
Expanding Thurston maps

Mario Bonk

UCLA

May 31, 2011

Mario Bonk Thurton maps



Branched covering maps

Let S2 be a topological 2-sphere. A map f : S2 → S2 is a branched
covering map iff

it is continuous and orientation-preserving,

near each point p ∈ S2, it can be written in the form z 7→ zd ,
d ∈ N, in suitable complex coordinates.

d = degf (p) local degree of f at p.

Cf = {p ∈ S2 : degf (p) ≥ 2} set of critical points of f .

Remark: Every rational map R : Ĉ→ Ĉ on the Riemann sphere Ĉ
is a branched covering map.
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The postcritical set

If f : S2 → S2 is a branched covering map, then

Pf =
⋃
n∈N

f n(Cf )

is called the postcritical set of f . Here f n is the nth-iterate of f .

Remarks: Points in Pf are obstructions to taking inverse branches
of f n. Each iterate f n is a covering map over S2 \ Pf .
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Thurston maps

A map f : S2 → S2 is called a Thurston map iff

it is a branched covering map,

it has a finite postcritical set Pf .

Different viewpoints on Thurston maps:

f well-defined only up to isotopy relative to Pf (one studies
dynamics on isotopy classes of curves etc.), or

f pointwise defined (one studies pointwise dynamics under
iteration etc.).

Often one wants to find a “good representative” f in a given
isotopy class.
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Example of a Thurston map I

#Cf = 6,

#Pf = 4,

Subdivision rule: Combinatorial data specifying how the two
level-0 tiles are subdivided by 6 and 4 level-1 tiles,
respectively.
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A basic problem

When is an expanding Thurston map f conjugate to a rational
map? So when is there a homeomorphism φ : S2 → Ĉ and a
rational map R : Ĉ→ Ĉ s.t.

S2 φ←→ Ĉyf
yR

S2 φ←→ Ĉ

Remark: The map f in the previous example is not conjugate to a
rational map.
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Tiles

Let n ∈ N0, f : S2 → S2 be a Thurston map, and J ⊆ S2 be a
Jordan curve with Pf ⊆ J. Then a tile of level n or n-tile is the
closure of a complementary component of f −n(J).

tiles are topological 2-cells (=closed Jordan regions),

tiles of a given level n form a cell decomposition Dn of S2.

the cell decompositions Dn for different levels n are usually
not compatible (only if J is invariant, i.e., f (J) ⊆ J equiv.
J ⊆ f −1(J)).
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Example of a Thurston map II

f (z) = 1 +
ω − 1

z3
, ω = e4πi/3.

Cf = {0,∞}. Orbits of critical points: 0 7→ ∞ 7→ 1 7→ ω 7→ ω.
Pf = {1, ω,∞}, J = line through 1, ω, ∞.

Tiles of level 4
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Expanding Thurston maps

A Thurston map f : S2 → S2 is expanding if the size of n-tiles
goes to 0 uniformly as n→∞; so we require

lim
n→∞

max
n-tileX n

diam(X n) = 0.

This is:

independent of Jordan curve J,

independent of the underlying base metric on S2.

Remark: A rational Thurston map R is expanding iff R has no
periodic critical points iff J (R) = Ĉ for its Julia set.

9 / 22



Expanding Thurston maps

A Thurston map f : S2 → S2 is expanding if the size of n-tiles
goes to 0 uniformly as n→∞; so we require

lim
n→∞

max
n-tileX n

diam(X n) = 0.

This is:

independent of Jordan curve J,

independent of the underlying base metric on S2.

Remark: A rational Thurston map R is expanding iff R has no
periodic critical points iff J (R) = Ĉ for its Julia set.
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Invariant curves

Theorem. (B.-Meyer) Let f be an expanding Thurston map.
Then for each sufficiently high iterate f n there exists a
(forward-)invariant quasicircle C ⊆ S2 with Pf = Pf n ⊆ C.

Corollary. (B.-Meyer, Cannon-Floyd-Parry) Let f be an expanding
Thurston map. Then every sufficiently high iterate f n is described
by a subdivision rule.

Remark: If J ⊆ S2 is an arbitrary Jordan curve with Pf ⊆ J, then
there exists n, and a quasicircle C isotopic to J rel. Pf s.t.
f n(C) ⊆ C.

10 / 22



Invariant curves

Theorem. (B.-Meyer) Let f be an expanding Thurston map.
Then for each sufficiently high iterate f n there exists a
(forward-)invariant quasicircle C ⊆ S2 with Pf = Pf n ⊆ C.

Corollary. (B.-Meyer, Cannon-Floyd-Parry) Let f be an expanding
Thurston map. Then every sufficiently high iterate f n is described
by a subdivision rule.

Remark: If J ⊆ S2 is an arbitrary Jordan curve with Pf ⊆ J, then
there exists n, and a quasicircle C isotopic to J rel. Pf s.t.
f n(C) ⊆ C.

10 / 22



Invariant curves

Theorem. (B.-Meyer) Let f be an expanding Thurston map.
Then for each sufficiently high iterate f n there exists a
(forward-)invariant quasicircle C ⊆ S2 with Pf = Pf n ⊆ C.

Corollary. (B.-Meyer, Cannon-Floyd-Parry) Let f be an expanding
Thurston map. Then every sufficiently high iterate f n is described
by a subdivision rule.

Remark: If J ⊆ S2 is an arbitrary Jordan curve with Pf ⊆ J, then
there exists n, and a quasicircle C isotopic to J rel. Pf s.t.
f n(C) ⊆ C.

10 / 22



Iterative construction of invariant curves
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Example of subdivision rule I
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Example of subdivision rule II
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The metric gauge of a Thurston map

Proposition. Let f be an expanding Thurston map. Then there
exists a metric d on S2 unique up to snowflake equivalence s.t. for
all n-tiles X n,

d-diam(X n) ' Λ−n,

where Λ > 1.

Two metrics d1 and d2 are snowflake equivalent iff there ex. α > 0
s.t.

d1 ' d2
α.

Remark: This snowflake gauge of visual metrics is independent of
the choice of the Jordan curve J.
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Characterization of rational Thurston maps

Theorem. (B.-Meyer, Pilgrim-Häıssinsky)
Let f : S2 → S2 be an expanding Thurston map, and d a metric in
the canonical snowflake gauge.
Then f is conjugate to a rational map if and only if f has no
periodic crititical points and (S2, d) is quasisymmetrically
equivalent to the standard sphere S2.
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Quasisymmetric maps

A homeomorphism f : X → Y between metric spaces is (weakly-)
quasisymmetric (=qs) if there exists H ≥ 1 s.t.

|x − y | ≤ |x − z | ⇒ |f (x)− f (y)| ≤ H|f (x)− f (z)|

for all x , y , z ∈ X .

f is quasisymmetric if it maps balls to “roundish” sets of
uniformly controlled eccentricity.

Quasisymmetry global version of quasiconformality.

bi-Lipschitz ⇒ qs ⇒ qc.

In Rn, n ≥ 2: qs ⇔ qc.
Also true for “Loewner spaces” (Heinonen-Koskela).

16 / 22



Quasisymmetric maps

A homeomorphism f : X → Y between metric spaces is (weakly-)
quasisymmetric (=qs) if there exists H ≥ 1 s.t.

|x − y | ≤ |x − z | ⇒ |f (x)− f (y)| ≤ H|f (x)− f (z)|

for all x , y , z ∈ X .

f is quasisymmetric if it maps balls to “roundish” sets of
uniformly controlled eccentricity.

Quasisymmetry global version of quasiconformality.

bi-Lipschitz ⇒ qs ⇒ qc.

In Rn, n ≥ 2: qs ⇔ qc.
Also true for “Loewner spaces” (Heinonen-Koskela).

16 / 22



Cannon’s conjecture

Version I: Suppose G is a Gromov hyperbolic group with
∂∞G ≈ S2. Then G admits an action on hyperbolic 3-space H3

that is discrete, cocompact, and isometric.

This is equivalent to:

Version II: Suppose G is a Gromov hyperbolic group with
∂∞G ≈ S2. Then ∂∞G is qs-equivalent to S2.

If true, the conjecture would give a characterization of
fundamental groups π1(M) of closed hyperbolic 3-orbifolds M from
the point of view of geometric group theory.
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The quasisymmetric uniformization problem

Suppose X is a metric space homeomorphic to a “standard” metric
space Y . When is X qs-equivalent to Y ?

Precise meaning of “standard” metric space depends on
context.

Examples: Y = Rn, Sn, standard 1/3-Cantor set C , etc.

Case Y = S2 particularly interesting in view of Cannon’s
conjecture and the characterization of rational Thurston maps.

18 / 22



The quasisymmetric uniformization problem

Suppose X is a metric space homeomorphic to a “standard” metric
space Y . When is X qs-equivalent to Y ?

Precise meaning of “standard” metric space depends on
context.

Examples: Y = Rn, Sn, standard 1/3-Cantor set C , etc.

Case Y = S2 particularly interesting in view of Cannon’s
conjecture and the characterization of rational Thurston maps.

18 / 22



Linear local contractibility

A metric space X is linearly locally contractible iff there exists a
constant L ≥ 1 s.t. the inclusion map

B(a,R) ↪→ B(a, LR)

is homotopic to a constant map whenever a ∈ X and
R ≤ diam(X )/L.

Rules out cusps!

Linear local contractibility is a qs-invariant.
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Ahlfors regularity

A metric space X is called Ahlfors Q-regular, Q > 0, if

HQ(B(a,R)) ' RQ

for all closed balls B(a,R) ⊆ X with R ≤ diam(X ).

HQ is Q-dimensional Hausdorff measure.

A Q-regular space has Hausdorff dimension Q.
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Qs-parametrization of 2-spheres

Theorem. (B., Kleiner 2002) Let S be a metric 2-sphere. If S is
Ahlfors 2-regular and linearly locally contractible, then S is
qs-equivalent to S2.

Remark: This has recently been applied to find a “combinatorial
characterization” of Lattès maps (Qian Yin, Ph.D. thesis, 2011).
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Further directions

What are the special properties of subdivison rules associated
with rational Thurston maps?

Can one reprove Thurston’s characterization of rational maps
using the combinatorial approach?

An expanding Thurston map need not have an invariant
Jordan curve containing the postcritical set Pf . Does there
always exist an invariant graph G ⊇ Pf ?

Can one extend the theory of expanding Thurston maps to
Thurston maps that are only expanding on their “Julia sets”?
(Analog of subhyperbolic rational maps).
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