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A Dedication

Happy 60™ Birthday!

Michael Ian Shamos:
PhD thesis "Computational Geometry”, Yale University, 1978
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Motivating Problem: TSP with
Neighborhoods

e
="

/

Find shortest tour to visit a set of
neighborhoods P, P,,... P,
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TSPN for Disk Packing




TSPN in a Circle Packing




Another (Springtime) Motivation

Best method of
mowing the lawn?

TSPN: Visit the disk
centered at each blade
of grass




Watchman Route Problem




Sensor Network Application:
Cover Tour Problem

Min: Tour length +
C * (sum of radii)

Alt, Arkin, Bronnimann, Ericks8én, Fekete,
Knauer, Lenchner. Mitchell Whittlesey SoCG'06



Sensor Network Application:
Minimizing # Relay Stations

Goal: Connect all subnetworks
of sensors using min # of new
relay stations

New result: PTAS
Efrat, Fekete, Mitchell 2007 9



Min-Weight Convex Subdivision
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Steiner version

Special Case: Min-weight (Steiner) triangulation 10



Approximation Algorithms

c-approrimation:  cost at most ¢ times optimal,
for a minimization problem (¢ > 1)

Polynomaial Tvme Approximation Scheme (PTAS):
method giving (1 + €)-approx to the optimal (minimum),
in time polynomial in n, for any fixed € > 0.

Dependence on € may be exponential in (1/€); else FPTAS
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Background on TSP

e S = set of n points in R?

e NP-hard

O( ?11_1-':'& )

o exact (subexponential) [SmWo98]

e Simple 2-approx: double the MST and shortcut (holds in metric spaces)

= MST
— Doubled MST

e Christofides: 1.5-approx

(use MST U min-weight matching on odd-degree nodes of MST)




PTAS for Geometric TSP

O(n®1/9) in N2 [Ar96,Mi96]

O(n®1)) in R? [Mi97]

O(n(logn)! e ) expected (O(n*polylog) det.) [Ar9T7]

O(nlogn) deterministic [RaSm98]
Idea: t-spanners and * t-banyons”
NP-hard to get (1 + e)-approx in RS for some € > 0 [Tr97]
MAX-SNP-hard in metric spaces

No c-approx for ¢ < 129/128 (¢ < 41/40, asym.) [PV99]
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TSPN Recent Result .opxon

" TSPN has a PTAS for
regions/neighborhoods that are "fat”,
disjoint (or sufficiently disjoint)
connected regions in the plane

= Applies also fo "MST with
neighborhoods”, Steiner MSTN, and
many related problems

PTAS = Polynomial-Time Approximation Scheme = (1+€)-approx, any €0
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Background on TSPN

Generalizes 2D Euclidean TSP (thus, NP-hard)
Introduced by

» “obvious” heuristics do not work:
= TSP approx on centroids (as representative points)
" Greedy algorithms (Prim- or Kruskal-like)

* O(1)-approx, time O(n + k log k), for "nice" regions:
* Parallel unit segments
= Unit disks
" Translates of a polygon P

- Combination Lemma

15



General Connected Regions

O(log k)-approx
Use guillotine rectangular subdivisions, DP
(non - disjoint: regions may overlap)

" O(n?) time
" O(n? log n)

k = # regions n = # vertices of all regions
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O(1)-Approximations

Unit disks, parallel unit segments, translates of P

Connected regions of comparable size

Disjoint fat regions of any size

Discrete point sets within disjoint, fat, non-convex regions

Non - disjoint, convex, fat, comparable size
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PTAS: O(1+€)-Approximations

= Disjoint (or nearly disjoint) fat regions of comparable size

" Point clusters within disjoint fat regions of comparable
size in R?

New: PTAS for disjoint (or nearly disjoint) fat regions of
arbitrary sizes.
Def: Pis fat if area(P )= Q( diam2(P))
t:



Related Work: APX-hardness

" General connected regions (overlapping):
» No c-approx with c<391/390, unless P=NP

(from MinVertexCover)
* No c-approx with c<2, unless P j TIME (nOlog logm)

(from Hypergraph VertexCover)
" Line segments, comparable length

" Pairs of points (disconnected)
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Exact Poly-Time Solutions

TSPN for a set of infinite lines in 2D:

Is this the only D
nontrivial case What about
exactly solvable in \élél;flng in
poly-time? ) | 1 ,

Solved in O(n* log n) time using Watchman
Route solution 20



Recipe for PTAS

Structure Theorem

Network with special increasing length by
—
[ OFT } structure < (1+¢) factor
Use to compute shortest network with the required

structure (connectivity, Eulerian subgraph, etc)

Optimal network with

special structure SN ’rour']

What should the special recursive structure be?
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m-Guillotine Structure

Network edge set E is m-guillotine if it can be recursively partitioned by
horiz/vertical cuts, each having small (O(m)) complexity wrt E

Example: 3-quillotine
; Each cut intersects E in at most 3 connected components




Desired Recursive Structure

Rectangular subproblem in dynamic program (recursion)

cut

Constant

(O(m))

information
flow across
boundary




m-Guillotine Structure Theorem

Any set E of edges of length L can be made to be
m-qguillotine by adding length O(L/m) to E, for any
positive integer m.

Proof is based on a simple charging scheme.

While this “scribble” may not
be m-guillotine, it is “close”
in that it can be made m-guillotine

by adding only (1/m)th of its length




Possible Vertical Cuts

f(x)

f(x) = length of mplridge
= cost of construction



Paying for the Bridge Constiruction:
The Chargeable Length

IE

\
|

Green portion: "m-dark” « h(x) = chargeablg length




Charging Scheme

e Let f(xr) = length of m-span of vertical line through =
Let g(y) = length of m-span of horizontal line through

e Then,
A = / flz)dr
is simply the area of the “m-dark” ( RED) region wrt horiz cuts
Similarly,
is the area of the “m-dark” { BLUE) region wrt vertical cuts

o Assume, WLOG, that 4, > 4,

e Thus, for h(y) = length of m-dark, for horiz line through v,

A, = / hiv)dy = / gly)dy =A, >0

So, dy* for which h(y*) = g(v*);

i.e., 4 a horiz line through y* whose m-dark portion > m-span.

(It A. < A, then d a vertical favorable cut.)



Charging Scheme




Charging Scheme

Region of 2-dark points wrt horizontal cuts ( RED)

f(x)
h(y) =
chargeable

length of horiz E—

cut aty - II

x' f(x) = cost of gns‘rr'uc‘rlon of

NS vert cu‘r at x




Charging Scheme

Region of 2-dark points wrt vertical cuts { BLUE)
Y -_ I.

gly) I

] - T
T -

T

Blue area - [BYES / gly)dy



Charging Scheme

e Let f(xr) = length of m-span of vertical line through =
Let g(y) = length of m-span of horizontal line through

e Then,
A = / flz)dr
is simply the area of the “m-dark” ( RED) region wrt horiz cuts
Similarly,
is the area of the “m-dark” { BLUE) region wrt vertical cuts

o Assume, WLOG, that 4, > 4,

e Thus, for h(y) = length of m-dark, for horiz line through v,

A, = / hiv)dy = / gly)dy =A, >0

So, dy* for which h(y*) = g(v*);

i.e., 4 a horiz line through y* whose m-dark portion > m-span.

(It A. < A, then d a vertical favorable cut.)



Subproblem




Dynamic Program:
Min Steiner Tree

Sorted z-coord: xy < 29 < -+ (for P, and grid lines)
Sorted vy

B4 )

Subproblem: O(nt - (n*)% = O choices

Input:

1. a rectangle R(i.4', j, 7). defined by x;, x, y;. y;r O(n*)

2. four sets of “boundary information™, ;. >,.. >, and >,
: : I s by £
determined by < 2m endpoints on each side O((n*™)%)
3. a partition, P
boundary pieces

tive:  Find min-length m-guillotine subdivision, S¢& (e s /5 interior to
R(i, 7, 3,7")), such that E} covers PP and Ef, connects the boundary pieces, ac-
cording to partition P.




Difficulty in Applying TSP
Methods to TSPN / MSTN

Consider a subproblem (rectangle):

~ Which regions must be visited inside R?



New Structure

= Build in order to encode
succinctly which regions are the
“responsibility” of a subproblem

" Cannot afford to build m-region-bridges
for m = O(1/¢), constant wrt n.

" But canafford to build M-region-bridges,
with M=O((1/¢)log n) and this is " just right",
since the remaining M bridges that are not
part of the bridge can be specified in the
subproblem: 2M = 2909 s poly(n)
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Subproblem' A Window into OPT!

&
T m.

M3




Subproblem Optimization

Specification of a subproblem: gl

1. Window W H ‘

2. <4 Bridges, < 2m segs/side of W @k <=

3. <4 Region-Bridges, one bit per
< 8M non-bridged crossing region:

Is the subproblem responsible to
(A‘ Il

4. Protruding regions not in Ry, now

specified by < 2 sequences per side Bridges

5. Connection pattern among t ) Region-Bridges
segs crossing into W m= 1/

Total # subproblems = notm M = (1/€) log n

and n°m choices for the best horiz/vertical cut, in DP op’rimiéc?‘rion




(m,M)-Guillotine Structure

Definition: Network edge set E is (m,M)-quillotine if it can
be recursively partitioned by horiz/vertical cuts, each
containing the "m-span” (bridge) of E and the "M-region-
span” (region-bridge) of the set of regions.
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What the DP Computes

Minimum-length network that is

1. (m.M)-guillotine wrt window W, and regions Ry, _

2. Connected
3. Containing an Eulerian spanning subnetwork

4. Spanning (visits all regions)

39



Main Idea of PTAS

Use m-quillotine PTAS method, with new
structure to address difficulty with TSPN

with special structure < (1+€) factor

[ OPT } m—)> E,M)—guillo‘rine ne’rwoﬂ increasing length by

Use to compute shortest (m,M)-guillotine

network with the required structure (connectivity, Eulerian subgraph, etc)

Optimal (m,M)-quillotine :
Eefwor'k with structure TSPN tour

40




New Structure Theorem

Theorem: Let E be a connected set of
edges of length L, spanning all regions.
Then, for any positive integers m and M,
there is a superset, E', of E, of length at
most L + (sqrt(2)/m) L + (sqrt(2)/ N\)/)'\(RWO).

We pick M = (1/¢) |09 n,and m = 1/¢ Sum of region diameters

Then, by the Key Lemma, we see that T* can be converted
to be (m,M)-guillotine, adding length O(T*/¢)

Key Lemma: L*=C A(Ry, )/ logn




Key Geometric Observation

The sum of the perimeters of a set of n

disjoint fat regions that are visited by a
path of length L is at most O(L log n)

Uses argument

Ex: Bound is tight




Key Lemma: Lower Bound on OPT

Key Lemma: L*=C A(Ry, )/ logn

Relates tour length of OPT, L*, to sum of diameters, A(R,, )

Ex: Tight

L* = Q( )\(RWO) / log n)
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Proof of Key Lemma

Cluster regions by size (diameter), into log (n/€) classes

There are n, regions with diameter in range (d/2,d)

Area (packing) argumenT: This is where fatness and
Let A = ar'ea( (T*@ B(di )) ﬂWO ) | disjointness are used!

Minkowski sum with ball of radius d.

By fatness, A, > C,d? n., for some constant C,
Thus, by Claim below, C, d? n, < 2d. L*, or L* = (C,/2) d. n,
Summing on i, we get L* =2 CA(R,, ) / logn

Claim: A < 2d.L* “




Bucketing Regions by Size

= Consider each minimal covering AAB, W,
snapped to grid (only O(n*) of them)
— 1 +hi h has diameter O(D
= Ry, = regions fully within W, (et s daneierOO)

= Partition Ry, info K=O(log(D/5))=0(log(n/¢))

classes according to the diameters falling in
r@REEM.25) (25,45) (45,85 . (23,28) .. (2%5,2¢13)
Class i
d.=2id 8 = eD/n
Can shrink to single grid points, by Grid Led#na



Proof of Claim

Claim: A =area( (T*©B(d.))NW, )< 2d.L*

\

Pr'oof; Minkowski sum with ball of radius d.

area( T"®B(d.) )< 2d.L* + nd?

That portion within W, I Wo=BB(T)

does not include (at least)
the area, 1d?




Main Result

Theorem: TSPN for disjoint fat regions
has a PTAS.

PTAS also for the case of nondisjoint
regions, if there are disjoint disks (3,,...,3,,

with 3. P.and diam(P.)/diam(j3) < C.

Improve running time to O(n¢), with C
independent of 1/¢: use grid-rounded guillotine
subdivisions.
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Generalizations/Extensions

" Disconnected regions: sets of
points/regions that are within a “nice”
set of regions

= k-TSPN
" Steiner MST with Neighborhoods
" MST with Neighborhoods (MSTN)
= K-MSTN

48



Approximation of: 2D TSPN:
Connected Regions

Comparable
sizes

Arbitrary
size

Fat Reg_;ions

non-Fat Regions

Disjoint
PTAS

O(1)

Disjoint

Newest

Non-Disjoint

Disjoint
O(1)

O(1)

APX-hard
Non-Disjoint

_ I pisjoint

O{1)
- O(log n)
/ O(log n) APX-hard
Non-Disjoint Non-Disjoint
Conjecture: Conjecture:
PTAS for all O(1) for all




Laundry: List of: Problems

" Know PTAS = OPEN: PTAS?

- TSP, k-TSP, Steiner » TSPN, disjoint regions in 2D
MST, k-MSTF * Vehicle routing; min-weight

* Red-blue separation cover with k-tours

* Min-weight convex » Deg-3, deg-4 spanning trees
subdivision » Min-weight triangulation

* TSPN, fat regions + Watchman route problem

* Orienteering problem . Min-area triangulated

» Lawnmowing problem surface; special case: terrain
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