String topology and three manifolds

Stony Brook May 26th 2011

S an orientable surface

 π_0 denotes the set of free homotopy classes of closed oriented curves on S. NOTE: $\pi_0 = \pi_0$ (free loop space of the surface)

S an orientable surface

 π_0 denotes the set of free homotopy classes of closed oriented curves on S. NOTE: $\pi_0 = \pi_0$ (free loop space of the surface)

 $[\ ,\]\colon Z[\pi_0] \otimes Z[\pi_0] { \rightarrow } Z[\pi_0]$

S an orientable surface

 π_0 denotes the set of free homotopy classes of closed oriented curves on S. NOTE: $\pi_0 = \pi_0$ (free loop space of the surface)

Theorem: (Goldman, 1986) The bracket is well defined and satisfies the Jacobi identity.

 $[\ ,\]\colon Z[\pi_0]\otimes Z[\pi_0] { \rightarrow } Z[\pi_0]$

S an orientable surface

 π_0 denotes the set of free homotopy classes of closed oriented curves on S. NOTE: $\pi_0 = \pi_0$ (free loop space of the surface)

Theorem: (Goldman, 1986) The bracket is well defined and satisfies the Jacobi identity.

 $[\ ,\]\colon Z[\pi_0] \otimes Z[\pi_0] { \rightarrow } Z[\pi_0]$

Claim: that these two terms are different.

Claim: that these two terms are different.

Claim: that these two terms are different.

<abc> \neq <acb>

[(),()]]=

[(),()]]]= (())

[(),()]()]=()()

[,,]]]=

Theorem: (Goldman, 1986) The bracket is well defined and satisfies the Jacobi identity.

 Write w in Z[π₀] as a linear combination of elements of π₀. The sum of the absolute value of the coefficients is the Manhattan norm of w (or I₁ norm), denoted M(w).

- Write w in Z[π₀] as a linear combination of elements of π₀. The sum of the absolute value of the coefficients is the Manhattan norm of w (or I₁ norm), denoted M(w).
- For each X and Y in π₀, the smallest number of points in which a representative of X intersects a representative of Y is *minimal intersection of X and Y*, denoted by *i(X,Y)*.

- Write w in Z[π₀] as a linear combination of elements of π₀. The sum of the absolute value of the coefficients is the Manhattan norm of w (or I₁ norm), denoted M(w).
- For each X and Y in π₀, the smallest number of points in which a representative of X intersects a representative of Y is *minimal intersection of X and Y*, denoted by *i(X,Y)*.

Goal: Study relation between M([x,y]) and i(X,Y).

S = orientable surface (or orbifold)	M ³ = compact, orientable, irreducible, with contractible universal cover.
Goldman Bracket: Lie Bracket on (linear combination of) closed, oriented free homotopy classes of curves.	String bracket: Lie bracket on (linear combination of) families of oriented closed curves.
Combinatorial presentation	
The bracket encodes the intersection structure in terms of the Manhattan norm.	
Different surfaces have different Goldman Lie algebras	String bracket gives the H-S graph of the graph of groups in the celebrated torus decomposition

We are not unaware of the connections with geometrization.

 $M [X,Y] \le i(X,Y)$

 $M[X,Y] \le i(X,Y)$

$\mathsf{M}[\mathsf{X},\mathsf{Y}] = \mathsf{i}(\mathsf{X},\mathsf{Y})?$

 $M[X,Y] \le i(X,Y)$ In this example, M[X,Y] = i(X,Y)?yes.

 $M[X,Y] \le i(X,Y)$ In this example, M[X,Y] = i(X,Y)?yes.

 $M[X,Y] \le i(X,Y)$ In this example, M[X,Y] = i(X,Y)?yes.

 $M[X,Y] \le i(X,Y)$ In this example, M[X,Y] = i(X,Y)?yes.

 $M[X,Y] \le i(X,Y)$ In this example, M[X,Y] = i(X,Y)?yes.

aab ba = aabba

 $M[X,Y] \leq i(X,Y)$ In this example, M[X,Y] = i(X,Y)?yes.

aab ba = aabba

• baa ab = baaab

 $M[X,Y] \leq i(X,Y)$ In this example, M[X,Y] = i(X,Y)?yes.

- aab ba = aabba
- baa ab = baaab

[aab,ab]=0i(aab,ab)=2

Theorem (Goldman, 1986) If [X,Y]=0 (that is, M[X,Y]=0) then i(X,Y)=0.

Theorem (Goldman, 1986) If [X,Y]=0 (that is, M[X,Y]=0) then i(X,Y)=0.

Theorem (C, 2009) M[X,Y] = i(X,Y).

Theorem (Goldman, 1986) If [X,Y]=0 (that is, M[X,Y]=0) then i(X,Y)=0.

Theorem (C, 2009) M[X,Y] = i(X,Y).

Theorem (Goldman, 1986) If [X,Y]=0 (that is, M[X,Y]=0) then i(X,Y)=0.

Theorem (C, 2009) M[X,Y] = i(X,Y).

Proof: Free product with amalgamation (or HNN structure)

Theorem (Goldman, 1986) If [X,Y]=0 (that is, M[X,Y]=0) then i(X,Y)=0.

Theorem (C, 2009) M[X,Y] = i(X,Y).

Proof: Free product with amalgamation (or HNN structure)

Theorem (Goldman, 1986) If [X,Y]=0 (that is, M[X,Y]=0) then i(X,Y)=0.

Theorem (C, 2009) M[X,Y] = i(X,Y).

Proof: Free product with amalgamation (or HNN structure)

Theorem (Goldman, 1986) If [X,Y]=0 (that is, M[X,Y]=0) then i(X,Y)=0.

Counting Theorem (Gadgil,C.) If p and q are large enough integers,

Counting Theorem (Gadgil,C.) If p and q are large enough integers,

then M $[X^p, Y^q]$

Counting Theorem (Gadgil,C.) If p and q are large enough integers,

then M [X^p,Y^q]

Counting Theorem (Gadgil,C.) If p and q are large enough integers,

then M $[X^p, Y^q] = p.q.i(X, Y)$

Counting Theorem (Gadgil,C.) If p and q are large enough integers,

then M $[X^p, Y^q] = p.q.i(X, Y)$

Counting Theorem (Gadgil,C.) If p and q are large enough integers,

then M $[X^p, Y^q] = p.q.i(X, Y)$

Holds for X=Y, (with $p \neq q$).

Counting Theorem (Gadgil,C.) If p and q are large enough integers,

then M $[X^p, Y^q] = p.q.i(X, Y)$

Holds for X=Y, (with $p \neq q$).

LM=space of maps from the circle to M.

LM=space of maps from the circle to M.

Misa3 manifold

 $H_0(LM)$ = the zeroth equivariant homology group of LM

Misa3 manifold

Misa3 manifold

Misa3 manifold

Since the circle is connected,

Misa3 manifold

M

Since the circle is connected,

$$H_0(\text{space}) = \bigoplus \{C \text{ is a connected component of space} \} \mathbf{Z.C}$$

 $H_0(LM) = \bigoplus \{a \text{ in } \pi_0 (M)\} \mathbf{Z.a}$

Consider a map f from the circle to LM.

Consider a map f from the circle to LM.

Consider a map f from the circle to LM.

$H_1(LM)$ = the first equivariant homology group of LM

Consider a map f from the circle to LM.

H₁(LM)= the first equivariant homology group of LM

the bracket is defined as follows

the bracket is defined as follows

the bracket is defined as follows

The terms of the bracket are free homotopy classes

The terms of the bracket are free homotopy classes

 (In general, H ⊗ H -> H is a Lie algebra of degree 2-d, d is the dimension of the manifold. When d=2, we get the Goldman bracket H₀ ⊗ H₀ -> H₀). Recall that in a surface, if X has an embedded representative then the M[X,Y] = i(X,Y) and

$\pm [W_1 W_2 W_3 W_4, X] =$

 $w_1 X w_2 w_3 w_4 - w_1 w_2 X w_3 w_4 + w_1 w_2 w_3 X w_4 - w_1 w_2 w_3 w_4 X$

Recall that in a surface, if X has an embedded representative then the M[X,Y] = i(X,Y) and

 $\pm [W_1 W_2 W_3 W_4, X] =$

 $w_1 X w_2 w_3 w_4 - w_1 w_2 X w_3 w_4 + w_1 w_2 w_3 X w_4 - w_1 w_2 w_3 w_4 X$

If T is fibered torus and W is a free homotopy class W then M[T,W] \leq i(T,W)

Recall that in a surface, if X has an embedded representative then the M[X,Y] = i(X,Y) and

 $\pm [W_1 W_2 W_3 W_4, X] =$

 $w_1 X w_2 w_3 w_4 - w_1 w_2 X w_3 w_4 + w_1 w_2 w_3 X w_4 - w_1 w_2 w_3 w_4 X$

If T is fibered torus and W is a free homotopy class W then M[T,W] \leq i(T,W)

Does *M*[*T*, *W*]= *i*(*T*,*W*) hold, possibly assuming *T* embedded?

 $W_1 X W_2 W_3 W_4$

 $w_1 X \ w_2 w_3 w_4$

IT is a separating, embedded fibered torus with fiber X

 $W_1 X W_2 W_3 W_4$

 $\pm [W_1 W_2 W_3 W_4, \langle T, X \rangle] = \\ w_1 X w_2 w_3 w_4 - w_1 w_2 X w_3 w_4 + w_1 w_2 w_3 X w_4 - w_1 w_2 w_3 w_4 X$

IT is a separating, embedded fibered torus with fiber X

Recall: A Seifert fibered manifold is a manifold that is a disjoint union of circles organized in a particular way.

Recall: A Seifert fibered manifold is a manifold that is a disjoint union of circles organized in a particular way.

Except for finitely many, the circles are freely homotopic to a curve h.

Recall: A Seifert fibered manifold is a manifold that is a disjoint union of circles organized in a particular way.

Except for finitely many, the circles are freely homotopic to a curve h.

The center of the fundamental group of a Seifert manifold is typically generated by h.

Image by Jos Leys

Recall: A Seifert fibered manifold is a manifold that is a disjoint union of circles organized in a particular way.

Except for finitely many, the circles are freely homotopic to a curve h.

The center of the fundamental group of a Seifert manifold is typically generated by h.

Image by Jos Leys

Suppose that T is a fibered torus in a Seifert manifold and the fiber of T is h.

Recall: A Seifert fibered manifold is a manifold that is a disjoint union of circles organized in a particular way.

Except for finitely many, the circles are freely homotopic to a curve h.

The center of the fundamental group of a Seifert manifold is typically generated by h.

Recall: A Seifert fibered manifold is a manifold that is a disjoint union of circles organized in a particular way.

Except for finitely many, the circles are freely homotopic to a curve h.

The center of the fundamental group of a Seifert manifold is typically generated by h.

Suppose that T is a fibered torus in a Seifert manifold and the fiber of T is h.

 $[w_1w_2w_3w_4, <T,h>]$ = $w_2w_3w_4w_1h - w_3w_4w_1w_2h + w_4w_1w_2w_3h - w_1w_2w_3w_4h$ = 0

Theorem (Gadgil, C)

Let T be (the homology class corresponding to) an embedded fibered torus whose fiber is not the generic fiber of a Seifert piece.

Let A be (free homotopy class of) a closed curve.

Then M [T, A^2] =2 i(T, A)

Theorem (Gadgil, C)

Let T be (the homology class corresponding to) an embedded fibered torus whose fiber is not the generic fiber of a Seifert piece.

Let A be (free homotopy class of) a closed curve.

Then M [T, A^2] =2 i(T, A)

Why A^2 ?

There exists a minimal collection of π_1 injective tori such that

There exists a minimal collection of π_1 injective tori such that

There exists a minimal collection of π_1 injective tori such that

There exists a minimal collection of π_1 injective tori such that

Thm (Gadgil, C) String topology gives the H-S colored graph of the graph of group of M. Also, genus and number of boundary components of Seifert pieces.

> Step 1 of the proof. Use [T, T'] to "classify" tori

Step 1 of the proof. Use [T, T'] to "classify" tori

Step 1 of the proof. Use [T, T'] to "classify" tori

Consider the graph with vertices all fibered tori, with an edge between two tori if $[,]\neq 0$

Step 1 of the proof. Use [T, T'] to "classify" tori

Consider the graph with vertices all fibered tori, with an edge between two tori if $[,]\neq 0$

eripheral

Step 1 of the proof. Use [T, T'] to "classify" tori

Seife

Consider the graph with vertices all fibered tori, with an edge between two tori if $[,]\neq 0$

≠(

Step 2 of the proof. Say two fibered tori T, T' are equivalent if $M[T,A^2]=M[T',A^2]$

Thus (for most tori) T and T' are equivalent if and only if they are the same torus, with different fiber.

M[T, <mark>0</mark>²]≠0

M[T', 0²]≠0

 $M[T", 0^2] = 0$ for all other (classes of) peripheral tori

Step 3. Use M [T, A^2] =2 i(T, A) to "reconstruct" the graph and Seifert pieces genus and number of boundary components.

Detailed study of tori

T torus	peripheral	interior
generically fibered	vertex isolated	non-isolated
upright T(h,a)	p(a) simple and separates	<u>p(a) simple and separates</u>
	vertex isolated M always even T(h,a) in C and there exists A in π 0 such that $M[,A^2] \neq 0$ for all $$ in C $M[,A^2] = 0$ for all $$ not in C	vertex isolated M always even M=0 Seifert clump M even outside Seifert clump
	p(a) simple non-separating	p(a) non-simple or non-separating
	vertex isolated M even and odd	non-isolated M even and odd

Counting Theorem (Gadgil, C.) If p and q are large enough,

Counting Theorem (Gadgil, C.) If p and q are large enough,

then M [X^p,Y^q]

Counting Theorem (Gadgil, C.) If p and q are large enough,

then M $[X^p, Y^q] = p.q.i(X, Y)$

Counting Theorem (Gadgil, C.) If p and q are large enough,

then M $[X^p, Y^q] = p.q.i(X, Y)$

Counting Theorem (Gadgil,C.) If p and q are large enough,

then M $[X^p, Y^q] = p.q.i(X, Y)$

