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I. Background from Computer Vision
• Let S =space of simple closed curves C = ∂R in . 

Arguably the prototypical nonlinear inf.diml.manifold. 
Won’t specify how smooth C should be.

• Cx. Analysis: the most general domain R where thm X 
holds; or wild domains invariant by Kleinian gps.

• Comp.Vis.: domains = contours of objects in images, 
p/w smooth boundaries

• 3 CV questions: 
1. What does R1 similar to R2 mean? Need metric on S
2. How to construct prob.measures on S to represent likely 

deformations of a shape
3. Cell decomposition of S to reflect shape categories.



  

Variants of S

• C as image of embeddings of S1 vs. degree 1 
immersions of S1.

•  S or S /transl. or S /transl+rot or S /transl+scaling 
or S /transl,rot,scaling.

• degree of smoothness (~ Sobolev spaces, k Lp 
derivatives)

• Submersion approach, Imm(S1, 2) S or Diff(2) 
S vs. conformal, potential-theoretic approach



  

Medial Axes 
The usual axis for shape 
recognition is Blum’s 
‘medial axis’: the locus of 
centers of bitangent 
circles:

Going along with the axis is the 
pairing of points on the 
boundary and the lamination of 
R (here pseudo animals from a 
stochastic model of Zhu)



  

Thurston showed that the medial axis was dual to a convex 
hull construction:

Euclidean version: Lift the region R to a sphere by 
stereographic projection. Planes supporting it from below 
meet the sphere is circles contained in R,so the following 
correspond: 
● Pts of axis; 
● bitangent circles;
● bottom supporting planes; 
● rulings of the bottom surface of the convex hull

Hyperbolic version: consider R as in the boundary of 
upper half space 3 and take the envelope of the 
hemispheres over the bitangent circles in R : Thurston’s 
dome(R), a hyperbolically developable surface whose 
rulings are 1:1 with the pts of the axis.



  

An example of the medial axis via the 
Euclidean convex hull



  

• Riemann map - from D to interior R of shape C
• Same + from exterior of D to exterior of R
• ‘Fingerprint’ or ‘welding map’ 
   associated to C (creating a bijection Diff/SL2 with 

S mod transl.,scaling)
• The lamination of R  by circular arcs perpendclr 

to C and  Thurston’s  map from D to R (1:1 if D 
is smooth) which is an isometry on this 
lamination of D and integrates infinitesimal 
elliptic maps (see below).

Players from complex analysis
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II. Fast welding via the Hilbert transform
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n = size(phi1,1);
% interpolate to half grid points
phi1x = [(phi1(n)-2*pi); phi1; (phi1(1)+2*pi); (phi1(2)+2*pi)];
phi1mid = (-phi1x(1:n) + 9*phi1 + 9*phi1x(3:n+2) - phi1x(4:n+3))/16;
phi2x = [(phi2(n)-2*pi); phi2; (phi2(1)+2*pi); (phi2(2)+2*pi)];
phi2mid = (-phi2x(1:n) + 9*phi2 + 9*phi2x(3:n+2) - phi2x(4:n+3))/16;
% Set up the integral equation
L1 = abs(sin((phi1*ones(1,n)-ones(n,1)*phi1mid')/2));
L2 = abs(sin((phi2*ones(1,n)-ones(n,1)*phi2mid')/2));
K = log((L1(:,[n 1:n-1]).*L2) ./ (L1.*L2(:,[n 1:n-1])));
% Solve it!
f = (eye(n)+i*K/(2*pi))\(exp(i*phi1));

1
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A map :  extends to a holo map on interior 
only if arg ( ) ,  log  are Hilbert transforms.
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MatLab code for this:

Feiszli: compute the Riemann map similarly?



  

III. Boundary derivatives of the Riemann 
map
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Bounds on |φ(ei)| (M.Feiszli)
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The Interior Conformal Axis

• Suppose we consider all (φ o A), A Möbius, so as 
to discount φ (0). What is left?

• This generalizes to n:

( ){ }Ax( )  if (0) ,  then  has 2 equal global min.iR P R P e Jj j ¢= =Î
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Examples of the Interior Conformal Axis 
(Feiszli) 



  

Conformal axis via convex hulls: define

 

by the map                                                  

and take its convex hull in the interior of the cone. WHY?

Rulings of the bottom surface of the convex hull are defined 
by supporting hyperplanes below     meeting it at 2 points 
and these correspond to A for which                      has a 
double minimum, hence to points of the conformal axis…. 

{ }2 2 the cone C z x y⊂ = +%
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THIS WAY OF CONSTRUCTING AXES GENERALIZES AND 
GIVES A THIRD WAY TO DEFINE THE MEDIAL AXIS



  

IV. Diffeomorphisms and Measured 
Laminations

Thurston’s ‘earthquake theorem’ gives a bijection:
1

2 Diff( )  measured laminations on \SL S ML D≅ =

The conformal axis construction generalizes to a similar 
theorem using bending instead of earthquakes:

{ }

1:  Rot Diff( )

,  form lower convex hull of ( ).(cos ,sin ,1) ,  
take tgt plane to hull over 0 plus its bending lamination

\Theorem S D ML

Cϕ ϕ ϑ ϑ ϑ

≅ ×

′∀ =%

The idea is that we can recover this hull from its bending lamination by 
integrating an ODE. The tangent planes to the hull are space-like planes 
whose normals are points of D, hence (in the smooth case) we get a map 
from the set of lamina to D. Developability means the image only moves 
normal to the lamina and its speed is given by the measure.



  

An attempt to visualize a cone hull

At each point, one has a ruling and a tangent plane. As you move, the 
ruling rotates infinitesimally in the plane, as determined by the lamination, 
and then the plane rotates infinitesimally about the ruling, as determined 
by the measure.



  

Link between the 2 types of axis 
(Feiszli, work in progress)

 scaled arc lengthres
1 1:   f S R S

ψ

∂→ →
Given any :DR, we get a diffeo of S1:

hence a lamination from the double min of f o A, hence an 
axis as the locus of points and a measure 
on the lamination.

For Riemann map, we get the conformal axis,
For   Thurston’s isometry D dome(R), we get the 
medial axis and bending of the dome and the cone hull give 
the same measure.



  

V. Cell decompositions and S vs. Diff(S1)

Measured laminations can be broken up naturally into cells:

genopen,dense

gen laminations with 1D lamina plus fin.# triangles
 generic laminations of graph type 
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(I believe the latter cover ML.)
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The boundary derivative of the Riemann map defines an 
injection so that the cell decomposition can be carried over 
to S

But much better is to use the welding map which gives a 
bijection so that we can get coords on the cells from Diff



  

( )( )1
0Examples with welding map ( )i if e eJ Jj j-

¥=

Top left: f for an ellipse; bottom left: 
f for a kidney shaped region; 
below: a welding axis



  

Comparison of Axes from Interior Riemann Map; 
Medial axis; Welding Map; and product of 
derivatives of the interior/exterior Riemann maps



  

Kimia’s cell 
decomposition 
via axes and 

graphs to 
classify fishes 
– just to prove 

it is used in 
CV



  

VI. Welding gives a multi-valued 
composition law on S

{ }

{ }
1 1 2
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1.  , Rot Diff Rot, 
                                 get the set of products . .
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Perhaps a mathematical analog of how human 
perception divides shapes into pieces



  

What 
composing 
2 diffeos 
can do to 
the shape. 
Decompos- 
ing a shape 
into parts is 
essential to 
perception.



  

Conclusion: 
complex analysis gives a large number of 
tools for the analysis of everyday smooth 
shapes. We have focused on measured 
laminations, but the Weil-Peterson metric is 
equally promising, esp because it makes S 
into a homogeneous manifold.
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