Bivariate B-Splines From Centroid Triangulations

Yuanxin Liu, Jack Snoeyink UNC Chapel Hill

Q Motivating Questions

Comput'l Geomety:

"PL surface meshes can be constructed from (irregular) points by triangulating.

What about smooth surfaces?"

A?

CAGD:

"Smooth B-splines can be constructed over (irregular) points along the real line.

How do we make bivariate B-splines?"

centroid triangulations, a generalization of higher order Voronoi duals.

Outline

Context & Motivation

Univariate B-splines

<u>Properties</u>

- local support
- optimal smoothness
- partition of unity_ $\Sigma B_i = 1$

 polynomial reproduction, for any deg. k polynomial p, with polar form P, p = ΣP(S_{i+1}..S_{i+k}) B_i(.| S_i..S_{i+k+1})

What are multivariate splines?

- Are they B-splines?
- tensor product

subdivision

box splines

What are multivariate B-splines?

(multivariate) B-splines should define basis functions with no restriction on knot positions and have these properties of the classic B-splines:

- local support
- optimal smoothness
- partition of unity $\Sigma B_i = 1$
- polynomial reproduction: for any degree k polynomial p, with polar form P, p = ΣP(S_{i+1}..S_{i+k}) B_i(.| S_i..S_{i+k+1})

Simplex spline [dB76]

- A degree k polynomial defined on a set X of k+s+1 points in R^s.
- Lift X to $Y \in \mathbb{R}^{k+s}$ and take relative measure of the projection of this simplex: $M(x \mid X) := vol \{ y \mid y \in [Y] \text{ and projects to } x \}$

Simplex spline

Properties

- ✓ local support: $M(\cdot|X)$ is non-zero only over the convex hull of X.
- optimally smooth, assuming X is in general position.

What are multivariate B-splines?

Using simplex splines as basis:

The task of building multivariate B-splines becomes choosing the "right" configurations.

- All k-tuple configs [Dahmen & Micchelli 83]
- DMS-splines [Dahmen, Micchelli & Seidel 92]
- Delaunay configurations [Neamtu 01]

Neamtu's Delaunay configurations

A degree k Delaunay configuration (t, I) is defined by a circle through t containing I inside.

Delaunay configurations

Delaunay triangles for these vertices may overlap, ...

triangles. [Schmitt 95, Andrzejak 97]

Centroid triangulations Dualizing Lee's algorithm to compute order k Voronoi diagrams

0. Begin w/ triangulation where Devery vertex has a unique label. Invariant: in our troangulation each vertex is the centroid of K points that make its label, and cach edge joins vertices whose union has k+1 labels. 1. For each edge, create the vertex that is its union. L. For each triangle, join the three Vertices created from its three edges 3. Oiscard original triangles & vertices 4. Complete to triangulation:

Centroid triangulations Dualizing Lee's algorithm to compute order k Voronoi diagrams centroid triangulations

Open problem: How do we guarantee that
this algorithm works beyond order 3?

are holes simple polygons? (no self intersection)

What are multivariate B-splines?

(multivariate) B-splines should define basis functions with no restriction on knot positions and have these properties of the classic B-splines:

- local support
- optimal smoothness
- partition of unity $\Sigma B_i = 1$
- polynomial reproduction: for any degree k polynomial p, with polar form P, p = ΣP(S_{i+1}..S_{i+k}) B_i(.| S_i..S_{i+k+1})

Centroid triangulations

Delaunay configuration of degree k: (t, I), s.t. the circle through t contains exactly the k points of I.

Centroid triangle of order k: $[A_{1..k}, B_{1..k} \text{ and } C_{1..k}]$, s.t. # $(A \cap B) = #(B \cap C) = #(A \cap C) = k-1$.

Map Delaunay configurations of deg. k-1, k-2 to centroid triangles of order k:

(abc, J) <-> [JU{a}, JU{b}, JU{c}] deg. k-1 type 1 (abc, I) <-> [IU{b,c}, IU{a,c}, IU{b,c}] deg. k-2 type 2

Neamtu's use of Delaunay configs.

Key property for proof of polynomial repro. is *boundary matching*:

Centroid Triangulations

relations of conf. <-> triangle neighbors

<u>Obs</u> If Γ^{k-1} and Γ^k form a planar centroid triangulation, then they satisfy the boundary matching property.

<u>Problem</u> Given Γ^{k-1} and Γ^{k} that form Δ^{k} , can we find Γ^{k+1} so that Γ^{k} and Γ^{k+1} form Δ^{k+1} ?

Centroid Triangulations

For a set of sites S, a *centroid triangle* of order k have vertices that are centroids of k-subsets of S, e.g. $A_{1,k}$, $B_{1,k}$ and $C_{1,k}$, and satisfy that $#(A \cap B) = #(B \cap C) = #(A \cap C) = k-1.$ <u>Obs</u> $\#(A \cap B \cap C) = k-1$ or k-2. type 1 type 2 Obs There is a 1-1 mapping between the centroid triangles of order k and conf of degree k-1 and k-2.

(abc, J) <-> [JU{a}, JU{b}, JU{c}], (abc, I) <-> [IU{b,c}, IU{a,c}, IU{b,c}]

Centroid triangulations -> B-splines

Theorem

Let Γ° .. Γ^{k} be a sequence of configurations. If Γ° is a triangulation, and Γ^{i-1} , Γ^{i} form a centroid triangulation for O<i<k, then the simplex splines assoc. with Γ^{k} reproduce polynomials of deg. k.

Reproducing the Zwart-Powell element

- An example of our claim: Box splines are special centroid triangulation splines.
- Theory motivation: Evidence that 'ct's provide general basis for bivariate splines. Practical motivation: Smooth blending of box spline patches.

Polyhedral splines

Polyhedron spline $M_{\Pi}(x | P)$

P: a polyhedron in Rⁿ

Box Spline $M_{\Pi}(x)$

$\Pi: a \text{ projection matrix from } \mathbb{R}^n \text{ to } \mathbb{R}^m$ is an n-variate, degree (n-m) spline $M_{\Pi}(x \mid P) := \underline{\text{vol}} \{ y \mid y \in P, \prod y = x \}$

vol P

ZP element

order 2 centroid triangulation

Reproduction of Box splines

Proof sketch (reproducing a single ZP element)

ZP-element 4-cube (partition) 4-polytopes (triangulate) 4-simplices simplex splines

Reproduction of Box-splines

 Patch blending
E.g., a partition of unity by blending regular splines.

Modeling sharp features Data fitting with scattered data points and "break lines"

Open Problems

- Prove no self-intersecting holes arise in the centroid triangulation algorithm
- Reproduce other box-splines by centroid triangulation
 - bilinear interpolation $\Pi = \{ \rightarrow \rightarrow \uparrow \uparrow \}$ (quadratic)

 $\prod = \{ \rightarrow \rightarrow \uparrow \uparrow / / \}$

loop subdivision
(quartic)

