Three Applications of Disk Packing with Four-Sided Gaps

Marshall Bern

Palo Alto Research Center

Circle Magic

The points of tangency of four disks, tangent in a cycle, ...

Circle Magic

The points of tangency of four disks, tangent in a cycle, ...

Are always cocircular!

Circle Magic

The points of tangency of four disks, tangent in a cycle, ...

Are always cocircular!

Proof by PowerPoint ©

1) Disk packing of a polygon

Basic Technique

1) Nonobtuse triangulation of a polygon

1) Origami magic trick

Applications

1) Origami embedding of Euclidean Piecewise-Linear 2-manifolds

Disk Packing Induces Decomposition

Disk Packing Induces Decomposition

Disk Packing Induces Decomposition

1) Disk packing of a polygon

1) Nonobtuse triangulation of a polygon

1) Origami magic trick

1) Origami embedding of Euclidean Piecewise-Linear 2-manifolds

Question: Can any n-sided polygon be triangulated with triangles with maximum angle 90[°]?

Naïve Algorithm: Start from any triangulation, Cut obtuse angle with perpendicular to opposite edge

Naïve Algorithm: Start from any triangulation, Cut obtuse angle with perpendicular to opposite edge

Naïve Algorithm: Start from any triangulation, Cut obtuse angle with perpendicular to opposite edge

Naïve Algorithm: Start from any triangulation, Cut obtuse angle with perpendicular to opposite edge

Naïve Algorithm: Start from any triangulation, Cut obtuse angle with perpendicular to opposite edge

Question: Can any n-sided polygon be triangulated with triangles with maximum angle 90[°]?

[Gerver, 1984] used the Riemann mapping theorem to show that if all polygon angles exceed 36°, then there always exists a triangulation with maximum angle 72°.

[Baker – Grosse – Rafferty, 1988] showed there always exists a nonobtuse triangulation (no bound on the number of triangles).

[Bern – Eppstein, 1991] showed O(n²) triangles for simple polygons

[Bern – Scott Mitchell - Ruppert, 1994] showed O(n) for polygons with holes

Question: Can any n-sided polygon be triangulated with triangles with maximum angle 90[°]?

Rumored Application: Such a triangular mesh gives an M-matrix for the Finite Element Method for solving elliptic PDEs.

Milder condition is actually sufficient

Question: Can any n-sided polygon be triangulated with triangles with maximum angle 90°?

Question: Can any n-sided polygon be triangulated with triangles with maximum angle 90[°]?

Nonobtuse Triangulation Algorithm

Nonobtuse Triangulation Algorithm

Complication – Badly shaped Quads

Problems:

- (1) Reflex Quadrangle
- (2) Circle center on wrong side of chord

Solution – Break up Bad Quads

Either bad case can be solved by adding one more disk.

1) Disk packing of a polygon

1) Nonobtuse triangulation of a polygon

1) Origami magic trick

1) Origami embedding of Euclidean Piecewise-Linear 2-manifolds

Origami Magic Trick

Question: Can any polygon be cut out of flat-folded paper with a single straight cut ?

Origami Magic Trick

Question: Can any polygon be cut out of flat-folded paper with a single straight cut ?

[Betsy Ross, ~1790] Five-pointed star

[Demaine – Demaine – Lubiw, 1998] Heuristic method that works if folding paths do not propagate forever

[Bern – Demaine – Eppstein – Hayes, 1998] Solution for any polygon with holes

Use the decomposition to form independently foldable "molecules"

Requirements:

- Triangles and quadrangles fold flat
- Molecule (and polygon) boundaries fold to a common line (for the cut)
- Folds exit molecules only at points of tangency (or else we can't fold them independently)

Triangles fold in a known origami pattern

Quadrangles magically work out, too!

How do folded molecules fit together?

• One book of flaps tucks into another book of flaps (as a new "chapter")

• Spines collinear, boundaries collinear

Can we recover all the adjacencies?

Mounted Marlin

Degenerate Solution

True solution uses an offset polygon and offset disk packing

Cut along red

Recent Implementation (last week)

Send us cool images. And if you are able to fold these 1000+ origamis, DONT CUT IT :).

Paulo Silveira, Rafael Cosentino, José Coelho, Deise Aoki. U. São Paulo

1) Disk packing of a polygon

1) Nonobtuse triangulation of a polygon

1) Origami magic trick

1) Origami embedding of Euclidean Piecewise-Linear 2-manifolds

Origami Embedding of PL 2-Manifolds

Question: [E. Demaine] Can any polyhedron be "crushed"? That is, can it be creased and folded to make a flat origami?

Example: Rectangular Parallelopiped can be folded flat using paper bag folds.

Note: We just want a flat embedding, not a continuous transformation.

Origami Embedding of PL 2-Manifolds

Theorem: [Bern – Hayes, 2006] Any orientable, metric, piecewise-linear 2-Manifold (Euclidean triangles glued together at edges) can be isometrically embedded in Euclidean 2-space "plus layers", that is, as a flat origami.

Topological Disk

Magic trick algorithm flat-folds a polyhedral patch

Topological Sphere

- Puncture the sphere by opening an edge e
- Fold disk
- Final taping closes edge e

For higher genus, we need a new trick: taping books of flaps at the top and bottom

Joining to form a handle requires that tops are mirror-congruent

Schematic of Construction

- (1) Cut manifold to a disk with paired holes
- (1) Paired holes will be taped over top of book of flaps

Beautiful Minds?

Nash Embedding Theorem: Any orientable Riemannian manifold embeds smoothly (C^{∞}) and isometrically into some Euclidean space. (E.g., 2-manifold \rightarrow 17 dimensions)

Origami Embedding Theorem: Any compact, orientable, metric PL 2-manifold embeds isometrically as a flat origami.

Beautiful Minds?

Nash Embedding Theorem: Any Riemannian manifold embeds smoothly (C∞) and isometrically into some Euclidean space. (E.g., 2-manifold → 17 dimensions)

Origami Embedding Theorem: Any compact, orientable, metric PL 2-manifold embeds isometrically as a flat origami.

[Zalgaller, 1958] Any 2- or 3-dimensional "polyhedral space" (orientable or not) can be immersed in Euclidean 2- or 3-space.

[Burago – Zalgaller, 1960, 1996] Any orientable PL 2-manifold can be isometrically embedded in Euclidean 3-space.

[Krat-Burago-Petrunin, 2006] Any compact, orientable, 2-dimensional polyhedral space embeds isometrically as a flat origami.

Open Problems

- **1)** Bad examples for naïve nonobtuse triangulation algorithms.
- 2) Simultaneous inside/outside nonobtuse triangulation of a polygon with holes
- Algorithm for quasiconformal mapping using disk packing with 4-sided gaps
- 4) Do the "quadrangles that think they're triangles" (cross-ratio 1) have any good numerical-analysis properties?

Cat that thinks he's a dog

Open Problems

- **1)** Origami embedding of higher-dimensional PL manifolds?
- 2) Can any origami embedding of a PL 2-manifold be "opened up" to give an embedding in Euclidean 3-space?
- 3) Continuous deformation of polyhedron to a flat origami?
- **4) 3-sided gap disk packing : Conformal mapping ::**

4-sided gap disk packing : ???

