson) $Out(\pi_1(M))$ is finite if and only if M is acylindrical.
- So, $Out(\pi_1(M))$ acts properly discontinuously on all of X(M) if and only if M is acylindrical.
- Conjecture:(Goldman) If M = F × I, then QF(F) = int(AH(F × I)) is a maximal domain of discontinuity for the action of Out(π₁(F)). Moreover, Out(π₁(F)) acts ergodically on X(F × I) - QF(F).
- (Minsky,Lee) Every point in ∂QF(F) is a limit of fixed points of infinite order elements in Out(π₁(F)), so cannot lie in any domain of discontinuity for Out(π₁(F)). The proof relies on
- (McMullen, Canary-Culler-Hersonsky-Shalen) There is a dense set of representation in ∂QF(F) whose images contain parabolic elements, i.e. cusps are dense in the boundary of quasifuchsian space. This holds for any M.

- 4 同 6 4 日 6 4 日 6

Typically one can find a bigger domain of discontinuity

- (Minsky) If H_g is the handlebody of genus g, then there is a domain of discontinuity for $Out(\pi_1(H_g)) = Out(\pi_1(F_g))$ which contains both $int(AH(H_g))$ and points in $\partial AH(H_g)$.
- (Canary-Storm) If $\pi_1(M)$ is freely indecomposable, but is not an interval bundle, then there is a domain of discontinuity for $Out(\pi_1(M))$ which contains both int(AH(M)) and points in $\partial AH(M)$.
- (Lee) If M is a twisted interval bundle, then there is a domain of discontinuity for Out(π₁(M)) which contains both int(AH(M)) and points in ∂AH(M).

・ 同 ト ・ ヨ ト ・ ヨ ト

- (Canary-Storm) Out(π₁(M)) acts properly discontinuously on some open neighborhood of AH(M) in X(M) if and only if M contains no primitive essential annuli.
- There exist compact, atoroidal, irreducible 3-manifolds such that *M* contains no primitive essential annuli, yet *M* is not acylindrical. If time permits, an example will appear on the blackboard.

Happy Birthday Dennis!

∃ ► < ∃ ►</p>

3