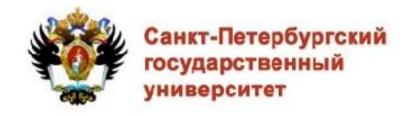
Geometric and Algebraic Structures in Mathematics A Conference to celebrate Dennis Sullivan

CFT and SLE

and 2D statistical physics

Stanislav Smirnov



Recently much of the progress in understanding 2-dimensional critical phenomena resulted from

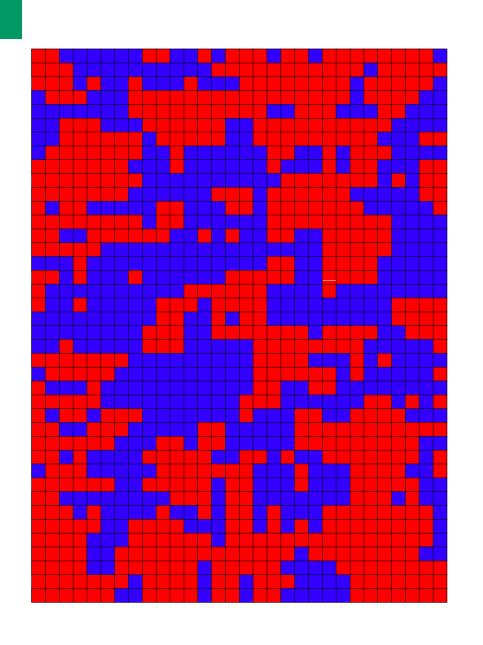
Conformal Field Theory (last 25 years)

Schramm-Loewner Evolution (last 10 years)

There was very fruitful interaction between mathematics and physics, algebraic and geometric arguments

We will try to describe some of it

An example: 2D Ising model



Squares of two colors, representing spins s=±1

Nearby spins want to be the same, parameter x:

Prob $\approx x^{\#\{+-\text{neighbors}\}}$

$$\approx \exp(-\beta \sum_{\text{neighbors}} s(u)s(v))$$

[Peierls 1936]:

there is a phase transition

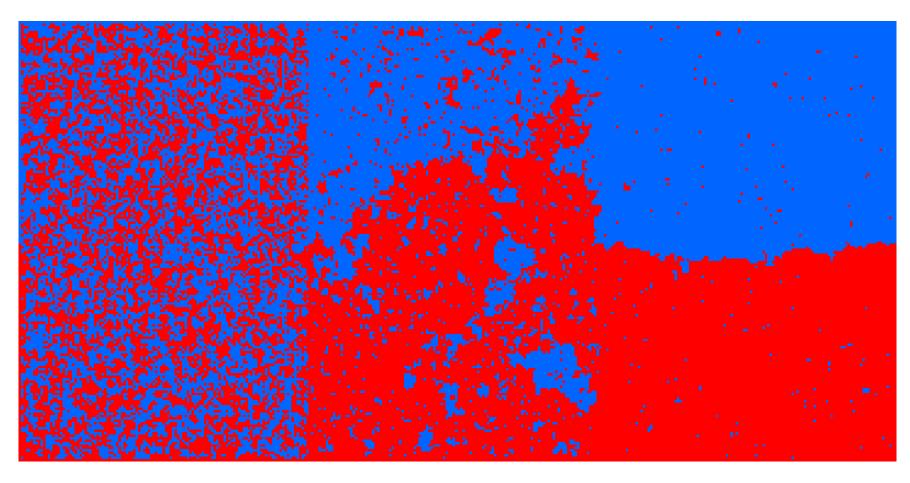
[Kramers-Wannier 1941]:

at
$$x_{crit} = 1/(1+\sqrt{2})$$

Ising model: the phase transition

$$x\approx1$$

$$x\approx 0$$



Prob \simeq $x^{\#\{+-neighbors\}}$

Ising model is "exactly solvable"

Onsager, 1944: a famous calculation of the partition function (unrigorous).

Many results followed, by different methods:

Kaufman, Onsager, Yang, Kac, Ward, Potts, Montroll, Hurst, Green, Kasteleyn, McCoy, Wu, Vdovichenko, Fisher, Baxter, ...

- Only some results rigorous
- Limited applicability to other models

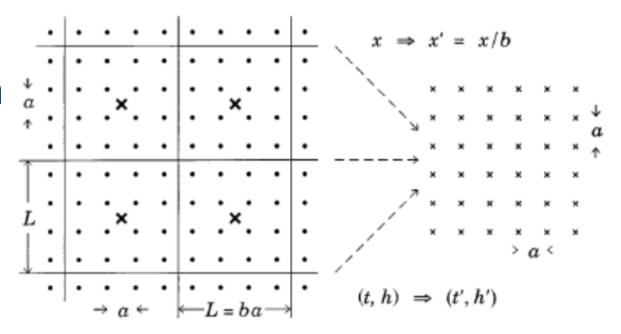
Renormalization Group

Petermann-Stueckelberg 1951, ... Kadanoff, Fisher, Wilson, 1963-1966, ...

Block-spin renormalization ≈ rescaling

Conclusion:

At criticality the scaling limit

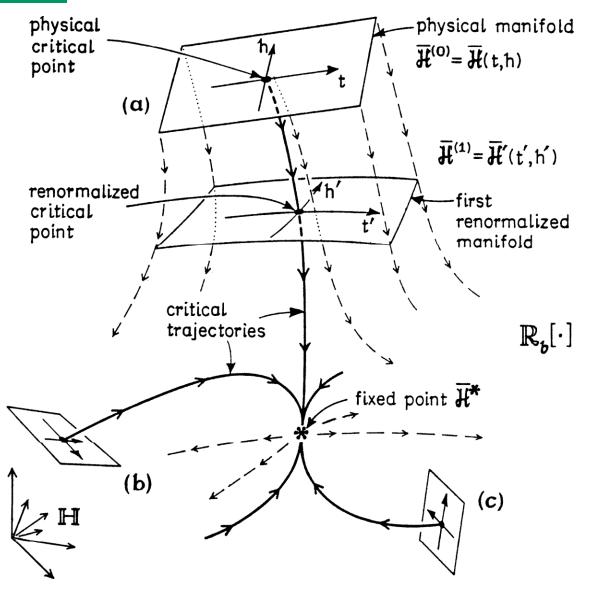


is described by a massless field theory.

The critical point is universal and hence translation, scale and rotation invariant

Renormalization Group

From [Michael Fisher, 1983]



A depiction of the space of Hamiltonians H showing initial or physical manifolds and the flows induced by repeated application of a discrete RG transformation Rb with a spatial rescaling factor b (or induced by a corresponding continuous or differential RG). Critical trajectories are shown bold: they all terminate, in the region of H shown here, at a fixed point H*. The full space contains, in general, other nontrivial (and trivial) critical fixed points,...

2D Conformal Field Theory

Conformal transformations

- = those preserving angles
- = analytic maps

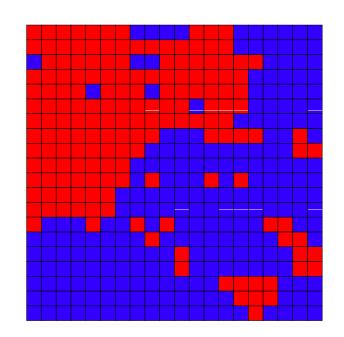
Locally translation +

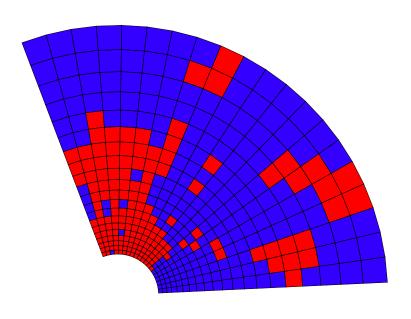
+ rotation + rescaling

So it is logical to conclude

conformal invariance, but

- We must believe the RG
- Still there are counterexamples
- Still boundary conditions have to be addressed

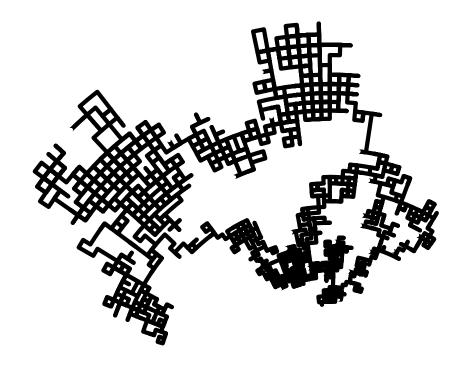




Conformal invariance

well-known example: 2D Brownian Motion is the scaling limit of the Random Walk Paul Lévy,1948: BM is conformally invariant

The trajectory is **preserved** (up to speed change) by **conformal maps**. Not so in 3D!!!



2D Conformal Field Theory

[Patashinskii-Pokrovskii; Kadanoff 1966] scale, rotation and translation invariance

allows to calculate two-point correlations

[Polyakov,1970] postulated inversion (and hence Möbius) invariance

allows to calculate three-point correlations

[Belavin, Polyakov, Zamolodchikov, 1984] postulated full conformal invariance

allows to do much more

[Cardy, 1984] worked out boundary fields, applications to lattice models

2D Conformal Field Theory

Many more papers followed [...]

- Beautiful algebraic theory (Virasoro etc)
- Correlations satisfy ODEs, important role played by holomorphic correlations
- Spectacular predictions e.g.
 HDim (percolation cluster)= 91/48
- Geometric and analytical parts missing Related methods
- [den Nijs, Nienhuis 1982] Coulomb gas
- [Knizhnik Polyakov Zamolodchikov;
 Duplantier] Quantum Gravity & RWs

More recently, since 1999

Two analytic and geometric approaches

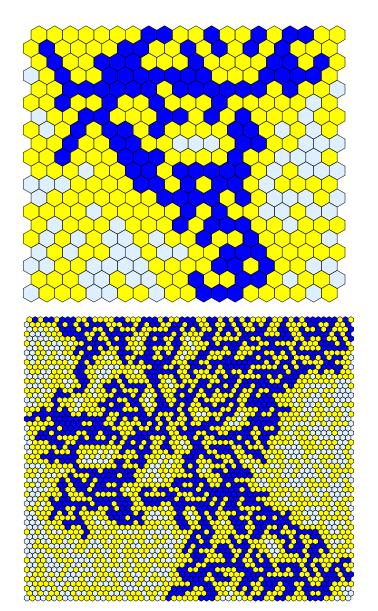
- 1) Schramm-Loewner Evolution: a geometric description of the scaling limits at criticality
- 2) Discrete analyticity: a way to rigorously establish existence and conformal invariance of the scaling limit
- New physical approaches and results
- Rigorous proofs
- Cross-fertilization with CFT

SLE prehistory

Robert Langlands spent much time looking for an analytic approach to CFT. With Pouilot & Saint-Aubin, BAMS'1994: study of crossing probabilities for percolation. They checked numerically

- existence of the scaling limit,
- universality,
- conformal invariance (suggested by Aizenman)

Very widely read!

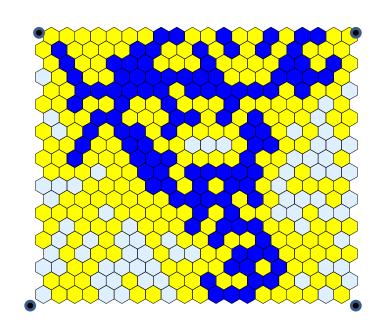


Percolation: hexagons are coloured white or yellow independently with probability ½. Connected white cluster touching the upper side is coloured in blue.

CFT connection

Langlands, Pouilot,
Saint-Aubin paper was
very widely read and
led to much research.

John Cardy in 1992
used CFT to deduce a
formula for the limit
of the crossing probabil



of the crossing probability in terms of the conformal modulus *m* of the rectangle:

$$\mathbb{P}\left(\text{crossing}\right) = \frac{\Gamma(\frac{2}{3})}{\Gamma(\frac{1}{3})\Gamma(\frac{4}{3})} m^{1/3} {}_{2}F_{1}\left(\frac{1}{3}, \frac{2}{3}, \frac{4}{3}; m\right)$$

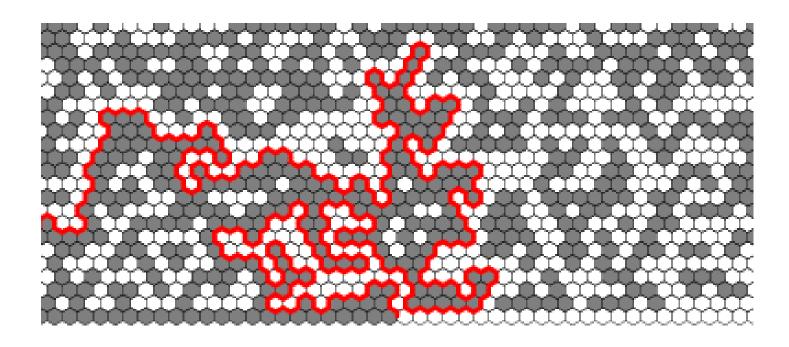
Lennart Carleson: the formula simplifies for equilateral triangles

Schramm-Loewner Evolution

A way to construct random conformally invariant fractal curves, introduced in 1999 by Oded Schramm (1961-2008), who decided to look at a more general object than crossing probabilities.

O. Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math., 118 (2000), 221-288; arxiv math/9904022

a slide from Oded's talk 1999



In the figure, each of the hexagons is colored black with probability 1/2, independently, except that the hexagons intersecting the positive real ray are all white, and the hexagons intersecting the negative real ray are all black. There is a boundary path β , passing through 0 and separating the black and the white connected components adjacent to 0. The curve β is a random path in the upper half-plane $\mathbb H$ connecting the boundary points 0 and ∞ .

Loewner Evolution

- · a tool to study variation of domains & maps in C.
- · introduced to attack Bieberbach's conjecture

K. Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises, I, Math. Ann. 89, 103-121 (1923).

• was instrumental in its proof

L. de Branges, A proof of the Bieberbach conjecture,

Acta. Math. 154, 137-152 (1985)...

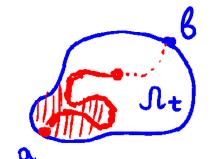
Bieberbach's conjecture de Branges' theorem

 $f: D \rightarrow \mathcal{N}$ a conformal map $f(z) = \sum a_n z^n$.

Then I and < n | a, attained for N= C \ IR-

Loewner Evolution

Deform domain by growing a slit from a $\epsilon \partial \mathcal{N}$ to $\epsilon \epsilon \ell$ (or $\epsilon \ell \ell$)



Map N to C+, so that ano, Bus 10.

Parametrize slit & By time t.

Set N_t= C+ \8Co,t], component at ∞

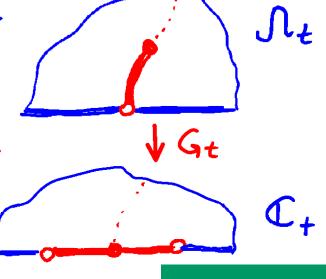
Gt: Nt -> C+ a conformal map

with 00+00, G+(00)=1, 8(+) >0.

Expand at so:

 $G_t(z) = z + a_0(t) + \frac{a_{-1}(t)}{z} + \frac{a_{-2}(t)}{z^2} + \dots$

Note: Gt: RS => ax & R



Loewner Evolution

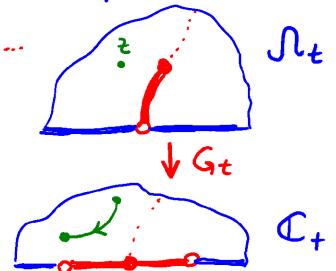
Gt: Nt -> C+ a conformal map

$$G_{t}(z) = z + a_{0}(t) + \frac{a_{-1}(t)}{z} + \frac{a_{-2}(t)}{z^{2}} + ...$$

Note: $a_{-1}(t) = cap_{C_{+}}(80,t3)$

=> continuously increases => can change time a., (t) = 2t

Denote w (t):=-ao(t).



Löwner equation
$$d_t(G_t(z)+w(t))=\frac{2}{G_t(z)}$$

B.C.
$$G_0(z) = Z$$
, $G_t(z) = Z - w(t) + \frac{2t}{Z} + ... at \infty$
gives a bijection unice slits $X_1^2 \leftarrow \{\text{continuous } w\}$

- ODE for Gt(Z) involves w(t) only!
- dtw(t) = "the turning speed"

Schramm-Loewner Evolution

deterministic & ←> deterministic & random & (→M ∈ Prob { curves })

- a self-touching curve 4 cze cz a random Peano curve & sx
- [Rohde -- Schramm]
- $HDim(X) = min(1+\frac{3e}{8}, 2)$ a.s.
- [Beffara]
- · 2 (SLE(x)) = SLE(16) x>4
- [Zhan], [Dubedat]

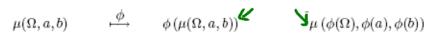


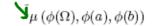
SLE computations = Itô calculus

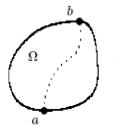
Schramm's principle Assume that an interface has a conformally invariant scaling limit.

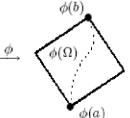
Then it is SLE(&) for some &.

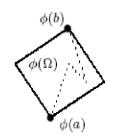
Conformal invariance same law



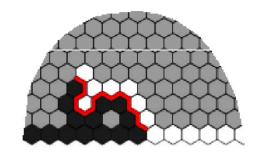








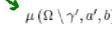
e holds in the limit

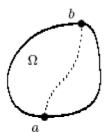


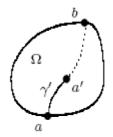
Domain Markov

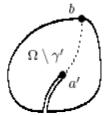
condition

 $\mu(\Omega, a, b) \longmapsto \mu(\Omega, a, b) | \gamma'$









e holds on the lattice (nearest neighbour interaction)

Conformal invariance + domain Markov =)

Conformal

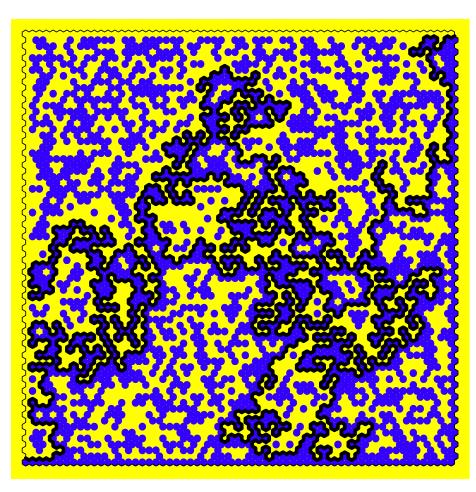
Markov

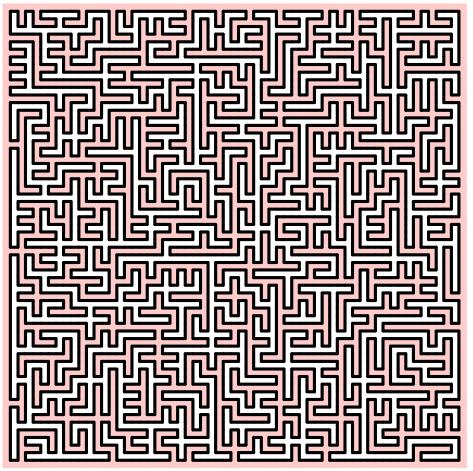
$$\mu(C_{+},0,\infty)$$
 $\mu(C_{+},0,\infty)$
 $\mu(C_{+},0,\infty)$

Even better: it is enough to find one conformally invariant observable

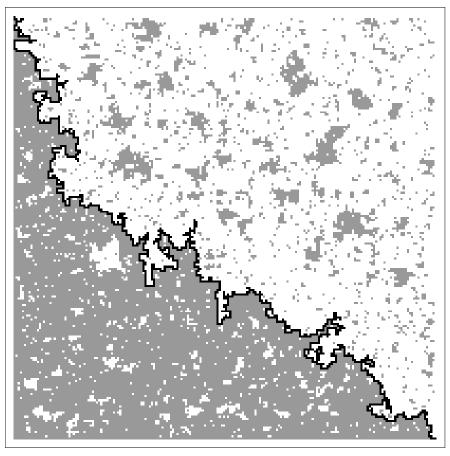
Percolation→SLE(6) [Smirnov, 2001]

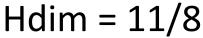
UST→SLE(8) [Lawler-Schramm-Werner, 2001]

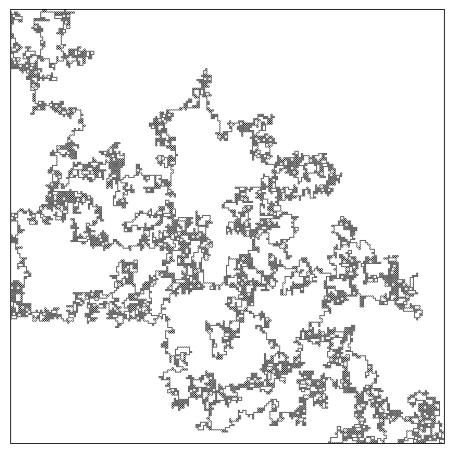




[Chelkak, Smirnov 2008-10] Interfaces in critical spin-Ising and FK-Ising models on rhombic lattices converge to SLE(3) and SLE(16/3)



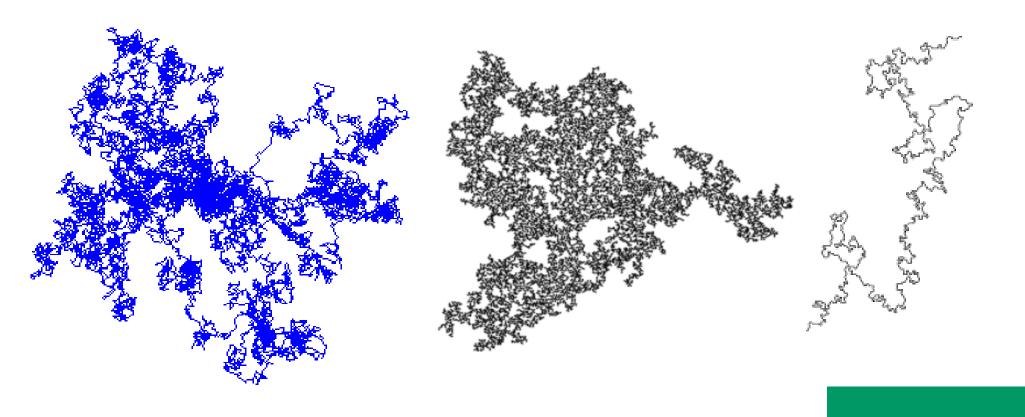




Hdim = 5/3

Lawler, Schramm, Werner; Smirnov SLE(8/3) coincides with

- the boundary of the 2D Brownian motion
- the percolation cluster boundary
- (conjecturally) the self-avoiding walk?



Discrete analytic functions

New approach to 2D integrable models

- Find an observable F (edge density, spin correlation, exit probability,...) which is discrete analytic and solves some BVP.
- Then in the scaling limit F converges to a holomorphic solution f of the same BVP.

We conclude that

- F has a conformally invariant scaling limit.
- Interfaces converge to Schramm's SLEs, allowing to calculate exponents.
- F is approximately equal to f, we infer some information even without SLE.

Discrete analytic functions

Several models were approached in this way:

- Random Walk –
 [Courant, Friedrich & Lewy, 1928;]
- Dimer model, UST [Kenyon, 1997-...]
- Critical percolation [Smirnov, 2001]
- Uniform Spanning Tree –
 [Lawler, Schramm & Werner, 2003]
- Random cluster model with q = 2 and Ising model at criticality – [Smirnov; Chelkak & Smirnov 2006-2010]

Most observables are CFT correlations!

Energy field in the Ising model

Combination of two disorder operators is a discrete analytic Green's function solving Riemann-Hilbert BVP, then: **Theorem [Hongler - Smirnov]** At β_c the correlation of neighboring spins satisfies (± depends on BC: + or free, ε is the lattice mesh, ρ is the hyperbolic metric element):

$$\mathbb{E} \ s(u) \ s(v) \ = \ \tfrac{1}{\sqrt{2}} \pm \tfrac{1}{\pi} \rho_{\Omega}(u) \ \varepsilon + O(\varepsilon^2)$$

Self-avoiding polymers

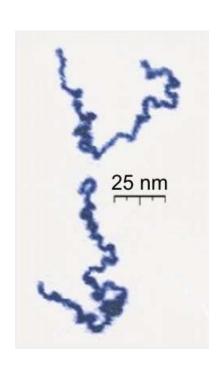
Paul Flory, 1948: Proposed to model a polymer molecule by a self-avoiding walk (= random walk without self-intersections)

- How many length n walks?
- What is a "typical" walk?
- What is its fractal dimension?

Flory: a fractal of dimension 4/3

- The argument is wrong...
- The answer is correct!

Physical explanation by Nienhuis, later by Lawler, Schramm, Werner.



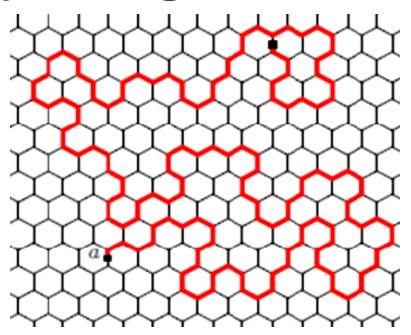
Self-avoiding polymers

What is the number *C(n)* of length *n* walks?

Nienhuis predictions:

- $C(n) \approx \mu^n \cdot n^{11/32}$
- 11/32 is universal
- On hex lattice

$$\mu = \sqrt{2 + \sqrt{2}}$$

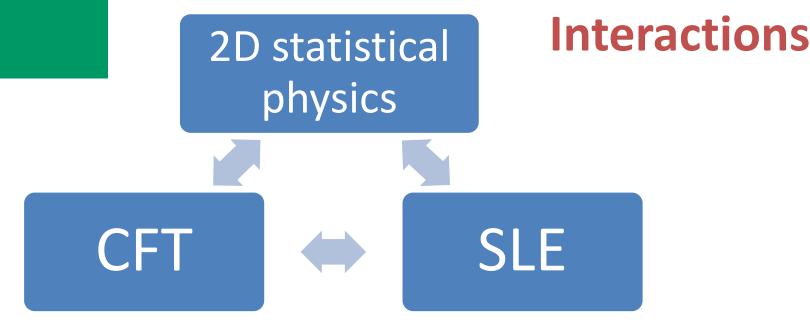


Theorem [Duminil-Copin & Smirnov, 2010]

On hexagonal lattice
$$\mu = x_c^{-1} = \sqrt{2 + \sqrt{2}}$$

Idea: for
$$x=x_c$$
, $\lambda=\lambda_c$ discrete analyticity of

$$F(z) = \sum_{\text{self-avoiding walks } 0 \to z} \lambda^{\text{# turns}} x^{\text{length}}$$



- Same objects studied from different angles
- Exchange of motivation and ideas
- Many new things, but many open questions:
 e.g. SLE and CFT give different PDEs for
 correlations. Why solutions are the same?
- Big problem: make renormalization rigorous
 SLE might simplify the job, since it allows to construct the fixed point

THANK YOU! HAPPY BIRTHDAY!