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I Recently much of the progress in

understanding 2-dimensional critical
phenomena resulted from

Conformal Field Theory (last 25 years)
Schramm-Loewner Evolution (last 10 years)

There was very fruitful interaction
between mathematics and physics,
algebraic and geometric arguments

We will try to describe some of it



An example: 2D Ising model

Squares of two colors,
representing spins s=x1

Nearby spins want to be the
same, parameter x :
Prob = x!*+neighbors}
= eXP(-B peighbors S(U)S(V))
[Peierls 1936]:
there is a phase transition
[Kramers-Wannier 1941]:

at Xcrit — 1/(1+ \/E)
I




Ising model: the phase transition

X=X X~0

crit

Prob = x#{+-neighbors}




Ising model is “exactly solvable”

Onsager, 1944: a famous calculation
of the partition function (unrigorous).

Many results followed, by different methods:

Kaufman, Onsager, Yang, Kac, Ward, Potts,
Montroll, Hurst, Green, Kasteleyn, McCoy, Wu,
Vdovichenko, Fisher, Baxter, ...

* Only some results rigorous
* Limited applicability to other models



Renormalization Group

Petermann-Stueckelberg 1951, ...
Kadanoff, Fisher, Wilson, 1963-1966, ...

Block-spin feesderede | seean
renormalization . -|- - c|- oo e
=rescaling el e
Conclusion: D S NS S
At criticality - Iﬂi _H : :t b =

the scaling limit
is described by a massless field theory.

The critical point is universal and hence
translation, scale and rotation invariant



Renormalization Group

From [Michael Fisher,1983] A depiction of the space of
Hamiltonians H showing initial

physical manifold . .

TO T ) or physical manifolds and the
flows induced by repeated
application of a discrete RG

transformation Rb with a

physical
critical
point

L E-F

renormalized first

critical — /" renormatized  SPatial rescaling factor b (or
point / ; — \ manifold . .
S *I \ RN induced by a corresponding
J itenl \& N continuous or differential RG).
¥ Trajectories ‘. R,:] Critical trajectories are shown
fixed point ¥ bold: they all terminate, in the

x *'é:'iﬂ._, . region of H shown here, at a

fixed point H*. The full space
(c) contains, in general, other
nontrivial (and trivial) critical

fixed points,... _



2D Conformal Field Theory

Conformal transformations

= those preserving angles

= analytic maps

Locally translation +

+ rotation + rescaling

So it is logical to conclude

conformal invariance, but

 We must believe the RG

e Still there are
counterexamples

e Still boundary conditions
have to be addressed




Conformal invariance

well-known example: 2D Brownian Motion
is the scaling limit of the Random Walk
Paul Lévy,1948: BM is conformally invariant

The trajectory is preserved (up to speed change)
by conformal maps. Not so in 3D!!!




2D Conformal Field Theory

[Patashinskii-Pokrovskii; Kadanoff 1966]
scale, rotation and translation invariance
* allows to calculate two-point correlations

[Polyakov,1970] postulated inversion
(and hence Mobius) invariance
* allows to calculate three-point correlations

[Belavin, Polyakov, Zamolodchikov, 1984]
postulated full conformal invariance
e allows to do much more

[Cardy, 1984] worked out boundary fields,
applications to lattice models .



2D Conformal Field Theory

Many more papers followed [...]
 Beautiful algebraic theory (Virasoro etc)
 Correlations satisfy ODEs, important role

played by holomorphic correlations
 Spectacular predictions e.g.

HDim (percolation cluster)=91/48

e Geometric and analytical parts missing
Related methods
 [den Nijs, Nienhuis 1982] Coulomb gas
 [Knizhnik Polyakov Zamolodchikov;
Duplantier] Quantum Gravity & RWs



More recently, since 1999

Two analytic and geometric approaches
1) Schramm-Loewner Evolution: a

geometric description of the scaling
limits at criticality

2) Discrete analyticity: a way to rigorously
establish existence and conformal
invariance of the scaling limit

* New physical approaches and results

* Rigorous proofs

* Cross-fertilization with CFT




SLE prehistory

Robert Langlands spent
much time looking for an
analytic approach to CFT.
With Pouilot & Saint-Aubin,
BAMS’1994: study of crossing
probabilities for percolation.
They checked numerically
e existence of
the scaling limit,
* universality,
 conformal invariance
(suggested by Aizenman)

Very widely read!

Percolation: hexagons are coloured
white or yellow independently with
probability 2. Connected white
cluster touching the upper side is

coeuedintis
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Schramm-Loewner Evolution

A way to construct

random conformally
invariant fractal curves,
introduced in 1999 by

Oded Schramm (1961-2008),
who decided to look at a
more general object than
crossing probabilities.

O. Schramm. Scaling limits of
loop-erased random walks .
and uniform spanning trees. Israel J. Math.,
118 (2000), 221-288; arxiv math/9904022

.




boundary points ()

plane H connecting the

a slide from Oded’s talk 1999

In the figure, each of the hexagons is colored black with probability

1/2, independently, except that the hexagons intersecting the
positive real ray are all white, and the hexagons intersecting

the negative real ray are all black. There is a boundary path

3, passing through 0 and separating the black and the white
connected components adjacent to (0. The curve 5 is a random

path in the upper half-

and oo.



Loewner Evolution
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Loewner Evolution
8
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Loewner Evolution
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Schramm-Loewner Evolution
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Relation to lattice models
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Relation to lattice models
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Even better: it is enough to find one
conformally invariant observable ——



F Relation to lattice models
Percolation—SLE(6) UST—SLE(8) [Lawler-

[Smirnov, 2001] Schramm-Werner, 2001]

Hdim =7/4




Relation to lattice models

[Chelkak, Smirnov 2008-10] Interfaces in critical
spin-Ising and FK-Ising models on rhombic
lattices converge to SLE(3) and SLE(16/3)




Relation to lattice models

Lawler, Schramm, Werner; Smirnov
SLE(8/3) coincides with

e the boundary of the 2D Brownian motion
 the percolation cluster boundary
 (conjecturally) the self-avoiding walk ?




Discrete analytic functions

New approach to 2D integrable models

 Find an observable F (edge density, spin
correlation, exit probability,. . . ) which is
discrete analytic and solves some BVP.

* Then in the scaling limit F converges to a
holomorphic solution f of the same BVP.

We conclude that

 F has a conformally invariant scaling limit.

* Interfaces converge to Schramm’s SLEs,
allowing to calculate exponents.

 Fis approximately equal to f, we infer some

information even without SLE. —



Discrete analytic functions

Several models were approached in this way:

e Random Walk —

[Courant, Friedrich & Lewy, 1928; ....]
 Dimer model, UST — [Kenyon, 1997-...]
e Critical percolation — [Smirnov, 2001]
e Uniform Spanning Tree —

[Lawler, Schramm & Werner, 2003]

e Random cluster model with g = 2 and
Ising model at criticality — [Smirnov;
Chelkak & Smirnov 2006-2010]

Most observables are CFT correlations!



Energy field in the Ising model

Combination of two disorder
operators is a discrete analytic
Green’s function solving
Riemann-Hilbert BVP, then:
Theorem [Hongler - Smirnov] [
At B, the correlation of .
neighboring spins satisfies
(£ depends on BC: + or free,
€ is the lattice mesh, p is the
hyperbolic metric element):

E S(U.) 5('1’) — \}E = ;{)Q(U) £ -+ O(EE)




Self-avoiding polymers
Paul Flory, 1948: Proposed to model a

polymer molecule by a self-avoiding walk
(= random walk without self-intersections)
* How many length n walks?

* What is a “typical” walk? lx/};‘
 What is its fractal dimension?

5nm

Flory: a fractal of dimension 4/3 il
e The argument is wrong...

e The answer is correct!

Physical explanation by Nienhuis, later by
Lawler, Schramm, Werner.
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Nienhuis predictions:

° C(n) ~ un . n11/32
e 11/32is universal
e On hex lattice

I~¢=\/2+«E

Self-avoiding polymers
hat is the number C(n) of length n walks?
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Theorem [Duminil-Copin & Smirnov, 2010}

On hexagonal lattice y =x_1 =

\/2+ﬁ

Idea: for x=x_, A=A _discrete analyticity of

F(Z) = zself-avoiding walks 0 - z

A# turns 5 length



2D statistical Interactions
physics

e Same objects studied from different angles

 Exchange of motivation and ideas

e Many new things, but many open questions:
e.g. SLE and CFT give different PDEs for
correlations. Why solutions are the same?

* Big problem: make renormalization rigorous
SLE might simplify the job, since it allows to

construct the fixed point ——
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THANK YOU!
HAPPY BIRTHDAY!




