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Outline:

- Applications; off conformall geometiry
= Computer graphics
» Computerr vision,
= Medicall imaging)
» Sgjentific Computing)
= Geometric: Modeling)
« Computationall Methods;
= Harmoenic: Map
* Holomornphic: forms
« Discrete: sunface: Ricgii flow;




Confenmall Geometiry in Computerr Seience.

- Conformall geometiny is; getting more: and|
more: popular in computer science: since:
2000, the: major reasons arne:

» The: rapid development: off 3D scanning
technology, shape: acquisition is; becoming,
much) easier

» The fast development: off computer:

handware, especially the: graphics handware:
- GRU.



Applications; in Computer Vision



Wave: Optics; - Ligft: Interference:




Three Channel Geometiry Video

Geometry is reconstructed by 3 fringe images




3D Acquisition;




3D Acquisition;




3D Acquisition;




Digjtal fringe: prejection and phase shifting,



file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/C:\thesis\presentation\datafiles\Fringe\fringe.bat
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3D Data Acguisition,

« High resolution

- High speed



file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/C:\Teaching\talks\Toledo_May_2006\face.mov

Suimmany: 3D Video Camera,




[Riemann Mapping




Conformal Mapping,
- Sealing) first: fundamentall fiom,
« Angle: presenving)
« Similarities; im the: small|
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file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/C:\thesis\presentation\scripts\view_conformal_male.bat

[Riemann Mapping
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Geomeliic matehing

- Parameterize: surfaces to a canenicall domain,
- Match features; by parameter
- Depends on geometiny continuously/

demo



Aniimators;: autematic faciall expression
genenation,

demo demo demo



Confermall Invarants;







Face; Regjisiralion,



file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/.\single_mesh_30pct.mov

Vintuall Acfosr






















Suimmany: 3D Video Camera,

- Faster Speed
- Higher resolution

« Cheaper cost




Sufaees; with boundaries;

Copy the: surface, invert: the: orientation

Glue: two copies together along tihe:
boundaries

Treat: the: doubling as; a  closed| surface:
Keep symimetiry
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Conferimall mapping properties;

- Intrinsic to geometiny
- Insensitive: to triangulations; and| noise:
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Computer Graphies; - [Rendering



Global Conformgl Parameterization)

- Conformality is held| everywhere.

« All ariented metrnic: surfaces ane: Riemann
surfaces..



file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/C:\thesis\presentation\datafiles\genus0\bunny\bunny_texture.bat
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Manifeld TSpline:




Manifeld TSpline:







Manifeld TSpline:




Manifeld TSpline:
















IHelomerphic One: Fojim, Bas)s;

« Dugal to each handle:

demo



Helememphic ene-fonim space:

* 29 reall dimension,
» Dual to homology




Linearr combiination

* Linearly combine: holomonphic: 1-formn
bases

- Different: holomenphic: ene-fomm, different:
properties ( conformall factor, zeno points)
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Example:Minimal Surface.

- Genus; one,, 3 boundaries
« Genus four



file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/C:\thesis\presentation\datafiles\genusg\hyper\view_hyper.bat

Teapot Model|




Zeno poiints

« Zerno points; off the: tangentiall vector: fields;




Zeno points

- Different: holomoenphic one-form,, different:
zelo points

demo demo
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Riemann Suiface: Stiucture,




Media, for geomeliny

- Use regular grids; to sample: each chart:

- Optimall Decomposition to triang|e: strips; (J.
Mitchell)



file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/C:\thesis\presentation\datafiles\genus0\bunny\view_gim.bat
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anifeld TSpline:

S
.":n'aﬁ*ﬂ#ﬁﬁ T
171777/
11
AV
AN

AV

Va

TA¥i
AT

e
AVAY
A

WAV

A
KR

W
aVAY)

7o
TATATATAY

7
CISO00
AL
e

B

b
R
<}

T
(Vi




Manifeld TSpline:







Manifeld TSpli




Efficient Rendesing



file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/D:\2007_Talks\CCG_2007\InterField.avi

Optimall Parameterizations;




Medieall Imagjing,





file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/D:\2007_Talks\CCG_2007\Bunny_blend_A.mov



file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/G:\Report\Bunny_blend_A.mov



file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/D:\2007_Talks\CCG_2007\BrainBlend_A.mov




Genus; 0 suifaces

- All conformally equivalent:
- Harmmonic: s equivalent to conformall
 Mobius group

demo




Conformgal Mapping,







Sufaees; with boundaries;

Copy the: surface, invert: the: orientation

Glue: two copies together along tihe:
boundaries

Treat: the: doubling as; a  closed| surface:
Keep symimetiry



file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/C:\thesis\presentation\datafiles\genus0\double_face\view_face.bat
file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/C:\thesis\presentation\datafiles\genus0\double_face\view_2face_sphere.bat
file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/C:\thesis\presentation\datafiles\genus0\double_face\view_2face.bat

Geometiry Matehingrbrain mapping



file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/G3dOGL C:\thesis\presentation\brain\sample5_nf50k.conformal.uv.m
file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/G3dOGL C:\thesis\presentation\brain\sample6_nf50k.conformal.uv.m

AppINg)

Conflermall Braiin M

Sphere:

« Brain to



file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/C:\thesis\presentation\brain\view_morph_brain.bat

Geometliic Matehingrbrain mapping)

Minimize: L2 nom under Mobius;
transformation)

Least square: prollem,



file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/G3dOGL C:\thesis\presentation\brain\sample6_nf50k.conformal.sphere.uv.m
file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/G3dOGL C:\thesis\presentation\brain\sample5_nf50k.conformal.sphere.uv.m

Conformall Brain Mapping)




Geometiry Compriession

- Sphericall harmonic: functions:
 Spectium compression,




Manifeld Spline.




Surface. Segmentation/Matching,

Boundary curve matching >Segmentation - Sub-patch matching




Conformall Colon Fattening,
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Sejentific; Computation



Geometliic Matehing

- LLevell set: off Gaussian cunvature:
- Gradient: off gaussiam cunvature:

4 = My,
‘.-_,,._l { S -“:‘ Ty T
g -



file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/C:\thesis\presentation\datafiles\genus0\double_face\partial_matching\view_face_gauss_level.bat
file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/C:\thesis\presentation\datafiles\genus0\double_face\partial_matching\view_nose_gauss_level.bat

[Flows; en Mesh)

« Cumvilinear Grids;
- Holomonphic: Flow Segmenation,
- Transition functions; are: holomonmphic;




[Flows; en Mesh)

Navien-Stokes:
Equations

Co-variant:
differentiation,

Simpler differentiall
operators;

No singularities;
Arbitrany meshes;




[Flows; en Mesh)




Physicall Simulation,
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Meromoemhic; Funection




@eramaw cJassification
Geometrie; D tabﬁﬁ@ application,



file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/C:\thesis\presentation\scripts\view_mesh_dragon.bat
file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/C:\thesis\presentation\scripts\view_mesh_teapot.bat
file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/C:\thesis\presentation\scripts\view_mesh_buddha.bat
file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/C:\thesis\presentation\scripts\view_mesh_gargoyle.bat
file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/C:\thesis\presentation\scripts\view_mesh_tyra.bat
file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/C:\thesis\presentation\scripts\view_mesh_feline.bat

Space: off Riemann Surfaces;
Teichmuller Spaece.

Theoremi:
Teichmuller Space: forr Genus; 0)surface: is; ol one;
point;, forr Genus; 1/ sunfaces;is; 2 dimensionall, for
genus; g surface: is; 6g-6 dimension.




Conformal invariants; - Periods;

- Tonus is; conformally mapped to a
panallelogram,

- The shape factors off the: panallelogram, are:
conformall invariants:



file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/C:\thesis\presentation\datafiles\genus1\torus\view_morph.bat

Conformall invariants; - pefiods;

- Topologically equivalent:
* Not: Conformally equivalent:




Confermall Invariants; - pefieds;

Snap |mesh | Angle | length |Vertic |faces
shot ratio |es
Torus |89.987| 2.2916 (1089 2048
Teapot | 89.95 | 3.026 [17024 34048
knot 85.1 | 31.150 5808 |11616
rocker |85.432| 4.993 |3750 |7500




Conformall invarants = period matiix

- High genus case: — period| matiix
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file:///C:/Users/ptonra/Videos/ccg2007/PDFs/11-Gu-p1.odp/.\convex_cap.mov

Geometiic Modeling - Manifold]
Spline:



Mesih Spline: Conversion

« Convert mesh to T-Spline:
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Goall: Genenalize: Planar Spling to Suifaees;

° lL@m@ LLasting Open Problem, in CAGID;:
= Can splines; are: defined| on generall
manifolds?
= Iffit is; iImpoessible;, whattis; the: intrinsic:
obstacle?
= Iffit:is; possible, how to constriuct: the: manifold!
spline?



Thiangulan Brspline : Parametiic Affine:
Invaranece:




Maiin theorem,

« A domain manifald M| with an atlas; A, a
spline scheme: S, such, that:

= S8 panametric affine: invarniant:
= S has; locall suppornt:
= Sis complete: ( polynomiall repreduction )

- M admits; manifold spline: with scheme: S, iff
and| enly iff A is; affine: ( alll coordinate:
transition functions; are: affine.. ))
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Existence off Affine: Stiiueture: theorem,

A closed 2-manifold| M| admits; an affine: atlas;,
iffand| enly) iff M| is; a tonus:.

* Any opemn 2-manifolds; admits; am affine: atlas:.



Congtruction theoerem,

- A holomornphic: differentiall eone-form, induced|
an affine: atlas; on the: Riemann surface: with,
20r-2 extraondinany; points:.

« A flat: metric. induces; an affine: atias..



anifeld Spline.




Manifold Spline:

(a) parametric domain (b) spline (c) spline (d) mean curvature (f) isophotes



anifeld Spline.




anifeld Spline.
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anifeld Spline:




Manifeld Spline.




Manifeld TSpline:
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GeosSpling:
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Conformal Geometry Applied in Computer

Science

David Gu?

1Department of Computer Science
State University of New York at Stony Brook

Computational and Conformal Geometry

David Gu Conformal Geometry



Collaborators

The work is collaborated with the

Mathematicians
Shing-Tung Yau, Feng Luo, Zeng-Xue He

Computer Scientists

Arie Kaufman, Hong Qin, Dimitris Samaras, Klaus Mueller, Joe
Mitchell, Esther Arkin, Jie Gao

Lance Cong

and many faculty members in computer science department in
Stony Brook University.

David Gu Conformal Geometry



Collaborators

The work is implemented by many students in the Center of
Visual Computing. Especially, Miao Jin, Junho Kim, Xiaotian
Yin, Wei Zeng and Xin Li.

David Gu Conformal Geometry



Conformal Structure

Definition (Conformal Structure)

An atlas is conformal, if all its

transition maps are conformal Us—" Up >
(biholomorphic). A conformal 7
structure is the maximal conformal S(pﬁ

atlas. A topological surface with an

conformal structure is called a @ WB@ /

Riemann Surface.

David Gu Conformal Geometry



Isothermal Coordinates

Relation between conformal structure and Riemannian metric

Isothermal Coordinates

A surface ¥ with a
Riemannian metric g, a
local coordinate system
(u,v) is an isothermal
coordinate system, if

g = e?!(du?+dv?).

The atlas formed by
isothermal coordinate
systems is an conformal
atlas.

David Gu Conformal Geometry
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Conformal Structure

EV ] Conformal Geome!



Computational Method

Heat Flow
Suppose the temperature field on the surface is T (u,v,t), the
surface is with a Riemannian metric g, then the temperature will

evolve according to the heat flow:
T
d (l(;t ) AQT(U7V7t)7

at the steady state
AgT (u,v,) =0,

which is called a harmonic function.

David Gu Conformal Geometry



Heat Flow Acting on Linear Maps

David Gu Conformal Geometry



Heat Flow Acting on Linear Maps

Linear Harmonic Maps
Heat flow acting on the maps

do(u,v,t)

at = A@(u,v,t).

David Gu Conformal Geometry



Heat Flow Acting on nonlinear Maps

David Gu Conformal Geometry



Heat Flow Acting on nonlinear Maps

Non-linear Harmonic Maps
Heat flow acting on the maps

o) Ag(u,v,t)-
(Ag(u,v,t))*-

David Gu Conformal Geometry



Heat Flow Acting on Vector Fields (Differential Forms)

David Gu Conformal Geometry



Heat Flow Acting on Vector Fields (Differential Forms)

Holomorphic 1-forms

Heat flow acting on 1-forms, the
heat flow is

dow(u,v,t)

at = Aw(u,v,t).

David Gu Conformal Geometry



Heat Flow Acting on Metrics




Heat Flow Acting on Metrics

Euclidean Ricci Flow
y Heat flow acting on metrics, the
curvature satisfies the heat flow
dK (u,v,t)

at :Ag(t)K(U,V,t).

David Gu Conformal Geometry



Heat Flow Acting on Metrics

®,
+4

David Gu Conformal Geometry



Heat Flow Acting on Metrics

Euclidean Ricci Flow

Heat flow acting on metrics, the
curvature satisfies the heat flow

dt t)K(U,V,t)

'-/
E dK(u,v,t)

David Gu Conformal Geometry



Heat Flow Acting on Metrics

David Gu Conformal Geometry



Heat Flow Acting on Metrics

Euclidean Ricci Flow

Heat flow acting on metrics, the

curvature satisfies the heat flow

dK (u,v,t)
dt

= Ag(t)K(U,V,t).

David Gu Conformal Geometry
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Heat Flow Acting on Metrics

Heat flow acting on metrics, the
curvature satisfies the heat flow

David Gu Conformal Geometry



Heat Flow Acting on Linear Maps

David Gu Conformal Geometry



Heat Flow Acting on Linear Maps

Linear Harmonic Maps

Heat flow acting on the maps

W = Ag(u,v,t).

Theorem (Rado’s theorem)

Assume Q C R? is a convex
domain with smooth boundary
09. Given any
homeomorphism ¢ : St — 9Q,
there exists a unique harmonic
map u:D — Q, suchthatu = ¢
ondD=S'anduis a
diffeomorphism.

David Gu Conformal Geometry




Heat Flow Acting on Linear Maps

David Gu Conformal Geometry



Heat Flow Acting on Linear Maps

Given a mesh ¥, for an edge e;;
connecting vertices v; and v;,
suppose two angles against e
are a, 3, the define edge
weight as

1
Wi = E(cota +cotf3)

suppose amap ¢: ¥ — R?,
then the discrete energy is

E(e) =) wile(vi) - o(v))[%.

€ij

David Gu Conformal Geometry



Heat Flow Acting on Linear Maps

David Gu Conformal Geometry



Heat Flow Acting on Linear Maps

Finite Element Method

Discrete Laplace-Beltrami
operator

Ap(vi) Z le (p(VJ ));

€jj

Heat flow

o(vi)— = Ag(vi)e,

where ¢ is a small constant.

David Gu Conformal Geometry



Spherical Conformal Maps

David Gu Conformal Geometry



Spherical Conformal Maps

Non-linear Harmonic Maps

Heat flow acting on the maps

o) Ag(u,v,t)-
(Ag(u,v,t))*-

Theorem (Heat Flow for

Topological Sphere)

The heat flow of a map from a
closed genus zero surface to
the unit sphere converges to a
conformal map under
normalization constraints. The
conformal map is a
diffeomorphism.

v

David Gu Conformal Geometry




Spherical Conformal Maps

David Gu Conformal Geometry



Spherical Conformal Maps

Discrete Approximation

Heat flow acting on the maps
@(vi)— = (A@(vi) — Ag(vi))e

where A(v;))* is defined as

< AQ(Vi), o(vi) > @(vi).

David Gu Conformal Geometry



Spherical Conformal Maps

David Gu Conformal Geometry



Spherical Conformal Maps

Stereo graphic projection
A conformal map from the unit

sphere p(x,y,z) to the complex
plane

David Gu Conformal Geometry



Spherical Conformal Maps

Mobius Transform

A Madbius transform on the
complex plane ¢:C — C is

_az+b

=——_ad-—-bc=1
cz+d’ ’

»(z)

where a,b,c,d € C

Theorem (Conformal

Automorphism Group)

The conformal maps from a unit
sphere to itself (or the complex
plane) differ by a Mdbius map.

David Gu Conformal Geometry



Spherical Conformal Maps

Normalization

In order to remove the Mdbius
ambiguity, spherical harmonic
map in normalized

@ Compute the mass center

of the image,
c =3 olu)
Q@ Normalize
_o(vi)—c
P = o) —o
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Riemann Mapping Theorem

Topological Disk Conformal
Mapping

© Double cover

@ Conformally map the
doubled surface to the unit
sphere

© Use the sphere Mobius
transformation to make the
mapping symmetric.

@ Use stereographic
projection to map each
hemisphere to the unit
disk.
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Riemann Mapping Theorem

\?— = .

O N

S5

s e :
L‘;"&a« Mobius Transformation

' : ’\ A Mobius transformation from
1 the unit disk to itself is a

conformal map

iog Z—2p

W2)=e" T3z

Theorem (Riemann Mapping)

Any metric topological disk can
be conformally mapped to the
unit disk, the mapping is unique
up to a Mobius transformation.

| A

v
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Holomorphic 1-forms

Definition (Holomorphic 1-form)

Suppose ¥ is a Riemann
surface, {z4} is a local complex
parameter, a holomorphic
1-form w has a local
representation as

w = f(Za)dZa,

where f(z4) is a holomorphic
function.

Locally, w is the derivative of a
holomorphic function. Globally,
it is not.
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Holomorphic 1-forms

Original Surface
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Holomorphic 1-forms

Another one basis holomorphic
1-form
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Holomorphic 1-forms

Summation of w; and w EEE
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Holomorphic 1-forms

Difference between w; and w,
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Holomorphic 1-forms

Holomorphic 1-form induces a
conformal parameterization.
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Holomorphic 1-forms

Holomorphic 1-form induces a
conformal parameterization.
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Holomorphic 1-forms

Theorem (Holomorphic 1-forms)

All holomorphic 1-forms form a linear space Q(%x) which is
isomorphic to the first conomology group H(Z,R).
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Holomorphic 1-forms

Holomorphic 1-form w can be
treated as two real 1-forms

W= (o, ).

Furthermore, we can treat each
1-form as a vector field, such
that
O curlay=0
Q divapy =0
@ w =n x wy, where n is the
normal field.
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Holomorphic 1-forms

Intuition Hodge star operator
rotates a vector field about the
normal a right angle.

Definition (Hodge Star)

Hodge star operator is defined in
the following:

xdx = dy,*dy = —dx,

Definition (harmonic 1-form)

Suppose Y is a Riemann surface,
w is differential 1-form, locally w is
the derivative of a harmonic
function. Symbolically,

dw=0,+xd xw=0.

Globally , such harmonic function
doesn’t exj
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Holomorphic 1-forms

Theorem (Hodge)

Each cohomologous class has
a unique harmonic 1-form.
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Holomorphic 1-forms
Algorithm for Holomorphic
1-forms

Input : A triangle mesh X.
Output : Basis for holomorphic
1-forms

© Compute cohomology
basis {a)lao)Za' o ,0.}]}

Q Heat flow to deform w to
harmonic 1-forms.

© Compute hodge star of
w’s.

© return holomorphic 1-form
basis

{on+vV—1xn, @+ V-1, -, th+V-1xan}

David Gu Conformal Geometry



Holomorphic 1-forms

Heat Flow for 1-forms
Suppose w: {Edges} — Ris a
closed 1-form. Let

f : {Vertices} — R is a function,
then

f—=A(w+df) x ¢,
where A(w+df)(v;)

> wij(w(ej) +f(vj) —f(vi)).

€jj
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Holomorphic 1-forms

Choose the best cohomology class to optimize the distortion,
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Uniformization

Theorem (Poincar &€ Uniformization Theorem)

Let (X,g) be a compact 2-dimensional Riemannian manifold.
Then there is a metric § = e?*g conformal to g which has
constant Gauss curvature.

v.".?f‘“‘

Ak\
2> 2P
G

(PSS

)
WS N

S

PN

=

Spherical Euclidean Hyperbolic
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Conformal Metric

Definition
Suppose % is a surface with a
Riemannian metric,

9= ( J11 912 )
21 922
Suppose A : ¥ —Risa
function defined on the surface,
then e?! g is also a Riemannian
metric on ¥ and called a Angles are invariant measured

conformal metric. e?? is called by conformal metrics.
the conformal factor.
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Curvature and Metric Relations

Suppose § = e? g is a conformal metric on the surface, then
the Gaussian curvature on interior points are

K =e 2 (—AA +K),
geodesic curvature on the boundary

kg =€ (0nA +kg).
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Surface Ricci Flow

Definition (Surface Ricci Flow)

A closed surface with a Riemannian metric g, the Ricci flow on
it is defined as

o= K

If the total area of the surface is preserved during the flow, the
Ricci flow will converge to a metric such that the Gaussian
curvature is constant every where.
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Theorem (Hamilton 1982)

For a closed surface of non-positive Euler characteristic, if the
total area of the surface is preserved during the flow, the Ricci
flow will converge to a metric such that the Gaussian curvature
is constant (equals to K) every where.

Theorem (Chow)

For a closed surface of positive Euler characteristic, if the total
area of the surface is preserved during the flow, the Ricci flow
will converge to a metric such that the Gaussian curvature is
constant (equals to K) every where.
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Generic Surface Model - Triangular Mesh

@ Surfaces are represented as polyhedron triangular

meshes.
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Generic Surface Model - Triangular Mesh

@ Surfaces are represented as polyhedron triangular

meshes.
@ Isometric gluing of triangles in E2.
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Generic Surface Model - Triangular Mesh

@ Surfaces are represented as polyhedron triangular
meshes.

@ Isometric gluing of triangles in E2.
@ Isometric gluing of triangles in H?,S?.
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Discrete Metrics

Definition (Discrete Metric)

A Discrete Metric on a triangular mesh is a function defined on
the vertices, | : E = {all edges} — R, satisfies triangular
inequality.

A mesh has infinite metrics.
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Discrete Metrics

@ Discrete Metric: | : E = {all edges} — R?, satisfies
triangular inequality.

@ Metrics determine curvatures by cosine law.

12 412 — 12

cos6 =1 1 £] £k A
ik
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Derivative Cosine Law

Theorem (Derivative Cosine Law)

Consider an Euclidean triangle 6 = 6 (I3,l2,13), i #] #k #1,

then
1 06 1 06

sing al, ~ sing 4l
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Discrete Curvature

Definition (Discrete Curvature)

Discrete curvature: K : V = {vertices} — R%.

K(v):ZH—Zai,v ZOM;K(v) = n—Zai,v € oM

Theorem (Discrete Gauss-Bonnet theorem)

z K(v)+ Z K(v) =2mx(M).

VoM vedM
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Conformal metric deformation

Conformal maps Properties
@ transform infinitesimal circles to infinitesimal circles.
@ preserve the intersection angles among circles.

Idea - Approximate conformal metric deformation
Replace infinitesimal circles by circles with finite radii.
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Different Circle Patterns

Circle Patterns

There are many local settings for circle patterns. The radius is
variable, the intersection angles do not change.

SiZlec
EE

David Gu Conformal Geometry



Circle Packing Metric

CP Metric

We associate each vertex v;
with a circle with radius y. On
edge ej;, the two circles
intersect at the angle of ®;.
The edge lengths are

Iij2 = y,2+yf+2ymcosd>ij

CP Metric (X,I,®), &
triangulation,

M= {yIWi},® = {gve;}
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Conformal Equivalent Circle Packing Metrics

Definition (Conformal Equivalent Circle Packing Metrics)

Two circle packing metrics of the same mesh M, {M,l'1,®;}
and {M,l',,®,}, are conformal equivalent, if $; equals to ®.
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Conformal Metric Space

Suppose the vertex set of the mesh is {vy,vz, -+, vy}, we
represent a conformal circle packing metric by
u = (uy,Uz,---,up), where u; =logy,.

Definition (Normalized Conformal Circle Packing Metric Space)

Each conformal equivalence class of circle packing metrics
form a space, we call it conformal circle packing metric space.
Because scaling doesn't affect curvature, we require 3; u; = 0.
All such u form a hyper-plane in the R", denoted as IM,. We call
I, the normalized conformal circle packing metric space.
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Curvature Space

Definition (Discrete Curvature Space)

We use k = (kp,kz, -+ ,kn) to represent the curvature on the
vertices of the mesh. Then all such k form the discrete
curvature space, which is on a hyper-plane in R",

Yiki =2mx (M), x(M) is the Euler number of the mesh.
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Curvature Map

Definition (Discrete Curvature Map)

The discrete curvature Equation defines a discrete curvature
map

K:u—k. (1)

David Gu Conformal Geometry



Image of Curvature Map

Given any subset | C V, let F| be the set of all faces in M whose
vertices are in | and let the link of I, denoted by Lk(l), be the
set of pairs (e,v) of an edge e and a vertex v so that (1) the
end points of e are not in | and (2) the vertex v isin | and (3) e
and v form a triangle.

Theorem (Image of Curvature Space)

All possible curvatures functions k induced by a conformal
equivalence class of circle packing metrics {M,I",®}, where I'
varies but @ is fixed, form a n — 1 dimensional convex polytope,
such that the total curvature satisfies the Gauss-Bonnet
theorem and for any proper subset | C V,

2ml|x(M)

V] >— >  (m—%(e))+2mx(F). )

(e,v)eLk(l)

-
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Inverse Curvature Map Theorem

Theorem (Inverse Curvature Map)

The curvature map K from normalized conformal circle packing
metrics space [, to the image of curvature map £ is a C®
diffeomorphism, furthermore, it is real analytic.

The derivative map dK : Ty (u) — T Qk(k), satisfies the
discrete Poisson equation,

dk = A(u)du, (3)

where TT1,(u) is the tangent space of I, at the point u, Ty (k)
is the tangent space of Q at the point k, A(u) is a positive
definite matrix when constrained on Ty (u).
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Discrete Euclidean Ricci flow
Definition (Discrete Ricci flow)

A mesh X with a circle packing metric {¥,I',®}, where

I ={y.vi € V} are the vertex radii, ® = {®;,e; € E} are the
angles associated with each edge, the discrete Ricci flow on
is defined as

dy

dt
where K; are the target curvatures on vertices. If K; = 0, the
flow with normalized total area leads to a metric with constant
Gaussian curvature.

= (Ki =Ky,

Metric deformation is driven by curvature.
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Discrete Euclidean Ricci flow

Theorem (Chow and Luo 2002)
A discrete Euclidean Ricci flow {Z,I, ¢} — {M,T,®} converges.

IKi(t) — Ki| < cre™%,

and
yi(t) — 7| < cre™®,

where cq,C, are positive numbers.
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Variational Euclidean Ricci flow

Let u; = Iny, the Ricci energy is defined as

f(u) /u Z(K, K )du;,

where u = (U, U, ,Up), Ug = (0,0,---,0).
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Derivative Euclidean Cosine Law

Theorem (Ricci Energy)

Euclidean Ricci energy is Well defined and convex, namely,
there exists a unique global minimum.
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Derivative Euclidean Cosine Law

Theorem (Ricci Energy)

Euclidean Ricci energy is Well defined and convex, namely,
there exists a unique global minimum.

Proof.

In an Euclidean triangle, with angles (6;, 6., 63) and radius
(va,¥2,¥8), let uj = Iny;, according to Euclidean cosine law,

06 _ 94
0Uj _0Ui'

Therefore w =y 6duy; is a closed 1-form. The Euclidean Ricci
energy is well defined. Direct computation verifies that Hessian
matrix is positive definite. O
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Newton’s method for Euclidean Ricci energy

Gradient descent Method

Ricci flow is the gradient descent method for minimizing Ricci
energy,

Of = (Ky — Ky, Ko — Kz, -+, Kn — Kp).

Newton’s method

The Hessian matrix of Ricci energy is

0% oK,
0Uian B 0Uj.

Newton’s method can be applied directly.
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Algorithm : uniform flat metric for closed surfaces

Ricci Flow for Uniform Flat Metric

Suppose % is a closed genus one mesh,

© Compute the circle packing metric (I, ®).
@ Set the target curvature to be zero for each vertex

Ki=0,W; eV

@ Minimize the Euclidean Ricci energy using Newton’s
method to get the target radii I'.

© Compute the target flat metric.
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Algorithm : uniform flat metric for open surfaces

Given a surface ¥ with genus g and b boundaries, then it Euler
number is
X(X)=2-2g—b.

Suppose the boundary of ¥ is a set of closed curves
0 =C,UC,UC3---Cp.

The total curvature for each C; is denoted as 2m;,m; € Z, and
yP_, m; = x(X). The target curvature for interior vertices are
zerns
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Algorithm : uniform flat metric for open surfaces

Euclidean Ricci flow for open surfaces

@ Use Newton’s method to minimize the Ricci energy to
update the metric.

@ Adjust the boundary vertex curvature to be proportional to
the ratio between the current lengths of the adjacent edges
and the current total length of the boundary component.

@ Repeat until the process converges.
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Algorithm : Flatten a mesh with a uniform flat metric

Embedding

© Determine the planar shape of each triangle using 3 edge
lengths.

@ Glue all triangles on the plane along their common edges
by rigid motions. Because the metric is flat, the gluing
process is coherent and results in a planar embedding.
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Euclidean Uniform Flat Metric

original surface universal cover texture mapping
genus 1, 3 boundaries embedded in R?
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Euclidean Uniform Flat Metric

David Gu Conformal Geometry



Euclidean Uniform Flat Metric

Different boundaries are mapped to straight lines.
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Euclidean Uniform Flat Metric

% O
ravid
R

e
RS
ORI
KRR

BB
DA
SRR
RO
AR
R
OISR
e
DR

SEeey
ORRRS 4
KRR RISREES S
A AAVATS
R
SRR

original surface fundamental domain universal cover




Optimal Parameterizations Problem

Optimal Conformal Parameterizations

A surface has infinite conformal mappings, different mappings
have different area distortions.

Figure: There are an infinity number of conformal parameterizations
of a given surface. We minimize the area distortion within the
conformal mappings.
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Dual Ricci Flow Method
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Dual Ricci Flow Method
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Conformal Model : Poincaré Disk

A unit disk |z| < 1 with the Rie-
mannian metric

4dzdz

2 _
S (S
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Conformal Model : Poincaré Disk

The rigid motion is the Mdbius

transformation
ie Z - Zo
1-—24z i
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Conformal Model : Poincaré Disk

The hyperbolic line through two
point zg,z; is the circular arc
through zg,z; and perpendicu-
lar to the boundary circle |z| =
1.
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Conformal Model : Poincaré Disk

A hyperbolic circle (c,y) on
Poincare disk is also an Eu-
clidean circle (C,R) on the

_ 2-2p?
plane, such t?atZC = 1P
2 _ |2 _ lelf-u _e'-1
R = |C| - 1_“2|C‘21IJ — eTf1-
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Discrete Hyperbolic Ricci Flow

Definition (Discrete Hyperbolic Ricci Flow)
Let

W
i =Intanh =
uI 2 )
Discrete hyperbolic Ricci flow for a mesh X is

du; - -
d_tIZKi_KiaKi =0,

the Euler number of X is negative, x(X) <O.
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Discrete Hyperbolic Ricci flow

Theorem (Discrete Hyperbolic Ricci flow, Chow and Luo 2002)

A hyperbolic discrete Ricci flow (M,I',®) — (M, T, ®) converges,
|Ki (t) = K|| < Clefczt,

and
yi(t) — ¥ < cre™®,

where cq1,C, are positive numbers.
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Discrete Hyperbolic Ricci Energy

Definition (Discrete Hyperbolic Ricci Energy)
The discrete Hyperbolic Ricci energy is defined as

f(u):/ui(KiKi)dui.

Uo j=1

Discrete hyperbolic Ricci flow is the gradient descendent
method to minimize the discrete hyperbolic ricci energy.
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Derivative hyperbolic Cosine Law

Theorem (Hyperbolic Discrete Ricci Energy)

Discrete hyperbolic Ricci energy is well defined and convex,
namely, there exists a unique global minimum.
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Derivative hyperbolic Cosine Law

Theorem (Hyperbolic Discrete Ricci Energy)

Discrete hyperbolic Ricci energy is well defined and convex,
namely, there exists a unique global minimum.

Proof.

In a hyperbolic triangle, with angles (6,6, 63) and radius
(v1,¥2,¥8), Ui = Intanh%, according to hyperbolic cosine law,

28, _ 08
an _0ui'

Therefore w =Y 6du; is a closed 1-form. The hyperbolic Ricci
energy is convex. Direct computation verifies the Hessian
matrix is positive definite. O
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Algorithm: Computing Hyperbolic uniformization
metric

Hyperbolic Ricci Energy Optimization

© Set target curvature K(v;) =0.

@ Optimize the hyperbolic Ricci energy using Newton’s
method, with the constraint the total area is preserved.
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Algorithm: Computing Hyperbolic uniformization
metric

Hyperbolic Ricci Energy Optimization

© Set target curvature K(v;) =0.

@ Optimize the hyperbolic Ricci energy using Newton’s
method, with the constraint the total area is preserved.

Flattening Mesh in Hyperbolic Space

© Determine the shape of each triangle.

@ Glue the hyperbolic triangles coherently by Mobius
transformation.

Key: all computations use hyperbolic geometry.
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Hyperbolic Uniformization Metric

Genus 0 surface with 3 boundaries. The double covered
surface is of genus 2. The boundaries are mapped to
hyperbolic lines.
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Hyperbolic Uniformization Metric

Genus 0 surface with 3 boundaries. The double covered

surface is of genus 2. The boundaries are mapped to
hyperbolic lines.
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Hyperbolic Uniformization Metric

Genus 0 surface with 3 boundaries. The double covered
surface is of genus 2. The boundaries are mapped to
hyperbolic lines.
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Hyperbolic Uniformization Metric

Embedding in the upper half plane hyperbolic space model.
Different period embedded in the hyperbolic space. The
boundaries are mapped to hyperbolic lines.
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Universal Covering Space and Deck Transformation

A pair (£, m) is a universal
cover of a surface ¥, if
@ Surface X is simply
connected.
@ Projection m: ¥ — Y isa
local homeomorphism.

Deck Transformation

A transformation ¢ : ¥ — Y is a
deck transformation, if

T= TT0 Q.

A deck transformation maps
one period.to another.
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Fuchsian Group

Definition (Funchsian Group)

Suppose % is a surface, g is its
uniformization metric, (X, ) is the
universal cover of ¥. g is also the
uniformization metric of ¥. A deck
transformation of (£,g) is a Mébius
transformation. All deck
transformations form the Fuchsian
group of X.

Fuchsian group indicates the intrinsic
symmetry of the surface.
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Fuchsian Group

e|9
a, || —0.631374+i0.775478 | +0.730593 +i0.574094
b; || +0.035487 —i0.999370 | +0.185274 —i0.945890
a, || —0.473156+i0.880978 | —0.798610 —i0.411091
b, || —0.044416 —i0.999013 | +0.035502 +10.964858
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Klein Model

Another Hyperbolic space model is Klein Model, suppose s,t
are two points on the unit disk, the distance is

1-s-t
V(@ —s-s)(1-t-t)

. w
Poincaré vs. Klein Model

From Poincaré model to Klien model is straight froward

2z _ 1-v1-2zz
= 5B R =
+zz by

d(s,t) = arccosh

B(z)

Assume @ is a Mobius transformation, then transition maps
Bo@oB~t are real projective.

- -
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Hyperbolic and Real Projective Structure

Real projective structure

The embedding of the universal cover in the Poincaré disk is
converted to the embedding in the Klein model, which induces
a real projective atlas of the surface.
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Hyperbolic and Real Projective Structure

Surface Hyperbolic Structure  Projective Structure
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Hyperbolic and Real Projective Structure
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Surface, courtesy  Hyperbolic Structure  Projective Structure
of Cindy Grimm
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Surface Hyperbolic Structure  Projective Structure
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Hyperbolic and Real Projective Structure

Surface Hyperbolic Structure  Projective Structure
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Hyperbolic Uniformization Metric
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Hyperbolic Structure
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Hyperbolic Structure

David Gu Conformal Geometry



For more information, please email to gu@cs.sunysb.edu. ]

Thank you!
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