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A DedicationA Dedication

Happy 60th Birthday!!

Michael Ian Shamos:    
PhD thesis “Computational Geometry”, Yale University, 1978
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Motivating Problem: TSP with Motivating Problem: TSP with 
NeighborhoodsNeighborhoods

Find shortest tour to visit a set of 
neighborhoods P1,P2,…,Pn
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TSPN for Disk PackingTSPN for Disk Packing
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TSPN in a Circle PackingTSPN in a Circle Packing

"Introduction to Circle Packing: 
the Theory of Discrete Analytic 
functions"
by Ken Stephenson 
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Another (Springtime) MotivationAnother (Springtime) Motivation

Best method of 
mowing the lawn?

TSPN: Visit the disk 
centered at each blade 
of grass
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Watchman Route ProblemWatchman Route Problem
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Sensor Network Application: Sensor Network Application: 
Cover Tour ProblemCover Tour Problem

Alt, Arkin, Bronnimann, Erickson, Fekete, 
Knauer, Lenchner, Mitchell,Whittlesey, SoCG’06

Min: Tour length + 
C * (sum of radii)
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Sensor Network Application: Sensor Network Application: 
Minimizing # Relay StationsMinimizing # Relay Stations

Efrat, Fekete, Mitchell 2007

Goal: Connect all subnetworks 
of sensors using min # of new 
relay stations

New result:  PTAS
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Min-Weight Convex SubdivisionMin-Weight Convex Subdivision

Steiner version

Special Case:  Min-weight (Steiner) triangulation
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Approximation AlgorithmsApproximation Algorithms
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Background on TSPBackground on TSP
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PTAS for Geometric TSPPTAS for Geometric TSP
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TSPN Recent ResultTSPN Recent Result
 TSPN has a PTAS for TSPN has a PTAS for 

regions/neighborhoods that are “regions/neighborhoods that are “fatfat”, ”, 
disjoint (or sufficiently disjoint) disjoint (or sufficiently disjoint) 
connected regions in the planeconnected regions in the plane

 Applies also to “MST with Applies also to “MST with 
neighborhoods”, Steiner MSTN, and neighborhoods”, Steiner MSTN, and 
many related problemsmany related problems

PTAS = Polynomial-Time Approximation Scheme = (1+ε)-approx, any ε>0

[SODA’07]
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Background on TSPNBackground on TSPN
Generalizes 2D Euclidean TSP   (thus, NP-hard)Generalizes 2D Euclidean TSP   (thus, NP-hard)
Introduced by Introduced by [Arkin & Hassin, 1994][Arkin & Hassin, 1994]

• ““obvious” heuristics do not work:obvious” heuristics do not work:
 TSP approx on centroids (TSP approx on centroids (as representative pointsas representative points))
 Greedy algorithms   (Greedy algorithms   (Prim- or Kruskal-likePrim- or Kruskal-like) ) 

• O(1)-approx, time O(n + k log k), for “nice” regions:O(1)-approx, time O(n + k log k), for “nice” regions:
 Parallel unit segmentsParallel unit segments
 Unit disksUnit disks
 Translates of a polygon PTranslates of a polygon P

• Combination LemmaCombination Lemma
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General Connected RegionsGeneral Connected Regions
O(log k)-approxO(log k)-approx [Mata & M, SoCG’95][Mata & M, SoCG’95]

Use guillotine rectangular subdivisions, DPUse guillotine rectangular subdivisions, DP
((nonnon – disjoint:  regions may overlap) – disjoint:  regions may overlap)

 O(nO(n55) time) time  
[Mata & M, SoCG’95][Mata & M, SoCG’95]

 O(nO(n22 log n) log n)
[Gudmundsson & Levcopoulos, 1999][Gudmundsson & Levcopoulos, 1999]

k = # regions               n = # vertices of all regions
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O(1)-ApproximationsO(1)-Approximations
 Unit disks, parallel unit segments, translates of Unit disks, parallel unit segments, translates of PP

[Arkin & Hassin, 1993][Arkin & Hassin, 1993]

 Connected regions of comparable sizeConnected regions of comparable size    
[Dumitrescu & M, SODA’01][Dumitrescu & M, SODA’01]

 Disjoint Disjoint fatfat regions of  regions of anyany size size [de Berg, Gudmundsson, [de Berg, Gudmundsson, 
Katz, Levcopoulos, Overmars, van der Stappen, ESA’02]Katz, Levcopoulos, Overmars, van der Stappen, ESA’02]

 Discrete point sets within disjoint, fat, Discrete point sets within disjoint, fat, nonnon-convex regions-convex regions
[Elbassioni, Fishkin, Mustafa, Sitters, ICALP’05][Elbassioni, Fishkin, Mustafa, Sitters, ICALP’05]

 Non Non - disjoint, convex, fat, comparable size- disjoint, convex, fat, comparable size
  [Elbassioni, Fishkin, Sitters, ISAAC’06][Elbassioni, Fishkin, Sitters, ISAAC’06]
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PTAS: O(1+PTAS: O(1+εε)-Approximations)-Approximations
 Disjoint (or nearly disjoint) Disjoint (or nearly disjoint) fatfat regions of comparable size  regions of comparable size 

  [Dumitrescu & M, SODA’01][Dumitrescu & M, SODA’01]
 Point clusters within disjoint Point clusters within disjoint fatfat regions of comparable  regions of comparable 

size in Rsize in Rdd

[Feremans, Grigoriev, EWCG’05][Feremans, Grigoriev, EWCG’05]

NewNew:  PTAS for disjoint (or nearly disjoint) :  PTAS for disjoint (or nearly disjoint) fatfat regions of  regions of 
arbitraryarbitrary sizes. sizes.

Def:  P is fat if  area( P ) = Ω( diam2(P) )
Weaker notion than usual “fatness”
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Related Work: APX-hardnessRelated Work: APX-hardness
 General connected regions (overlapping):General connected regions (overlapping):

• No c-approx with c<391/390, unless P=NPNo c-approx with c<391/390, unless P=NP

[de Berg, Gudmundsson, Katz, Levcopoulos, [de Berg, Gudmundsson, Katz, Levcopoulos, 
Overmars, van der Stappen, ESA’02]Overmars, van der Stappen, ESA’02]

(from MinVertexCover)(from MinVertexCover)

• No c-approx with c<2, unless P No c-approx with c<2, unless P j             TIME (n TIME (nO(log log n)O(log log n)))

[Safra, Schwartz, ESA’03][Safra, Schwartz, ESA’03]
(from Hypergraph VertexCover)(from Hypergraph VertexCover)

 Line segments, comparable lengthLine segments, comparable length
[Elbassioni, Fishkin, Sitters, ISAAC’06][Elbassioni, Fishkin, Sitters, ISAAC’06]

 Pairs of points (disconnected)Pairs of points (disconnected) [Dror, Orlin, [Dror, Orlin, 
2004]2004]
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Exact Poly-Time SolutionsExact Poly-Time Solutions

TSPN for a set of infinite lines in 2D:

Solved in O(n4 log n) time using Watchman 
Route solution [Dror, Efrat, Lubiw, M, STOC’03]

Is this the only 
nontrivial case 
exactly solvable in 
poly-time?

What about 
visiting planes in 
3D?
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Recipe for PTASRecipe for PTAS

OPT Network with special
recursive structure

increasing length by 
≤ (1+ε) factor

Use dynamic programming to compute shortest network with the required 
structure (connectivity, Eulerian subgraph, etc)

Optimal network with 
special structure TSPN tour

Structure Theorem

What should the special recursive structure be?
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m-Guillotine Structurem-Guillotine Structure
Network edge set E is m-guillotine if it can be recursively partitioned by 
horiz/vertical cuts, each having small (O(m)) complexity wrt E
Example:  3-guillotine

Each cut intersects E in at most 3 connected components
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Desired Recursive StructureDesired Recursive Structure

Constant 
(O(m))

information 
flow across 
boundary

Rectangular subproblem in dynamic program (recursion)

cut
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m-Guillotine Structure Theoremm-Guillotine Structure Theorem

Any set E of edges of length L can be made to be  
m-guillotine by adding length  O(L/m) to E, for any 
positive integer m.

Proof is based on a simple charging scheme.

While this “scribble” may not 
be m-guillotine, it is “close”

in that it can be made m-guillotine
by adding only (1/m)th of its length 
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Possible Vertical CutsPossible Vertical Cuts

f(x)

x
f(x) = length of m-bridge

= cost of construction
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Paying for the Bridge Construction: Paying for the Bridge Construction: 
The Chargeable LengthThe Chargeable Length

h(x) = chargeable lengthx
Green portion: “m-dark”
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Charging SchemeCharging Scheme
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Charging SchemeCharging Scheme
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Charging SchemeCharging Scheme

x

y

f(x) = cost of construction of       
              vert cut at x

h(y) = 
chargeable 
length of horiz 
cut at y

Red area = =
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Charging SchemeCharging Scheme

y

Blue area =
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Charging SchemeCharging Scheme
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SubproblemSubproblem
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Dynamic Program:                    Dynamic Program:                    
Min Steiner TreeMin Steiner Tree
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Difficulty in Applying TSP Difficulty in Applying TSP 
Methods to TSPN / MSTNMethods to TSPN / MSTN

Consider a subproblem (rectangle):
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New StructureNew Structure
 Build Build region-bridgesregion-bridges in order to encode  in order to encode 

succinctly which regions are the succinctly which regions are the 
“responsibility” of a subproblem“responsibility” of a subproblem

 Cannot afford to build Cannot afford to build mm-region-bridges-region-bridges
for for m = O(1/m = O(1/εε),), constant wrt  constant wrt nn..

 But But cancan afford to build  afford to build M-M-region-bridges, region-bridges, 
with with M=O((1/M=O((1/εε)log n))log n) and this is “just right”,  and this is “just right”, 
since the remaining since the remaining MM bridges that are not  bridges that are not 
part of the bridge can be specified in the part of the bridge can be specified in the 
subproblem:   subproblem:   22MM =  = 22O(log n)O(log n) is  is poly(n)poly(n)
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Subproblem: A Window into OPTSubproblem: A Window into OPT

Region-Bridges

M=3

Bridges
m = 4
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Subproblem OptimizationSubproblem Optimization

Region-Bridges
Bridges

Specification of a subproblem:

1. Window W

2. ≤ 4 Bridges, ≤ 2m segs/side of W

3. ≤ 4 Region-Bridges, one bit per       
≤ 8M non-bridged crossing region:  
Is the subproblem responsible to 
visit?

4. Protruding regions not in RW0
 

specified by ≤ 2 sequences per side

5. Connection pattern among the O(m) 
segs crossing into W

m = 1/ε

M = (1/ε) log n

W

mO(m)

nO(1)

nO(1)+2O((1/ε)log n) = nO(m)

n4

mO(m)

Total # subproblems = nO(m)

and  nO(m) choices for the best horiz/vertical cut, in DP optimization
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(m,M)-Guillotine Structure(m,M)-Guillotine Structure
Definition:  Network edge set E is (m,M)-guillotine if it can 
be recursively partitioned by horiz/vertical cuts, each 
containing the “m-span” (bridge) of E and the “M-region-
span” (region-bridge) of the set of regions.
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What the DP ComputesWhat the DP Computes

Minimum-length network that is

1. (m,M)-guillotine wrt window W0 and regions RW0

2. Connected

3. Containing an Eulerian spanning subnetwork

4. Spanning (visits all regions)
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Main Idea of PTASMain Idea of PTAS

Use m-guillotine PTAS method, with new 
structure to address difficulty with TSPN

OPT (m,M)-guillotine network
with special structure

increasing length by 
≤ (1+ε) factor

Use dynamic programming to compute shortest (m,M)-guillotine

network with the required structure (connectivity, Eulerian subgraph, etc)

Optimal (m,M)-guillotine 
network with structure TSPN tour

Structure Theorem
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New Structure TheoremNew Structure Theorem

Theorem:  Let E be a connected set of 
edges of length L, spanning all regions.  
Then, for any positive integers m and M, 
there is a superset, E’, of E, of length at 
most L + (sqrt(2)/m) L + (sqrt(2)/M) λ(RW0

).

Key Lemma:    L* ≥ C  λ(RW0
) / log n

We pick M = (1/ε) log n , and m = 1/ε

Then, by the Key Lemma, we see that T* can be converted 
to be (m,M)-guillotine, adding length O(T*/ε)

Sum of region diameters
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The sum of the perimeters of a set of n 
disjoint fat regions that are visited by a 
path of length L is at most O(L log n)

Uses PACKING argument

Ex:  Bound is tight

Key Geometric Observation
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Key Lemma: Lower Bound on OPTKey Lemma: Lower Bound on OPT

Key Lemma:    L* ≥ C  λ(RW0
) / log n

Relates tour length of OPT, L*, to sum of diameters, λ(RW0
) 

Ex:  Tight

L* = Ω( λ(RW0
) / log n)
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Proof of Key LemmaProof of Key Lemma

Let Ai = area( (T* + B(di )) W0 )
Minkowski sum with ball of radius di

Cluster regions by size (diameter), into log (n/ε) classes

There are ni regions with diameter in range (di/2,di)

Area (packing) argument:  

Claim:  Ai ≤  2di L*

By fatness, Ai ≥ C0 di
2 ni , for some constant C0

Thus, by Claim below, C0 di
2 ni ≤ 2di L*,  or L* ≥ (C0/2) di ni

Summing on i, we get  L* ≥ C λ(RW0
) / log n 

This is where fatness and 
disjointness are used!
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Bucketing Regions by SizeBucketing Regions by Size
 Consider each minimal covering AAB, Consider each minimal covering AAB, WW00, , 

snapped to gridsnapped to grid
 RRWW00

 = regions fully within  = regions fully within WW00

 PartitionPartition  RRWW00
  into into K=O(log(D/K=O(log(D/δδ))=O(log(n/))=O(log(n/εε))))  

classes according to the diameters falling in classes according to the diameters falling in 
ranges:ranges:

(only O(n4) of them)

(each has diameter O(D))

(0,δ)    (δ,2δ)    (2δ,4δ)    (4δ,8δ)    …    (2i-1δ,2iδ)    …    (2K-2δ,2K-1δ)

di=2iδ δ = εD/n

Class i

Can shrink to single grid points, by Grid Lemma



46

Proof of ClaimProof of Claim

Claim:  Ai = area( (T* + B(di )) W0 ) ≤  2di L*

Proof:

area( T* + B(di ) ) ≤  2di L* + πdi
2

That portion within W0 
does not include (at least) 
the area, πdi

2

W0=BB(T*)

Minkowski sum with ball of radius di
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Main ResultMain Result

Theorem:  TSPN for disjoint fat regions 
has a PTAS. 

PTAS also for the case of nondisjoint 
regions, if there are disjoint disks β1,…,βn, 
with βi    Pi and diam(Pi)/diam(βi) < C.

Improve running time to O(nC), with C 
independent of 1/ε:  use grid-rounded guillotine 
subdivisions.

¿



48

Generalizations/ExtensionsGeneralizations/Extensions
 Disconnected regions: sets of Disconnected regions: sets of 

points/regions that are within a “nice” points/regions that are within a “nice” 
set of regionsset of regions

 k-TSPNk-TSPN
 Steiner MST with NeighborhoodsSteiner MST with Neighborhoods
 MST with Neighborhoods (MSTN)MST with Neighborhoods (MSTN)
 k-MSTNk-MSTN
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Approximation of 2D TSPN: Approximation of 2D TSPN: 
Connected RegionsConnected Regions

    Fat Regions                         non-Fat Regions

Comparable
sizes

Arbitrary
size

Disjoint

Non-Disjoint

Disjoint

Non-Disjoint

Disjoint

Non-Disjoint

Disjoint

Non-Disjoint

PTAS
O(1)

O(1)

O(1)
O(1), PTAS?

PTAS
New

O(log n)

O(log n)

APX-hard
O(log n)

O(1)
APX-hard

Conjecture:  
PTAS for all

Conjecture:  
O(1) for all

PTAS
Newest

Newest
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Laundry List of ProblemsLaundry List of Problems
 Know PTASKnow PTAS

• TSP, k-TSP, Steiner TSP, k-TSP, Steiner 
MST, k-MSTMST, k-MST

• Red-blue separationRed-blue separation
• Min-weight convex Min-weight convex 

subdivisionsubdivision
• TSPN, fat regionsTSPN, fat regions
• Orienteering problemOrienteering problem
• Lawnmowing problemLawnmowing problem

 OPEN:  PTAS?OPEN:  PTAS?
• TSPN, disjoint regions in 2DTSPN, disjoint regions in 2D
• Vehicle routing; min-weight Vehicle routing; min-weight 

cover with k-tourscover with k-tours
• Deg-3, deg-4 spanning treesDeg-3, deg-4 spanning trees
• Min-weight triangulationMin-weight triangulation
• Watchman route problemWatchman route problem
• Min-area triangulated Min-area triangulated 

surface; special case: terrainsurface; special case: terrain
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