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Cycles of intervals

Jo, ... Jp_1 IS a cycle of intervals for f if

-Interiors of J; are pairwise disjoint.
'f(Ji) C Ji+1 mod p

'f(adi) C 8Ji+1 mod p
-All critical points of f belong to U;J;.

p is the period of the cycle.

@ OO0 e O @ O O

Jo  Jo T3 Ja J7-J1 Js J2 Js



Infinitely renormalizable maps

f is infinitely renormalizable if there exists a sequence of cycles

n n
L ]

with Pn < Pn+1 and

Jymt c ]
I I

f has B-bounded combinatorics if moreover

sup Pn+1 < B

n pn




Let £, be a finite-dimensional smooth family of real analytic multimodal maps
and let Ag be the subset of parameters A such that £ is infinitely renormaliz-
able with B-bounded combinatorics.




eanhing of generic

fc Bg(U) iff - fiscontinuousin U,
- fis complex analytic in U and
- f(Z2) = f(2).

We mean generic C* families t € [0,1]" — Bg(U), k > 1.
and also generic C« families t & D — B:(U),
real in real parameters U




Facts on the renormalization operator

Unimodal (Douady&Hubbard, Sullivan, McMullen, Lyubich)
and multimodal (Hu, S. (2001,2005), + stuff in progress)

(Complex bounds) If f is infinitely renormalizable then { R"f}, is precompact.

(Universality) The Omega-limit set 2 of R is a compact set. The dynamics of
R on € is conjugate with a full shift with finitely many symbols.

There exists A € (0,1) s.t. if fis infinitely renormalizable then there exists
f. € Q2 such that

IR"f — R"f,| < CiA™.




| Steps of the proof l

O Complexification of R (Complex bounds).

G The Omega limit set €2 of R is hyperbolic.

O If a family f+ is transversal to the stable
lamination W5(€2) then A\ has zero Lebesgue
measure.

(easy) adaptation of results by Bowen and Ruelle
(1975) for the finite-dimensional case.

The result for generic families follows from
step 3 using...Fubini's Theorem!!




| Steps of the proof l

O Complexification of R (Complex bounds).

O The Omega limit set 2 of R is hyperbolic.

O If a family f+ is transversal to the stable
lamination W5(€2) then A\ has zero Lebesgue
measure.

(easy) adaptation of results by Bowen and Ruelle
(1975) for the finite-dimensional case.

The result for generic families follows from
step 3 using...Fubini's Theorem!!




l Quasiconformal vector fields l

The vector field a: C — C is quasiconformal if it has distributional derivatives

in L2 _ and

100|oo < 0

al(X+1y)=u(x,y)+i-v(x,y)

u, —Vv, . Vy+U
X Y vi- 27
2 2

Oa =




Horizontal directions

(Lyubich, 1999)

f: U — V polynomial-like map. v: U — V is horizontal if there exists a
quasiconformal vector field o, defined in a neighborhood of K(f) such that

v(X) = o f(x) — Df(x) - a(x)

Moreover 8a = 0 on the filled-in Julia set K(f).

El := {v : v is horizontal for f}



Horizontal directions

(Lyubich, 1999)

f: U — V polynomial-like map. v: U — V is horizontal if there exists a
quasiconformal vector field o, defined in a neighborhood of K(f) such that

~automatic in our setting (no invariant line fields on J(f)), so
don't pay too much attention to this...

El := {v : v is horizontal for f}



Facts on horizontal directions

Unimodal(Lyubich, 1999) and multimodal(S., in progress)

(Continuity) The codimension of E{ is finite and it depends only on the
number of unimodal components. Moreover f — E! is continuous.

(Invariant vector bundle) if v € E" then DR; - v € EL ..

(Contraction) |[DR7 - v| < CA\", A < 1.




Detecting hyperbolicity
Autonomous case

is a hyperbolic linear map




Detecting hyperbolicity
Autonomous case

past: T",n<0 a hyperbolic linear map
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Detecting hyperbolicity
Non-autonomous case (Sacker & Sell, 1974)

-

X compact metric space.

f: X — X homeomorphism such that the
minimal sets are dense in X.

A: X — GL(n,R) continuous.

Let T: X X R" — X X R" be the linear
cocycle defined by

T(x, v) = (f(x), A(x) - V)
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X compact metric space.
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Detecting hyperbolicity
Non-autonomous case (Sacker & Sell, 1974)

X compact metric space.

or'phlsm such that the

A: X — GL(n,R) continuous.

Let T: X X R" — X X R" be the linear
cocycle defined by

T(x, v) = (f(x), A(x) - V)

- J

Define

PS: Same result for vector bundles with same assumption on the base X



k to renormalization

Considering the finite-dimensional vector bundle defined by
feQ — B/E;’

and the cocycle

Di[v] = [DR+ - V]

and using Sacker & Sell Theorem we can get:

" e







Infinitesimal pullback argument
(Avila, Lyubich and de Melo, 2003)



Infinitesimal pullback argument
(Avila, Lyubich and de Melo, 2003)

To find a quasiconformal
vector field solution to the
t.c.e. we just need to find a
quasiconformal vector field

which is the solution on the
boundary of the domain and
the postcritical set.




ase: Conformal iterated function systems
(no critical points)

f:U'UU? >V
f: U — V conformal and onto, i = 1, 2.

v




simal pullback argument :
2d function systems
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finitesimal pullback argument
iterated function systems

v(y) — a(f(y))

a(y) := DI(y)

-

Il o is defined.



Period-doubling case: induced map
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Period-doubling case: Complex induced map
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Period-doubling case: Complex induced map
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Period-doubling case: Complex induced map
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Period-doubling case: Complex induced map
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Period-doubling case: Complex induced map
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Period-doubling case: Complex induced map
(reducing the domain a little bit)
Vi f

B domains
] images



| Induced Problem l

vh f2n—1

ﬁ\ Un

Finding a quasiconformal vector field & such that

(f + tv)2" ™ |o(X) = a(f2" (X)) — DF?" ' (x) - a(x)

for every x € 90U, and for all n.



| Induced Problem l
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Finding a quasiconformal vector field & such that

(f + tv)2" ™ |o(X) = a(f2" (X)) — DF?" ' (x) - a(x)

for every x € U, and for all n.



More information on
A(f + tv)? | 1-0()

y

A(f + tv)% |1=0(¥) = Pno - (DR - v)(
pn,O

)

+0x 2 () - Bn(y) — Bn(F* (¥))



More information on
A(f + tv)?' |1-0(y)

n(f + tv)*'|10(y) -
pnO

nice!l since [IDR" - v| < C for every n!

+0x 2 (y) - Bn(y) — Bn(F* (¥))



More information on
A(f + tv)?' |1-0(y)

u(F + V)2 |120(¥) = Po - (DRT - v)(—1-)

pnO
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where Bn(y) =
Bn(y) o




| Solution of induced problem for wi l

wi(X) = aq(f? (X)) — DF? (x) - a1(x)
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1(x)
Df2"(x)
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‘ Solution of induced problem for wi l

1(x)
Df2"(x)

wi(X) = aq(f? (X)) — DF? (x) - a1(x)



| Solution of induced problem for w; l

wa(X) = Df?"(X) - Bn(X) — Bn(f? (x))

9,
Bn(x) = p"”-x:c,,-x

pn,O

Because |[DRY - v| < C it follows that

|Cn.|.1 — cn| < C

Define aa(x) = ¥(|x|) - x



Solution of induced problem for w;




d problem for w:




-uced problem for w; l

’(,b(‘X‘) = Cn+1



-induced problem for w: l

Linear interpolation
¢(‘X‘) = Cn+1 P



Solution of induced problem for w;

az(x) = P(|x|) - x

is a quasiconformal vector field!l



Solution of induced problem for w;

az(x) = P(|x|) - x

is a quasiconformal vector field!l



Solution of induced problem for w;
az(x) = ¥(|x]) - x

|zy'(|2)]
2
Motivation: If ¥(|z|) = In|z|. then |Oaz| = 1/2

‘50{2(2)‘ = <C

|J|> €02

|Cn+1 — Cnl C

! = <
92 = = <




Why is this proof nice? :-)

@ Proof is mostly infinitesimall

@ sacker&sell, Steps 3 and 4 do
not use complex dynamics/
structure.

o In most of the proof of Key Lemma the
critical point disappears.

G Proof is a kind of linear version of the
original Lyubich(1999) argument.
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