A Theorem on Subdivision Approximation and Its Application to Obtaining PTAS's for Geometric Optimization Problems

> Joseph S.B. Mitchell Stony Brook University

Workshop on Computational and Conformal Geometry, April 21, 2007

Happy 60th Birthday!!

Michael Ian Shamos: PhD thesis "Computational Geometry", Yale University, 1978

2

Motivating Problem: TSP with Neighborhoods

Find shortest tour to visit a set of neighborhoods P_1, P_2, \dots, P_n

TSPN for Disk Packing

TSPN in a Circle Packing

"Introduction to Circle Packing: the Theory of Discrete Analytic functions" by Ken Stephenson

Another (Springtime) Motivation

Watchman Route Problem

Sensor Network Application: Cover Tour Problem

Alt, Arkin, Bronnimann, Ericks8n, Fekete, Knauer, Lenchner, Mitchell,Whittlesey, SoCG'06

Sensor Network Application: Minimizing # Relay Stations

Goal: Connect all subnetworks of sensors using min # of new relay stations

New result: PTAS

Efrat, Fekete, Mitchell 2007 9

Min-Weight Convex Subdivision

Steiner version

Special Case: Min-weight (Steiner) triangulation

10

Approximation Algorithms

c-approximation: cost at most c times optimal, for a minimization problem (c > 1)

Polynomial Time Approximation Scheme (PTAS): method giving $(1 + \epsilon)$ -approx to the optimal (minimum), in time polynomial in n, for any fixed $\epsilon > 0$.

Dependence on ϵ may be exponential in $(1/\epsilon)$; else **FPTAS**

Background on TSP

- $S = \text{set of } n \text{ points in } \Re^d$
- NP-hard
- $n^{O(n^{1-1/d})}$ exact (subexponential)

[SmWo98]

• Simple 2-approx: double the MST and shortcut (holds in metric spaces)

• Christofides: 1.5-approx

(use $MST \cup min$ -weight matching on odd-degree nodes of MST)

PTAS for Geometric TSP

• $O(n^{O(1/\epsilon)})$ in \Re^2	[Ar96,Mi96]
• $O(n^{O(1)})$ in \Re^2	[Mi97]
• $O(n(\log n)^{(O(\frac{d}{\epsilon}))^{d-1}})$ expected $(O(n^{d+1}polylog) \det)$.	[Ar97]
• $O(n \log n)$ deterministic	[RaSm98]
Idea: t -spanners and " t -banyons"	
• NP-hard to get $(1 + \epsilon)$ -approx in $\Re^{O(\log n)}$, for some $\epsilon > 0$	$[\mathrm{Tr}97]$
• MAX-SNP-hard in metric spaces	
No <i>c</i> -approx for $c < 129/128$ ($c < 41/40$, asym.)	[PV99]
/13	

TSPN Recent Result [SODA'07]

TSPN has a PTAS for regions/neighborhoods that are "fat", disjoint (or sufficiently disjoint) connected regions in the plane Applies also to "MST with neighborhoods", Steiner MSTN, and many related problems

PTAS = Polynomial-Time Approximation Scheme = $(1+\varepsilon)$ -approx, any ε >0

Background on TSPN

Generalizes 2D Euclidean TSP (thus, NP-hard) Introduced by [Arkin & Hassin, 1994]

- "obvious" heuristics do not work:
 - TSP approx on centroids (as representative points)
 - Greedy algorithms (Prim- or Kruskal-like)
- O(1)-approx, time O(n + k log k), for "nice" regions:
 - Parallel unit segments
 - Unit disks
 - Translates of a polygon P
- Combination Lemma

General Connected Regions

O(log k)-approx [Mata & M, 50CG'95] Use guillotine rectangular subdivisions, DP (*non* – disjoint: regions may overlap)

O(n⁵) time

[Mata & M, SoCG'95]

O(n² log n)

[Gudmundsson & Levcopoulos, 1999]

k = # regions

n = # vertices of all regions

O(1)-Approximations

Unit disks, parallel unit segments, translates of P
 [Arkin & Hassin, 1993]

Connected regions of comparable size

[Dumitrescu & M, SODA'01]

 Disjoint fat regions of any size [de Berg, Gudmundsson, Katz, Levcopoulos, Overmars, van der Stappen, ESA'02]
 Discrete point sets within disjoint, fat, non-convex regions [Elbassioni, Fishkin, Mustafa, Sitters, ICALP'05]
 Non - disjoint, convex, fat, comparable size [Elbassioni, Fishkin, Sitters, ISAAC'06]

PTAS: $O(1+\epsilon)$ -Approximations

 Disjoint (or nearly disjoint) fat regions of comparable size [Dumitrescu & M, SODA'01]
 Point clusters within disjoint fat regions of comparable

size in R^d

[Feremans, Grigoriev, EWCG'05]

New: PTAS for disjoint (or nearly disjoint) fat regions of arbitrary sizes.
Def: P is fat if area(P) = Ω(diam²(P))
Weaker notion than usual "fatness"

Related Work: APX-hardness

General connected regions (overlapping):

No c-approx with c<391/390, unless P=NP

[de Berg, Gudmundsson, Katz, Levcopoulos, Overmars, van der Stappen, ESA'02]

(from MinVertexCover)

No c-approx with c<2, unless P j
 TIME (n^{O(log log n)})

[Safra, Schwartz, ESA'03]

(from Hypergraph VertexCover)
 Line segments, comparable length
 [Elbassioni, Fishkin, Sitters, ISAAC'06]
 Pairs of points (disconnected)
 [Dror, Orlin, 2004]

Exact Poly-Time Solutions

TSPN for a set of infinite lines in 2D:

Is this the only nontrivial case exactly solvable in poly-time?

What about visiting planes in 3D?

Solved in O(n⁴ log n) time using Watchman Route solution [Dror, Efrat, Lubiw, 20, STOC'03]

Recipe for PTAS

What should the special recursive structure be?

m-Guillotine Structure

Network edge set E is m-guillotine if it can be recursively partitioned by horiz/vertical cuts, each having small (O(m)) complexity wrt E

Example: 3-guillotine

Each cut intersects E in at most 3 connected components

Desired Recursive Structure

Rectangular subproblem in dynamic program (recursion)

cut

Constant (O(m)) informati

information flow across boundary

m-Guillotine Structure Theorem

Any set E of edges of length L can be made to be m-guillotine by adding length O(L/m) to E, for any positive integer m.

Proof is based on a simple charging scheme.

While this "scribble" may not be m-guillotine, it is "close" in that it can be made m-guillotine by adding only (1/m)th of its length

Possible Vertical Cuts

Paying for the Bridge Construction: The Chargeable Length

• Let f(x) =length of *m*-span of vertical line through xLet g(y) =length of *m*-span of horizontal line through y

• Then,

$$A_x = \int f(x)dx$$

is simply the area of the "*m*-dark" (**RED**) region wrt horiz cuts Similarly,

$$A_y = \int g(y) dy$$

is the area of the "m-dark" (BLUE) region wrt vertical cuts

• Assume, WLOG, that $A_x \ge A_y$

• Thus, for h(y) =length of *m*-dark, for horiz line through y,

$$A_x = \int h(y) dy \geq \int g(y) dy = A_y > 0$$

So, $\exists y^*$ for which $h(y^*) \ge g(y^*)$;

i.e., \exists a horiz line through y^* whose *m*-dark portion $\geq m$ -span.

(If $A_x \leq A_y$, then \exists a vertical favorable cut.)

Region of 2-dark points wrt vertical cuts (BLUE)

• Let f(x) =length of *m*-span of vertical line through xLet g(y) =length of *m*-span of horizontal line through y

• Then,

$$A_x = \int f(x)dx$$

is simply the area of the "*m*-dark" (**RED**) region wrt horiz cuts Similarly,

$$A_y = \int g(y) dy$$

is the area of the "m-dark" (BLUE) region wrt vertical cuts

• Assume, WLOG, that $A_x \ge A_y$

• Thus, for h(y) =length of *m*-dark, for horiz line through y,

$$A_x = \int h(y) dy \geq \int g(y) dy = A_y > 0$$

So, $\exists y^*$ for which $h(y^*) \ge g(y^*)$;

i.e., \exists a horiz line through y^* whose *m*-dark portion $\geq m$ -span.

(If $A_x \leq A_y$, then \exists a vertical favorable cut.)

Subproblem

32

Dynamic Program: Min Steiner Tree

Sorted x-coord: $x_1 < x_2 < \cdots$ (for P, and grid lines) Sorted y-coord: $y_1 < y_2 < \cdots$

Subproblem: $O(n^4 \cdot (n^{2m})^4) = O(n^{8m+4})$ choices *Input:*

- 1. a rectangle R(i, i', j, j'), defined by $x_i, x_{i'}, y_j, y_{j'}$ $O(n^4)$
- 2. four sets of "boundary information", Σ_l , Σ_r , Σ_b , and Σ_t , determined by $\leq 2m$ endpoints on each side $O((n^{2m})^4)$
- 3. a partition, \mathcal{P} , of $\cup_{\alpha} \Sigma_{\alpha}$, giving required connectivity among boundary pieces O(1)

Objective: Find min-length *m*-guillotine subdivision, S_G^* (edges E_G^* interior to R(i, i', j, j')), such that E_G^* covers P and E_G^* connects the boundary pieces, according to partition \mathcal{P} .

Difficulty in Applying TSP Methods to TSPN / MSTN

Consider a subproblem (rectangle):

New Structure

- Build region-bridges in order to encode succinctly which regions are the "responsibility" of a subproblem Cannot afford to build m-region-bridges for $m = O(1/\epsilon)$, constant wrt n. But can afford to build M-region-bridges, with $M=O((1/\epsilon)\log n)$ and this is "just right", since the remaining M bridges that are not
 - part of the bridge can be specified in the subproblem: $2^{M} = 2^{O(\log n)}$ is poly(n)

Subproblem: A Window into OPT

Subproblem Optimization

(m,M)-Guillotine Structure

Definition: Network edge set E is (m,M)-guillotine if it can be recursively partitioned by horiz/vertical cuts, each containing the "m-span" (bridge) of E and the "M-regionspan" (region-bridge) of the set of regions.

What the DP Computes

Minimum-length network that is

1. (m,M)-guillotine wrt window W_0 and regions R_{W_0}

2. Connected

- 3. Containing an Eulerian spanning subnetwork
- 4. Spanning (visits all regions)

Main Idea of PTAS

Use m-guillotine PTAS method, with new structure to address difficulty with TSPN

(m,M)-guillotine network with special structure Structure Theorem

increasing length by \leq (1+ ϵ) factor

Use dynamic programming to compute shortest (m,M)-guillotine network with the required structure (connectivity, Eulerian subgraph, etc)

> Optimal (m,M)-guillotine network with structure

New Structure Theorem

<u>Theorem</u>: Let E be a connected set of edges of length L, spanning all regions. Then, for any positive integers m and M, there is a superset, E', of E, of length at most L + (sqrt(2)/m) L + (sqrt(2)/M) λ (R_{wo}).

We pick M = $(1/\epsilon) \log n$, and m = $1/\epsilon$ Sum of region diameters

Then, by the Key Lemma, we see that T^* can be converted to be (m,M)-guillotine, adding length $O(T^*/\epsilon)$

<u>Key Lemma</u>: $L^* \ge C \lambda(R_{W_0}) / \log n$

Key Geometric Observation

The sum of the perimeters of a set of n disjoint **fat** regions that are visited by a path of length L is at most O(L log n)

Uses PACKING argument

Ex: Bound is tight

Key Lemma: Lower Bound on OPT

<u>Key Lemma</u>: $L^* \ge C \lambda(R_{W_0}) / \log n$

Relates tour length of OPT, L^* , to sum of diameters, $\lambda(R_{W_0})$

Proof of Key Lemma

Cluster regions by size (diameter), into log (n/ ϵ) classes

There are n_i regions with diameter in range $(d_i/2, d_i)$

Area (packing) argument: Let A_i = area(($T^* \oplus B(d_i)$) $\cap W_0$) This is where fatness and disjointness are used!

Minkowski sum with ball of radius d_i

By fatness, $A_i \ge C_0 d_i^2 n_i$, for some constant C_0

Thus, by Claim below, $C_0 d_i^2 n_i \leq 2d_i L^*$, or $L^* \geq (C_0/2) d_i n_i$

Summing on i, we get $L^* \ge C \lambda(R_{w_0}) / \log n$

<u>Claim</u>: $A_i \leq 2d_i L^*$

/44

Bucketing Regions by Size

Consider each minimal covering AAB, W₀, snapped to grid (only $O(n^4)$ of them) (each has diameter O(D)) \blacksquare R_{W_0} = regions fully within W_0 • Partition R_{W_0} into K=O(log(D/ δ))=O(log(n/ ϵ)) classes according to the diameters falling in $(2^{k-2}\delta, 2\delta)$ $(2\delta, 4\delta)$ $(4\delta, 8\delta)$... $(2^{i-1}\delta, 2^{i}\delta)$... $(2^{k-2}\delta, 2^{k-1}\delta)$ Class i

 $\delta = \epsilon D/n$

Can shrink to single grid points, by Grid Lertona

 $d_i = 2^i \delta$

Proof of Claim

<u>Claim</u>: $A_i = area((T^* \oplus B(d_i)) \cap W_0) \le 2d_i L^*$

Minkowski sum with ball of radius d_i

area($T^* \oplus B(d_i)$) $\leq 2d_i L^* + \pi d_i^2$

That portion within W_0 does not include (at least) the area, πd_i^2

Proof:

Main Result

<u>Theorem</u>: TSPN for disjoint fat regions has a PTAS.

PTAS also for the case of nondisjoint regions, if there are disjoint disks β_1, \dots, β_n , with $\beta_i \stackrel{i}{\leftarrow} P_i$ and diam (P_i) /diam $(\beta_i) < C$.

Improve running time to $O(n^c)$, with C independent of $1/\epsilon$: use grid-rounded guillotine subdivisions.

Generalizations/Extensions

- Disconnected regions: sets of points/regions that are within a "nice" set of regions
- k-TSPN
- Steiner MST with Neighborhoods
- MST with Neighborhoods (MSTN)
 k-MSTN

Approximation of 2D TSPN: Connected Regions

Laundry List of Problems

Know PTAS

- TSP, k-TSP, Steiner MST, k-MST
- Red-blue separation
- Min-weight convex subdivision
- TSPN, fat regions
- Orienteering problem
- Lawnmowing problem

OPEN: PTAS?

- TSPN, disjoint regions in 2D
- Vehicle routing; min-weight cover with k-tours
- Deg-3, deg-4 spanning trees
- Min-weight triangulation
- Watchman route problem
- Min-area triangulated surface; special case: terrain