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Cycles of intervals

J0, ... Jp−1 is a cycle of intervals for f if

-Interiors of Ji are pairwise disjoint.
-f (Ji ) ⊂ Ji+1 mod p

-f (∂Ji ) ⊂ ∂Ji+1 mod p

-All critical points of f belong to ∪iJi .

p is the period of the cycle.

J0 J1J3 J1J2J4 J5J6 J7 J8



Infinitely renormalizable maps

f is infinitely renormalizable if there exists a sequence of cycles

Jn
0 , ... , Jn

pn

with pn < pn+1 and
⋃

i

Jn+1
i ⊂

⋃

i

Jn
i

f has B-bounded combinatorics if moreover

sup
n

pn+1

pn
≤ B



Main Theorem

Let fλ be a finite-dimensional smooth family of real analytic multimodal maps
and let ΛB be the subset of parameters λ such that fλ is infinitely renormaliz-
able with B-bounded combinatorics.

For a generic finite-dimensional family ft the set ΛB has zero Lebesgue
measure.



The meaning of generic

For a generic finite-dimensional family ft the set ΛB has zero Lebesgue
measure.

-1 1

U

f ∈ BR(U) iff - f is continuous in U,
- f is complex analytic in U and
- f (z) = f (z).

We mean generic Ck families t ∈ [0, 1]n → BR(U), k > 1.

and also generic Cω families t ∈ Dn → BC(U),
real in real parameters



Facts on the renormalization operator
Unimodal (Douady&Hubbard, Sullivan, McMullen, Lyubich)  
and multimodal (Hu, S. (2001,2005), + stuff in progress)

(Complex bounds) If f is infinitely renormalizable then {Rnf}n is precompact.

(Universality) The Omega-limit set Ω of R is a compact set. The dynamics of
R on Ω is conjugate with a full shift with finitely many symbols.
There exists λ ∈ (0, 1) s.t. if f is infinitely renormalizable then there exists
f! ∈ Ω such that

|Rnf − Rnf!| ≤ Cf λ
n.



Steps of the proof

1 Complexification of R (Complex bounds).

2 The Omega limit set    of R is hyperbolic.

3

Ω

If a family ft   is transversal to the stable    
lamination Ws(  ) then    has zero Lebesgue 
measure.

Ω Λ

(easy) adaptation of results by Bowen and Ruelle 
(1975) for the finite-dimensional case.

4 The result for generic families follows from
step 3 using...Fubini’s Theorem!! 
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Quasiconformal vector fields

The vector field α : C → C is quasiconformal if it has distributional derivatives
in L2

loc and

|∂α|∞ < ∞

α(x + iy) = u(x , y) + i · v (x , y)

∂α =
ux − vy

2
+ i ·

vx + uy

2



Horizontal directions
(Lyubich, 1999)

f : U → V polynomial-like map. v : U → V is horizontal if there exists a
quasiconformal vector field α, defined in a neighborhood of K (f ) such that

v (x) = α ◦ f (x) − Df (x) · α(x)

Moreover ∂α = 0 on the filled-in Julia set K (f ).

Eh
f := {v : v is horizontal for f}



Horizontal directions
(Lyubich, 1999)

f : U → V polynomial-like map. v : U → V is horizontal if there exists a
quasiconformal vector field α, defined in a neighborhood of K (f ) such that

v (x) = α ◦ f (x) − Df (x) · α(x)

Moreover ∂α = 0 on the filled-in Julia set K (f ).

automatic in our setting (no invariant line fields on J(f)), so 
don’t pay too much attention to this...

Eh
f := {v : v is horizontal for f}



Facts on horizontal directions

Unimodal(Lyubich, 1999)  and multimodal(S., in progress)

(Contraction) |DRn
f · v | ≤ Cλn, λ < 1.

(Continuity) The codimension of Eh
f is finite and it depends only on the

number of unimodal components. Moreover f → Eh
f is continuous.

(Invariant vector bundle) if v ∈ Eh then DRf · v ∈ Eh
Rf .
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Detecting hyperbolicity
Autonomous case

Es

Eu

T is a hyperbolic linear mappast: Tn, n < 0 future: Tn, n > 0          

Es

Eu

Es

Eu

T is a hyperbolic linear map

T is hyperbolic if and only if

B = {v ∈ Rn : sup
i∈Z

|T iv | < ∞} = {0}



Detecting hyperbolicity
Non-autonomous case (Sacker & Sell, 1974)

  

X compact metric space.

T : X × Rn → X × RnLet                                 be the linear 
cocycle defined by 

A : X → GL(n, R)                continuous.

T (x , v ) = (f (x), A(x) · v )

                homeomorphism such that the 
minimal sets are dense in X.
f : X → X
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B = {(x , v ) s.t . sup
i∈Z

|π2(T i (x , v ))| < ∞}
Define
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Detecting hyperbolicity
Non-autonomous case (Sacker & Sell, 1974)

B = {(x , v ) s.t . sup
i∈Z

|π2(T i (x , v ))| < ∞}
Define

T is a hyperbolic cocycle if and only if B = X × {0}.

PS: Same result for vector bundles with same assumption on the base X

  

X compact metric space.

T : X × Rn → X × RnLet                                 be the linear 
cocycle defined by 

A : X → GL(n, R)                continuous.

T (x , v ) = (f (x), A(x) · v )

                homeomorphism such that the 
minimal sets are dense in X.
f : X → X                homeomorphism such that the 
minimal sets are dense in X.
f : X → X



Back to renormalization

If
B+

f = {(f , v ) ∈ Ω × B s.t . sup
i≥0

|DRi
f · v | < ∞} ⊂ Eh

f

for every f ∈ Ω then the renormalization operator is hyperbolic on Ω with
Es

f = Eh
f .

Considering the finite-dimensional vector bundle defined by

f ∈ Ω → B/Eh
f

and the cocycle
D̃f [v ] = [DRf · v ]

and using Sacker & Sell Theorem we can get:



Key Lemma

If f ∈ Ω and
|DRi

f · v | ≤ C

for every i ≥ 0 then there exists a quasiconformal vector field α defined
in a neighborhood of K (f ) = J(f ) such that

v (x) = α ◦ f (x) − Df (x) · α(x).



Infinitesimal pullback argument
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Infinitesimal pullback argument
(Avila, Lyubich and de Melo, 2003) 

To find a quasiconformal 
vector field solution to the 
t.c.e. we just need to find a 
quasiconformal vector field 
which is the solution on the 
boundary of the domain and 
the postcritical set.



1-11-1

V

U2U1

Easy case: Conformal iterated function systems 
(no critical points)

f : U1 ∪ U2 → V

f : Ui → V conformal and onto, i = 1, 2.

Problem: Given 

v : U1 ∪ U2 → C,

find a quasiconformal vector field

α : V → C
such that 

v (x) = α(f (x)) − Df (x) · α(x)
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Easy case of Infinitesimal pullback argument : 
Conformal iterated function systems 

α = 0

α(x) = −v (x)
Df (x)

α(y) :=
v (y) − α(f (y))

Df (y)

y

f(y)

α is defined.



Easy case of Infinitesimal pullback argument : 
Conformal iterated function systems 

α(y) :=
v (y) − α(f (y))

Df (y)

α is defined.



Easy case of Infinitesimal pullback argument : 
Conformal iterated function systems 

α(y) :=
v (y) − α(f (y))

Df (y)

y

f(y)

α is defined.



Easy case of infinitesimal pullback argument : 
Conformal iterated function systems 

α is defined.

α(y) :=
v (y) − α(f (y))

Df (y)



Period-doubling case: induced map 
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Period-doubling case: Complex induced map 
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Period-doubling case: Complex induced map
(reducing the domain a little bit) 

f
f2

f4

domains
images

U1

U3

V1

U2

V2

V3



Un

Vn f 2n−1

Induced Problem

Finding  a quasiconformal vector field        such that     α

∂t (f + tv )2n−1 |t=0(x) = α(f 2n−1
(x)) − Df 2n−1

(x) · α(x)

for every x ∈ ∂Un and for all n.



Un
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More information on 

∂t f 2n

t (y) = pn,0 · (DRn
t · v )(

y
pn,0

)

+∂x f 2n
(y) · βn(y) − βn(f 2n

(y))

∂t (f + tv )2n |t=0(y)

∂t (f + tv )2n |t=0(y)
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More information on 

∂t f 2n

t (y) = pn,0 · (DRn
t · v )(

y
pn,0

)

+∂x f 2n
(y) · βn(y) − βn(f 2n

(y))

nice!! since |DRn · v | ≤ C for every n!!

{w1

βn(y) =
∂tpn,t

pn,t
ywhere

{w2

∂t (f + tv )2n |t=0(y)

∂t (f + tv )2n |t=0(y)



Solution of induced problem for w1

Un

Vn

Un

Vn
α1(x) = 0

α1(x) = −
w1(x)

Df 2n (x)

w1(x) = α1(f 2n
(x)) − Df 2n

(x) · α1(x)

f 2n
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Un
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α1(x) = −
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w1(x) = α1(f 2n
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0

0

0

0
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Solution of induced problem for w2

w2(x) = Df 2n
(x) · βn(x) − βn(f 2n

(x))

Because |DRn
f · v | < C it follows that

βn(x) =
∂pn,t

pn,0
· x = cn · x

|cn+1 − cn| < C

Define α2(x) = ψ(|x|) · x



Solution of induced problem for w2

Un
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Vn f 2n−1



Solution of induced problem for w2
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Solution of induced problem for w2

Un

Vn f 2n−1

Un

Vn f 2n−1

ψ(|x|) = cn

ψ(|x|) = cn+1
Linear interpolation



ψ

c0

c1

Solution of induced problem for w2

α2(x) = ψ(|x|) · x
is a quasiconformal vector field!!

|x|

c2
c3
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Solution of induced problem for w2

α2(x) = ψ(|x|) · x

|∂α2(z)| =
|zψ′(|z|)|

2
Motivation: If ψ(|z|) = ln |z|. then |∂α2| = 1/2

< C

cn

cn+1

{

|z|

> ε0|z|

J

|J|

|ψ′(|z|)| =
|cn+1 − cn|

|J|
≤

C
ε0|z|



Why is this proof nice? :-)

1 Proof is mostly infinitesimal!!

2 Sacker&Sell, Steps 3 and 4 do 
not use complex dynamics/
structure.

4 Proof is a kind of linear version of the 
original Lyubich(1999) argument.

3 In most of the proof of Key Lemma the 
critical point disappears.



Hope for |x|d + c, d !∈ 2N.

Why is this proof nice? :-)

1 Proof is mostly infinitesimal!!

2 Sacker&Sell, Steps 3 and 4 do 
not use complex dynamics/
structure.

4 Proof is a kind of linear version of the 
original Lyubich(1999) argument.

3 In most of the proof of Key Lemma the 
critical point disappears.


