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The Riemann mapping and the first derivative

One of the classical problems in Geometric function theory is to estimate the
derivative | f’| of the Riemann map, and the corresponding estimates on harmonic
measure.,

What is the upper bound on harmonic measure of a small disc in Q7

For which values of p £ R does the integral
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The Convex Hull Boundary
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Figure 5. Dome({2), where €2 is shown in Figure 4. The dome is placed in
the upper halfspace model, and is viewed from inside the convex hull of the
complement of €2, using Euclidean perspective. The space under the dome lies
between €2 and Dome(€2). Since the upper halfspace model is conformal, the
angle between disks in Figure 4 is equal to the angle between flat pieces shown
in Figure 5.



The map h is chosen to be the identity on the boundary of £2. This implies that
the restriction of the map ¢ on the unit circle does not depend on the particular

choice of h.

r: Q0 — Dome(£)) denotes the nearest point retraction map.

Theorem 1 (Bishop). The map i or : Q — D is Lipschitz with respect to the
Fuclidean metric.

Byv deforming slightly the nearest point retraction map one can construct a
quasiconformal homeomorphism A : 2 — D so that the map ich : 2 — D is
Lipschitz (one can arrange that the corresponding map ¢ : D — D is real analytic).

This implies that

< const |g/((i 0 h)(2))|.

| £(2)



Figure 4. (2 is the union of four disks. Dome(€2) is the union of five flat pieces as
can be seen in Figure 5. The fifth piece is a hyperbolic triangle in the hyperbolic
plane represented by a circle lying in the union of three of the original disks. The
dome has four bending lines, as shown in Figure 5. The crescents shown are the
inverse images of the bending lines under the nearest point retraction. Notice
that each boundary component of a crescent is orthogonal to the appropriate
circle.



Define

K(Q)={K(h):h:Q — Dome(Q);h|laq = id}

K = supaK ()

L={L(r):r:Q — Dome()}.

where 7 : {2 — Dome(€) is the nearest point retraction.

Theorem 2 (Sullivan, Epstein-Marden). The numbers K and L are well defined.
Moreover 2 < K < 70 and 2 < L < 4.



Let D(p) C €2 be a disc of radius p, and let w(D) denote its harmonic measure.
It can be shown that for small values of p > 0

w(D(p)) < const p%.

Bishop has shown (by applyving Astala’s theorem) that the integral
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converges for p < f?—fl



It is conjectured (the Brennan conjecture) that the integral
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converges for % < p < 4.

Conjecture 1. We have K =L = 2.

In the case when {2 is the slit region in the complex plane we have K({2) =

L(Q) =2

Theorem 3. IfQ is (Euclidean) convexr domain in the complex plane then K{) <
2

F

Theorem 4. L=2.



Figure 2.0.i. The dome of a wedge is a cone. In the lefthand picture, the mesh shown
consists, on the one hand, of semicircles orthogonal to the plane {z = 0} and, on the
other hand, rays through the origin. The semicircles are hyperbolic geodesics in H*. The
rays are not geodesics in H*. However, the ray ~, running along the highest points of the
semicircles, is a geodesic for the induced Riemannian metric on the dome. One of the
semicircles is labelled A\, in agreement with the surrounding text, and its inverse image
r~L(A) under the nearest point retraction r is also labelled.



Bending measure

For everv domain (), the Dome({2) is determined by a measured lamination
(A, ) on D (here p is a positive measure on intervals that are transverse to A). The
Dome(€2) is obtained by bending along (A, jz). One can apply the complex bending
(called the complex earthquake) that is determined by (A, #u), where t € C and
Im(t) = 0. This determines a map:

F:{Im(z) =0} — Teich(D).

The map F' is holomorphic and it can be holomorphically extended to a portion of
the lower half plane (this was proved by McMullen). Let D denote the domain of
F. The image F'(D) C Teich(D) is called an earthquake disc.



Byv considering domains (2 that are regular sets of quasi-Fuchsian once-punctured
torus groups we obtain a biholomorphic map

F:D — Teich(T),

where T'eich(1") is the Teichmuller space of once-punctured torus.

Theorem 5. There exists a domain () (which is a regular domain of some once-
punctured torus quasi-Fuchsian group) so that K., (§2) > 2.
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Figure 2. The values of z for which ¢, is injective and (5. is a discrete group
of isometries is the region lying between the upper and lower curves. The whole
picture is invariant by translation by arccosh(3), which is the length of o in the
punctured square torus. The Teichmuller space of T is holomorphically equivalent
to the subset of C above the lower curve. The point marked w is a highest point
on the upper curve, and r, is its x-coordinate. This picture was drawn by David

Wright.



Figure 3. The complement in S! of the limit set shown here is a counterexample
to the equivariant K = 2 conjecture. The picture shows the limit set of (&,,,
where w is a highest point in QF C T C C. This seems to be a one-sided
degeneration of a quasifuchsian punctured torus group. This would mean that,
mathematically, the white part of the picture is dense. However, according to
Bishop and Jones (see [8]), the limit set of such a group must have Hausdorff
dimension two, so the blackness of the nowhere dense limit set is not surprising.
In fact, the small white round almost-disks should have a great deal of limit set in
them—this detail is absent because of intrinsic computational difficulties. This

picture was drawn by David Wright.



Let ¢ > 0 and let €. be the complement of the logarithmic spiral

r— explx(c+1)).

Set K(c) = K(€,).

Theorem 6. There exists 0 < ¢g < 1. so that for cp < ¢ < o0 we have K(c) > 2.
In particular, for c = 1.08968 we get K(c) = 2.111.



Figure 3. Some logarithmic spirals



Figure 5. This shows the logarithmic spiral with ¢ = 0.4 and the maximal circle
which is tangent at z = 1. The parameter values at which the circle touches
are t = ( and sy = 0.900104. We find sy using Newton’'s method following

Lemma 5.1.



Figure 6. This shows Dome(€) C U3. The picture is drawn for ¢ = 0.4. Part of
the spiral is covered with a mesh of bending lines and constant distance curves.

These are curves which are at constant distance from the main geodesic with
respect to the induced Riemannian metric on the dome.



Figure 9. The graph of the dilatation K(c¢) against c.



Let € be any domain (non necessarily simply connected). One can define the
constants K () and L()) accordingly.

Theorem 7. L({)) < oo if and only if £ is uniformly perfect set. If ) is uniformly
perfect then K(£)) < oc.
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