String topology and three manifolds

Stony Brook
May 26 ${ }^{\text {th }} 2011$

The Goldman bracket

S an orientable surface

The Goldman bracket

S an orientable surface

The Goldman bracket

S an orientable surface

The Goldman bracket

S an orientable surface

The Goldman bracket

S an orientable surface

The Goldman bracket

S an orientable surface

The Goldman bracket

S an orientable surface

The Goldman bracket

S an orientable surface

The Goldman bracket

S an orientable surface

The Goldman bracket

S an orientable surface

The Goldman bracket

S an orientable surface

The Goldman bracket

S an orientable surface

по denotes the set of free homotopy classes of closed oriented curves on S.
NOTE: $\pi_{0}=\pi_{0}$ (free loop space of the surface)

The Goldman bracket

S an orientable surface

по denotes the set of free homotopy classes of closed oriented curves on S. NOTE: $\pi_{0}=\pi_{0}($ free loop space of the surface)

The Goldman bracket

Theorem: (Goldman, 1986)
The bracket is well defined and satisfies the Jacobi identity.

S an orientable surface

חo denotes the set of free homotopy classes of closed oriented curves on S.
NOTE: $\pi_{0}=\pi_{0}$ (free loop space of the surface)

The Goldman bracket

Theorem: (Goldman, 1986)
The bracket is well defined and satisfies the Jacobi identity.

S an orientable surface

π_{0} denotes the set of free homotopy classes of closed oriented curves on S.
NOTE: $\pi_{0}=\pi_{0}($ free loop space of the surface)

The Goldman bracket

The Goldman bracket
Claim: that these two terms are different.

The Goldman bracket
Claim: that these two terms are different.

The Goldman bracket
Claim: that these two terms are different.
<abc> \# <acb>

Observe that the two terms are different. <abc> \neq <acb>

Observe that the two terms are different. <abc> \# <abb>

Observe that the two terms are different. <abc> \# <abb>

Observe that the two terms are different. <abc> \# <abb>

Observe that the two terms are different. <abc> \# <abb>

Observe that the two terms are different. <abc> \# <abb>

Proof of Jacobi identity

Proof of Jacobi identity

Proof of Jacobi identity

Proof of Jacobi identity

Proof of Jacobi identity

Proof of Jacobi identity

Proof of Jacobi identity

$[\bigcirc, \bigcirc \bigcirc \bigcirc]=$

 , 1

 $[\bigcirc, \bigcirc \bigcirc \bigcirc]=$

Theorem: (Goldman, 1986)
The bracket is well defined and satisfies the Jacobi identity.

Proof of Jacobi identity

○] $=$

$[\bigcirc, \bigcirc]$ \bigcirc] =

-Write w in Z[по] as a linear combination of elements of $\pi 0$. The sum of the absolute value of the coefficients is the Manhattan norm of w (or I norm), denoted $M(w)$.
-Write w in Z[по] as a linear combination of elements of π_{0}. The sum of the absolute value of the coefficients is the Manhattan norm of w (or It norm), denoted $M(w)$.
-For each X and Y in π_{0}, the smallest number of points in which a representative of X intersects a representative of Y is minimal intersection of X and Y, denoted by $i(X, Y)$.
-Write w in Z[по] as a linear combination of elements of π_{0}. The sum of the absolute value of the coefficients is the Manhattan norm of w (or I norm), denoted $M(w)$.

- For each X and Y in π_{0}, the smallest number of points in which a representative of X intersects a representative of Y is minimal intersection of X and Y, denoted by $i(X, Y)$.

Goal: Study relation between $\mathrm{M}([\mathrm{x}, \mathrm{y}])$ and $i(X, Y)$.
S = orientable surface (or orbifold)
$\mathrm{M}^{3}=$ compact, orientable, irreducible, with contractible universal cover.

Goldman Bracket: Lie Bracket on (linear combination of) closed, oriented free homotopy classes of curves.

String bracket: Lie bracket on (linear combination of) families of oriented closed curves.

Combinatorial presentation

The bracket encodes the intersection structure in terms of the Manhattan norm.

Different surfaces have different Goldman Lie algebras

String bracket gives the H-S graph of the graph of groups in the celebrated torus decomposition

We are not unaware of the connections with geometrization.

$M[X, Y] \leq i(X, Y)$

$M[X, Y] \leq i(X, Y)$

$M[X, Y]=i(X, Y) ?$

$M[X, Y] \leq i(X, Y)$

$M[X, Y]=i(X, Y) ?$
In this
example, yes.

$M[X, Y] \leq i(X, Y)$

$M[X, Y]=i(X, Y) ?$
In this
example, yes.

But not always...

$M[X, Y] \leq i(X, Y)$

$M[X, Y]=i(X, Y)$? $\begin{aligned} & \text { example, } \\ & \text { yes. }\end{aligned}$

But not always...

$M[X, Y] \leq i(X, Y)$

$M[X, Y]=i(X, Y)$? $\begin{aligned} & \text { example, } \\ & \text { yes. }\end{aligned}$

But not always...

$M[X, Y] \leq i(X, Y)$

$M[X, Y]=i(X, Y) ?, \begin{aligned} & \text { example, } \\ & \text { yes. }\end{aligned}$
In this

But not always...

aab ba = aabba

$M[X, Y] \leq i(X, Y)$

$M[X, Y]=i(X, Y) ?, \begin{aligned} & \text { example, } \\ & \text { yes. }\end{aligned}$
In this

But not always...

aab $\mathrm{ba}=\mathrm{aabba}$
baa $a b=$ baaab

$M[X, Y] \leq i(X, Y)$

$M[X, Y]=i(X, Y) ?$
In this example, yes.

But not always...

aab $\mathrm{ba}=\mathrm{aabba}$

- baa ab = baaab

[aab,ab]=0
 $i(a a b, a b)=2$

$M[X, Y] \leq i(X, Y)$

$$
M[X, Y]=i(X, Y) ? \begin{aligned}
& \text { example, } \\
& \text { yes. }
\end{aligned}
$$

\square

Consider X and Y are free homotopy classes of closed curves, such that X has a representative with no self-intersection.

Consider X and Y are free homotopy classes of closed curves, such that X has a representative with no self-intersection.

Theorem (Goldman, 1986) If $[X, Y]=0$ (that is, $M[X, Y]=0$) then $i(X, Y)=0$.

Consider X and Y are free homotopy classes of closed curves, such that X has a representative with no self-intersection.

Theorem (Goldman, 1986) If $[X, Y]=0$ (that is, $M[X, Y]=0$) then $i(X, Y)=0$.

Theorem (C, 2009) M[X,Y] $=i(X, Y)$.

Consider X and Y are free homotopy classes of closed curves, such that X has a representative with no self-intersection.

Theorem (Goldman, 1986) If $[X, Y]=0$ (that is, $M[X, Y]=0$) then $i(X, Y)=0$.

Theorem (C, 2009) M[X,Y] $=i(X, Y)$.

Consider X and Y are free homotopy classes of closed curves, such that X has a representative with no self-intersection.

Theorem (Goldman, 1986) If $[X, Y]=0$ (that is, $M[X, Y]=0$) then $i(X, Y)=0$.

Theorem (C, 2009) M[X,Y] $=i(X, Y)$.

Proof: Free product with amalgamation (or HNN structure)

Consider X and Y are free homotopy classes of closed curves, such that X has a representative with no self-intersection.

Theorem (Goldman, 1986) If $[X, Y]=0$ (that is, $M[X, Y]=0$) then $i(X, Y)=0$.

Theorem (C, 2009) M[X,Y] $=i(X, Y)$.
Proof: Free product with amalgamation (or HNN structure)

$$
\begin{aligned}
& \pm\left[w_{1} w_{2} w_{3} w_{4}, X\right]= \\
& w_{1} X w_{2} w_{3} w_{4}-w_{1} w_{2} X w_{3} w_{4}+w_{1} w_{2} w_{3} X w_{4}-w_{1} w_{2} w_{3} w_{4} X
\end{aligned}
$$

Consider X and Y are free homotopy classes of closed curves, such that X has a representative with no self-intersection.

Theorem (Goldman, 1986) If $[X, Y]=0$ (that is, $M[X, Y]=0$) then $i(X, Y)=0$.

Theorem (C, 2009) M[X,Y] $=i(X, Y)$.
Proof: Free product with amalgamation (or HNN structure)

$\pm\left[W_{1} W_{2} W_{3} W_{4}, X\right]=$
$w_{1} X w_{2} w_{3} w_{4}-w_{1} w_{2} X w_{3} w_{4}+w_{1} w_{2} w_{3} X w_{4}-w_{1} w_{2} w_{3} w_{4}$

Consider X and Y are free homotopy classes of closed curves, such that X has a representative with no self-intersection.

Theorem (Goldman, 1986) If $[\mathrm{X}, \mathrm{Y}]=0$ (that is, $\mathrm{M}[\mathrm{X}, \mathrm{Y}]=0$) then $\mathrm{i}(\mathrm{X}, \mathrm{Y})=0$.

Theorem (C, 2009) M[X,Y] $=i(X, Y)$.
Proof: Free product with amalgamation (or HNN structure)

$$
\begin{aligned}
& \pm\left[w_{1} w_{2} w_{3} w_{4}, X\right]= \\
& w_{1} X w_{2} w_{3} w_{4}-w_{1} w_{2} X w_{3} w_{4}+w_{1} w_{2} w_{3} X w_{4}-w_{1} w_{2} w_{3} w_{4}
\end{aligned}
$$

Combinatorial presentation of the Goldman bracket Counting intersections theorem.

Consider X and Y are free homotopy classes of closed curves.

Consider X and Y are free homotopy classes of closed curves.

Counting Theorem (Gadgil,C.) If p and q are large enough integers,

Consider X and Y are free homotopy classes of closed curves.

Counting Theorem (Gadgil,C.) If p and q are large enough integers, then $\mathrm{M}\left[\mathrm{X}^{p}, \mathrm{Y}^{q}\right]$

Consider X and Y are free homotopy classes of closed curves.

Counting Theorem (Gadgil,C.) If p and q are large enough integers,
then $\mathrm{M}\left[\mathrm{X}^{p}, \mathrm{Y}^{q}\right]$

Consider X and Y are free homotopy classes of closed curves.

Counting Theorem (Gadgil,C.) If p and q are large enough integers, then $M\left[X^{p}, Y^{q}\right]=\operatorname{p.q.i(X,Y)}$

Consider X and Y are free homotopy classes of closed curves.

Counting Theorem (Gadgil,C.) If p and q are large enough integers,
then $M\left[X^{p}, Y^{q}\right]=\operatorname{p.q.i(X,Y)}$

Consider X and Y are free homotopy classes of closed curves.

Counting Theorem (Gadgil,C.) If p and q are large enough integers,
then $M\left[X^{p}, Y^{q}\right]=\operatorname{p.q.i(X,Y)}$
Holds for $X=Y$, (with $p \neq q$).

Consider X and Y are free homotopy classes of closed curves.

Counting Theorem (Gadgil,C.) If p and q are large enough integers,
then $M\left[X^{p}, Y^{q}\right]=\operatorname{p.q.i(X,Y)}$
Holds for $X=Y$, (with $p \neq q$).

M is a 3
$L M=$ space of maps from the circle to M.

LM=space of maps from the circle to M .

$L M=$ space of maps from the circle to M.
$H_{0}(L M)=$ the zeroth equivariant homology group of LM

LM=space of maps from the circle to M.

$H_{0}(L M)=$ the zeroth equivariant homology group of LM (equivariant with respect to the action of the circle)

LM=space of maps from the circle to M.

$\mathrm{H}_{0}(\mathrm{LM})=$ the zeroth equivariant homology group of LM (equivariant with respect to the

Since the circle is connected,

LM=space of maps from the circle to M.

$H_{0}(L M)=$ the zeroth equivariant homology group of LM (equivariant with respect to the

Since the circle is connected, $H_{0}($ space $)=\oplus_{\{C}$ is a connected component of space $\}$ Z.C

LM=space of maps from the circle to M.

$H_{0}(L M)=$ the zeroth equivariant homology group of LM (equivariant with respect to the

Since the circle is connected, H_{0} (space) $=\oplus_{\{\mathrm{C}}$ is a connected component of space $\}$ Z.C $H_{0}(\mathrm{LM})=\oplus_{\left\{\mathrm{a} \text { in } \Pi_{0}(\mathrm{M})\right\} \text { Z. } \mathrm{a} . \mathrm{a}}$
$L M=$ space of maps from the circle to M.

LM=space of maps from the circle to M.

Consider a map from the circle to LM.
$L M=$ space of maps from the circle to M.
Consider a map f from the circle to LM.

$L M=$ space of maps from the circle to M.
Consider a map from the circle to LM.
$\mathrm{H}_{1}(\mathrm{LM})=$ the first equivariant homology group of LM

$L M=$ space of maps from the circle to M.

Consider a map from the circle to LM.
$\mathrm{H}_{1}($ space $)=\oplus_{\{ } \mathrm{C}$ connected component of space $\} \mathrm{H}_{1}(\mathrm{C})$
$H_{1}(L M)=\oplus\left\{\mathrm{a}\right.$ in $\left.\Pi_{0}(\mathrm{LM})\right\} \mathrm{H}_{1}(\mathrm{a})$
$H_{1}(L M)=$ the first equivariant homology group of LM

$L M=$ space of maps from the circle to M.
$H_{0}(L M)=$ the zeroth equivariant homology group of LM

$H_{1}(L M)=$ the first equivariant homology group of LM

The string bracket

Given a and a closed
fibered torus

curve

The string bracket

Given a and a closed
fibered torus
curve

The string bracket

Given a and a closed
fibered torus curve

the bracket is defined as follows

The string bracket

Given a and a closed fibered torus

the bracket is defined as follows

The string bracket

the bracket is defined as follows

The string bracket

The string bracket

M

The string bracket

The string bracket
The terms of the bracket
 are free homotopy classes

The string bracket
The terms of the bracket
 are free homotopy classes

Orientation gives
a sign

The string bracket

Given a

and a another fibered torus

The string bracket

The string bracket

The string bracket

The string bracket

The string bracket

Theorem (Sullivan, C, 1999)

- $\mathrm{H}_{0} \otimes \mathrm{H}_{1}->\mathrm{H}_{0}$ is a Lie module.
- $\mathrm{H}_{1} \otimes \mathrm{H}_{1}->\mathrm{H}_{1}$ is a Lie algebra.

- Jacobi

Theorem (Sullivan, C, 1999)

- $\mathrm{H}_{0} \otimes \mathrm{H}_{1}->\mathrm{H}_{0}$ is a Lie module.
- $\mathrm{H}_{1} \otimes \mathrm{H}_{1}->\mathrm{H}_{1}$ is a Lie algebra.

- (In general, $H \otimes H->H$ is a Lie algebra of degree 2-d, d is the dimension of the manifold. When $d=2$, we get the Goldman bracket $H_{0} \otimes H_{0}->H_{0}$).

Recall that in a surface, if X has an embedded representative then the $M[X, Y]=i(X, Y)$ and

$$
\begin{aligned}
& \pm\left[w_{1} w_{2} w_{3} w_{4}, X\right]= \\
& w_{1} X w_{2} w_{3} w_{4}-w_{1} w_{2} X w_{3} w_{4}+w_{1} w_{2} w_{3} X w_{4}-w_{1} w_{2} w_{3} w_{4} X
\end{aligned}
$$

Recall that in a surface, if X has an embedded representative then the $M[X, Y]=i(X, Y)$ and

$$
\begin{aligned}
& \pm\left[w_{1} w_{2} w_{3} w_{4}, X\right]= \\
& w_{1} X w_{2} w_{3} w_{4}-w_{1} w_{2} X w_{3} w_{4}+w_{1} w_{2} w_{3} X w_{4}-w_{1} w_{2} w_{3} w_{4} X
\end{aligned}
$$

If T is fibered torus and W is a free homotopy class W then $M[T, W] \leq i(T, W)$

Recall that in a surface, if X has an embedded representative then the $M[X, Y]=i(X, Y)$ and

$$
\begin{aligned}
& \pm\left[w_{1} w_{2} w_{3} w_{4}, X\right]= \\
& w_{1} X w_{2} w_{3} w_{4}-w_{1} w_{2} X w_{3} w_{4}+w_{1} w_{2} w_{3} X w_{4}-w_{1} w_{2} w_{3} w_{4} X
\end{aligned}
$$

If T is fibered torus and W is a free homotopy class W then $M[T, W] \leq i(T, W)$

Does M[T, W]= i(T,W) hold, possibly assuming T embedded?

IT is a separating, embedded fibered torus with fiber X

IT is a separating, embedded fibered torus with fiber X

IT is a separating, embedded fibered torus with fiber X

$w_{1} \times w_{2} W_{3} W_{4}$

IT is a separating, embedded fibered torus with fiber X

$w_{1} \times W_{2} W_{3} W_{4}$

IT is a separating, embedded fibered torus with fiber X

$\pm\left[\mathrm{W}_{1} \mathrm{~W}_{2} \mathrm{~W}_{3} \mathrm{~W}_{4},<\mathrm{T}, \mathrm{X}>\right]=$
$W_{1} X W_{2} W_{3} w_{4}-W_{1} w_{2} X W_{3} w_{4}+w_{1} W_{2} W_{3} X w_{4}-w_{1} w_{2} W_{3} W_{4} X$

IT is a separating, embedded fibered torus with fiber X

$\pm\left[\mathrm{W}_{1} \mathrm{~W}_{2} \mathrm{~W}_{3} \mathrm{~W}_{4},<\mathrm{T}, \mathrm{X}>\right]=$
$w_{1} X w_{2} W_{3} w_{4}-W_{1} w_{2} X w_{3} w_{4}+w_{1} W_{2} W_{3} X w_{4}-w_{1} w_{2} w_{3} W_{4} X$

If T is an embedded fibered torus and W is a free homotopy class, is $\mathrm{M}[\mathrm{T}, \mathrm{W}]=\mathrm{i}(\mathrm{T}, \mathrm{W})$?

If T is an embedded fibered torus and W is a free homotopy class, is $\mathrm{M}[\mathrm{T}, \mathrm{W}]=\mathrm{i}(\mathrm{T}, \mathrm{W})$?

Recall: A Seifert fibered manifold is a manifold that is a disjoint union of circles organized in a particular way.

If T is an embedded fibered torus and W is a free homotopy class, is $\mathrm{M}[\mathrm{T}, \mathrm{W}]=\mathrm{i}(\mathrm{T}, \mathrm{W})$?

Recall: A Seifert fibered manifold is a manifold that is a disjoint union of circles organized in a particular way.

Except for finitely many, the circles are freely homotopic to a curve h .

If T is an embedded fibered torus and W is a free homotopy class, is $\mathrm{M}[\mathrm{T}, \mathrm{W}]=\mathrm{i}(\mathrm{T}, \mathrm{W})$?

Recall: A Seifert fibered manifold is a manifold that is a disjoint union of circles organized in a particular way.

Except for finitely many, the circles are freely homotopic to a curve h .

The center of the fundamental group of a Seifert manifold is typically generated by h.

If T is an embedded fibered torus and W is a free homotopy class, is $\mathrm{M}[\mathrm{T}, \mathrm{W}]=\mathrm{i}(\mathrm{T}, \mathrm{W})$?

Image by Jos Leys

Recall: A Seifert fibered manifold is a manifold that is a disjoint union of circles organized in a particular way.

Except for finitely many, the circles are freely homotopic to a curve h .

The center of the fundamental group of a Seifert manifold is typically generated by h .

If T is an embedded fibered torus and W is a free homotopy class, is $\mathrm{M}[\mathrm{T}, \mathrm{W}]=\mathrm{i}(\mathrm{T}, \mathrm{W})$?

Image by Jos Leys

Recall: A Seifert fibered manifold is a manifold that is a disjoint union of circles organized in a particular way.

Except for finitely many, the circles are freely homotopic to a curve h .

The center of the fundamental group of a Seifert manifold is typically generated by h .

Suppose that T is a fibered torus in a Seifert manifold and the fiber of T is h.

If T is an embedded fibered torus and W is a free homotopy class, is $\mathrm{M}[\mathrm{T}, \mathrm{W}]=\mathrm{i}(\mathrm{T}, \mathrm{W})$?

Image by Jos Leys

Recall: A Seifert fibered manifold is a manifold that is a disjoint union of circles organized in a particular way.

Except for finitely many, the circles are freely homotopic to a curve h .

The center of the fundamental group of a Seifert manifold is typically generated by h .

Suppose that T is a fibered torus in a Seifert manifold and the fiber of T is h.
$\left[w_{1} w_{2} w_{3} w_{4},<T, h>\right]$
$=W_{2} w_{3} w_{4} w_{1} h-w_{3} w_{4} w_{1} w_{2} h+w_{4} w_{1} w_{2} w_{3} h-w_{1} w_{2} w_{3} w_{4} h$
$=0$

Theorem (Gadgil, C)

Let T be (the homology class corresponding to) an embedded fibered torus whose fiber is not the generic fiber of a Seifert piece.

Let A be (free homotopy class of) a closed curve.
Then M [T, A ${ }^{2}$] $=2 \mathrm{i}(\mathrm{T}, \mathrm{A})$

Theorem (Gadgil, C)

Let T be (the homology class corresponding to) an embedded fibered torus whose fiber is not the generic fiber of a Seifert piece.

Let A be (free homotopy class of) a closed curve.
Then M [$\mathrm{T}, \mathrm{A}^{2}$] $=2 \mathrm{i}(\mathrm{T}, \mathrm{A})$
Why A ${ }^{2}$?

M compact, irreducible 3manifold.

M compact, irreducible 3manifold.

M compact, irreducible 3manifold.

There exists a minimal collection of π_{1} injective tori such that

M compact, irreducible 3manifold.

There exists a minimal collection of π_{1} injective tori such that

M compact, irreducible 3manifold.

There exists a minimal collection of π_{1} injective tori such that

M compact, irreducible 3manifold.

There exists a minimal collection of π_{1} injective tori such that

Thm (Gadgil, C) String topology gives the H-S colored graph of the graph of group of M.
Also, genus and number of boundary components of Seifert pieces.

Theorem (Gadgil, C) String topology gives the H -S colored graph of the graph of group of M and the genus and number of boundary components of Seifert pieces.

Theorem (Gadgil, C) String topology gives the H -S colored graph of the graph of group of M and the genus and number of boundary components of Seifert pieces.

Step 1 of the proof. Use
[T, T'] to "classify" tori

Theorem (Gadgil, C) String topology gives the H -S colored graph of the graph of group of M and the genus and number of boundary components of Seifert pieces.

Step 1 of the proof. Use [T, T'] to "classify" tori
(II) $)^{2}$ S) $)^{2}$

Theorem (Gadgil, C) String topology gives the H -S colored graph of the graph of group of M and the genus and number of boundary components of Seifert pieces.

Step 1 of the proof. Use [T, T'] to "classify" tori

Consider the graph with vertices all fibered tori, with an edge between two tori if [,] $\neq 0$

Theorem (Gadgil, C) String topology gives the H-S colored graph of the graph of group of M and the genus and number of boundary components of Seifert pieces.

Consider the graph with vertices all fibered tori, with an edge between two tori if [,] $\neq 0$

Theorem (Gadgil, C) String topology gives the H -S colored graph of the graph of group of M and the genus and number of boundary components of Seifert pieces.

Consider the graph with vertices all fibered tori, with an edge between two tori if [,] $\neq 0$

Step 1 of the proof. Use
[T, T'] to "classify" tori
Step 1 of the proof. Us
$[\mathrm{T}, \mathrm{T}$ '] to "classify" tori
peripheral

Theorem (Gadgil, C) String topology gives the H -S colored graph of the graph of group of M and the genus and number of boundary components of Seifert pieces.

Theorem (Gadgil, C) String topology gives the H -S colored graph of the graph of group of M and the genus and number of boundary components of Seifert pieces.

Step 2 of the proof. Say two fibered tori T, T' are equivalent if $\mathrm{M}\left[\mathrm{T}, \mathrm{A}^{2}\right]=\mathrm{M}\left[\mathrm{T}^{\prime}, \mathrm{A}^{2}\right]$

Thus (for most tori) T and T' are equivalent if and only if they are the same torus, with different fiber.

Theorem (Gadgil, C) String topology gives the H -S colored graph of the graph of group of M and the genus and number of boundary components of Seifert pieces.

$$
\begin{aligned}
& \mathrm{M}\left[\mathrm{~T}, \mathrm{O}^{2}\right] \neq 0 \\
& \mathrm{M}\left[\mathrm{~T}^{\prime}, \mathrm{O}^{2}\right] \neq 0
\end{aligned}
$$

$$
\mathrm{M}\left[\mathrm{~T}^{\prime \prime}, \mathrm{O}^{2}\right]=0 \text { for all other }
$$ (classes of) peripheral tori

Step 3. Use M $\left[\mathrm{T}, \mathrm{A}^{2}\right]=2 \mathrm{i}(\mathrm{T}, \mathrm{A})$ to "reconstruct' the graph and Seifert pieces genus and number of boundary components.

Why A^{2} ?

$\left[w_{1} w_{2},<T, h . h^{\prime}>\right]=w_{1} w_{2} h . h^{\prime}-w_{1} h . h^{\prime} w_{2}=0$

Detailed study of tori

T torus	peripheral	interior
generically fibered	vertex isolated	non-isolated
upright T(h,a)	$\mathrm{p}(\mathrm{a})$ simple and separates	$\mathrm{p}(\mathrm{a})$ simple and separates
	vertex isolated M always even $T(h, a)$ in C and there exists A in $\pi 0$ such that OM[$<\mathrm{T}, \mathrm{a}>, \mathrm{A} \wedge 2] \neq 0$ for all $<\mathrm{T}, \mathrm{a}>$ in C - $M\left[<T, a>, A^{\wedge} 2\right]=0$ for all $<T, a>$ not in C	vertex isolated M always even M=0 Seifert clump M even outside Seifert clump
	$p(a)$ simple non-separating	$p(a)$ non-simple or non-separating
	vertex isolated M even and odd	non-isolated M even and odd

Consider X and Y are free homotopy classes of closed curves, such

Consider X and Y are free homotopy classes of closed curves, such

Counting Theorem (Gadgil, C.) If p and q are large enough,

Consider X and Y are free homotopy classes of closed curves, such

Counting Theorem (Gadgil,C.) If p and q are large enough, then $M\left[X^{p}, Y^{q}\right]$

Consider X and Y are free homotopy classes of closed curves, such

Counting Theorem (Gadgil,C.) If p and q are large enough, then $M\left[X^{p}, Y^{q}\right]=\operatorname{p.q.i}(X, Y)$

Consider X and Y are free homotopy classes of closed curves, such

Counting Theorem (Gadgil,C.) If p and q are large enough, then $M\left[X^{p}, Y^{q}\right]=$ p.q.i (X, Y)

Consider X and Y are free homotopy classes of closed curves, such

Counting Theorem (Gadgil,C.) If p and q are large enough, then $M\left[X^{p}, Y^{q}\right]=$ p.q.i (X, Y)

