MASS, an immersive undergraduate program

Stony Brook University, February 2015

wWw.math.psu.edu/mass

History

The program was founded by George Andrews, Svetlana and Anatole Katok in 1996. I joined, as the Director, in 2000, after Penn State received NSF VIGRE grant.

Structure of the program

- Three core custom-made courses (Algebra, Analysis and Geometry, broadly understood), with a research project and an oral final exam, 4 credits each;
- MASS Seminar, 3 credits;
- MASS Colloquium, 1 credit;
- Summer REU, loosely integrated with MASS.

All count as honors courses, totaling 16 credits, transferrable to home institutions.

Core courses: 3 lectures +1 recitation a week + a written midterm exam.

Each core course has a dedicated TA (sometimes, a MASS graduate).

Examples of courses taught

- Arithmetic and geometry of the unimodular group by S. Katok;
- Number theory: from Fermats Little Theorem to his Last Theorem by K. Ono;
- The exponential universe by J. Roe;
- Aspects of symmetry: from representations to Quantum Field Theory by A. Ocneanu;
- Mathematical analysis of fluid flow by A. Belmonte;
- Geometry and relativity: an introduction by N. Higson;
- Topological dynamics by B. Kra;
- Integer partitions by G. Andrews;
- Mathematical theory of waves by A. Bressan;
- Computability, unsolvability and randomness by S. Simpson;
- Elliptic curves and applications to cryptography by K. Eisentraeger;
- Explorations in convexity by S. Tabachnikov;
- Differential equations from an algebraic perspective by N . Higson;
- Introduction to Ramsey Theory by J. Reimann;
- From Euclid to Alexandrov: a guided tour by A. Petrunin;
- Random walk and Brownian motion by A. Novikov;
- Number theory in the spirit of Ramanujan by G. Andrews.

Books based on MASS courses

(sometimes co-authored with the TAs)

Several more are in the pipeline.

MASS Colloquium (samples)

- From flapping birds to space telescopes: the mathematics of origami by R. Lang;
- About the numbers 12 and 24 by R. Howe;
- We vote, but do we get what we want? by D. Saari;
- Mathematical puzzles that s-t-r-e-t-c-h your intuition by P. Winkler;
- Seeing invisible: mathematics of medical imaging by P. Kuchment;
- Geometry and analysis on fractals by A. Kirillov;
- Tilings with rational polygons by R. Kenyon;
- Behind the Hofstadter's butterfly: the competition between order and chaos by S. Jitomirskaya;
- Tropical geometry by I. Itenberg;
- Topological network topology by R. Ghrist;
- Topology and social choice by S. Weinberger;
- DNA topology by De Witt Sumners;
- Cantor and Sierpinski, Julia and Fatou: crazy topology in complex dynamics by R. Devane;
- Inverse problems in arithmetic combinatorics by A. Razborov;
- Packing discs in the plane by R. Graham;
- How old was Diophantus's son? by D. Zagier;
- New solutions to the N-body problem by R. Montgomery;
- What does the limit shape mean in geometry and combinatorics? by A. Vershik;
- Experiments with triangular billiards by R. Schwartz;
- Pascal triangles in modular arithmetic, entropy and algebraic functions by H. Furstenberg;
- Laurent phenomenon by A. Zelevinsky;
- Impossible Crystals by R. Penrose;
- Integral lexicographic codes by J. Conway.

All talks are written down by a dedicated group of students, and some are published:

Final oral exams (much feared):

- Whole week, with 1-2 day breaks;
- One hour preparation (proctored), random 'ticket';
- Committee of three: instructor, TA, and a guest;
- Ticket questions, open-ended discussion, presentation of the research project.

Student research (samples)

- R. Vaughan, K. Weis. On sigma-phi numbers. Mathematika 48 (2001), 169-189. MASS 1999, supervised by R. Vaughan;
- A. Bressan, M. Burago, A. Friend, J. Jou. Blocking strategies for a fire control problem. Anal. Appl. 6 (2008), 229246. MASS 2006, supervised by A. Bressan;
- G. Mullen, B. Vioreanu. Explicit formulas for permutation polynomials over finite fields. Bull. Inst. Combin. Appl. 57 (2009), 99-106. MASS 2006, supervised by G. Mullen;
- S. Howe, M. Pancia, V. Zakharevich. Isoperimetric inequalities for wave fronts and a generalization of Menzins conjecture for bicycle monodromy on surfaces of constant curvature. Adv. Geom. 11 (2011), 273-292. REU and MASS 2008, supervised by S. Tabachnikov;
- D. Rudenko. On equidissection of balanced polygons. J. Math. Sci. 190 (2013), 486-495. MASS 2011, supervised by S. Tabachnikov;
- M. Chao, D. Levenstein, V. Nitica, R. Sharp. A coloring invariant for ribbon L-tetrominos. Discrete Math. 313 (2013), 611-621. REU and MASS 2012, supervised by V. Nitica.

Advertising

www.math.psu.edu/mass/

Bringing EasternEuropean Mathematical Traditions to North American Students

Paul D. Humke, Yulij Ilyashenko, and Serge Tabachnikov

		Budapest Semesters in Mathematics http://mw.stolaf.edu/depts/math/budapest/ Paul D. Humke (BSM) program offers a a nique opportunity North American undergraduates for s. semester or a year of study in one of the world's hubs of mathematical activity. A wide variety of courses in \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad
	Nor	Vounis 50, Nom

Administration and finances

Administration: MASS Advisory Board, Director, Administrative assistant.

Financial arrangements: tuition reduced to the in-state level; R\&B and travel; MASS stipend.

Size of the program: 15-20 students, recruited from across the USA (some are from Penn State).

Finding: NSF (VIGRE, MCTP) and a small endowment.

Participants (case studies)

Justin Holmer, MASS 1996 (undergraduate at Stony Brook, graduate student at University of Chicago, postdoc at UC Berkeley, now: Associate Professor at Brown).

The MASS program definitely helped me through a critical point in my education and career development. In addition to the actual material I leaned, it taught me about the learning process itself... I was forced to understand that the linear model of learning math from the elementary to the advanced was not accurate, but instead one acquires knowledge by seeing the same material on several separate passes from different perspectives, and on each pass more of material seeps into your brain.

Jayadev Athreya, MASS 1999 (undergraduate at Iowa State, graduate student at the University of Chicago, postdoc at Yale and Princeton, now: Assistant Professor at UIUC).

Abstract

MASS was a crucial period in my mathematical formative years. The intense nature of the coursework and the mathematical social interaction really helped me prepare for graduate school, and also to develop long-lasting friendships. The year I took MASS, the courses were in Dynamical Systems (taught by Mark Levi), Geometry (Anatole Katok), and Analytic Number Theory (Robert Vaughan). My current research interests now lie somewhere at the intersection of these three areas, so the influence of these wonderful teachers, and in particular the emphasis on solving difficult problems, cannot be overemphasized. I would not be what I am now without MASS.

Alice Medvedev, MASS 2000 (undergraduate at Caltech, graduate student at UC Berkeley, postdoc at UIC and UC Berkeley, now: Assistant Professor at CUNY).

In MASS courses, I saw for the first time how different branches of mathematics are brought to bear on the same object, to great effect... Most importantly, it was the first time I interacted with mathematicians as a colleague rather than as a student. I learned to write mathematics by watching a grown-up mathematician trying to read my over-concise first drafts. I learned to pull ideas from different branches of mathematics together to solve problems. I began to think of myself as a mathematician.

Aaron Naber, MASS 2004 (undergraduate at Penn State, graduate student at Princeton, postdoc at MIT, now: Associate Professor at Northwestern), gave an invited sectional talk at ICM 2014 in Seoul: The structure and meaning of Ricci curvature.

Some statistics

Of those whom we have been able to track down and who have entered workforce, the career choices are, approximately, as follows:

- Tenure-line faculty at universities: 25\%;
- Middle and high school teachers: 11\%;
- Research staff at national labs, institutes and universities: 10\%;
- Industry (mostly, mathematics-intense): 40\%;
- Postdocs: 14%.

Auxiliary activity: Math Circles at State College

State College Area School District: nine elementary, two middle, and one high school; altogether, about 7,000 students.

Working with a number of teachers, coordinated by Greg Somers (Presidential Scholar Teacher of 2006).

A typical schedule:

2011-12 GEM Seminar

State College Area High School

Date	Topic	
Friday, October 14	Organizational Meeting	Speaker
Tuesday, October 25	Cross-sections / 4D Objects	Dr. Levi / Dr. Tabachnikov, PSU
Friday, November 18	ARML Power Contest	5th place nationwide :)
Tuesday, November 29	Fibonacci Numbers and More	Dr. James Sellers, PSU
Friday, December 9	Chebyshev Polynomials	Dr. Sergei Tabachnikov, PSU
Tuesday, December 20	Polynomials and Symmetry	Dr. Nigel Higson, PSU
Friday, January 6		cancelled
Tuesday, January 17	Curvature of Space (Einsteinian	Dr. John Roe, PSU
Gravity)	cancelled	
Friday, February 3		Dr. Mark Levi, PSU
Tuesday, February 21	The Mathematical Mechanic	Dr. Misha Guysinski, PSU
Friday, March 9	$\underline{\text { Linear Equations and "Lights Out" }}$	Dr. Sergei Tabachnikov, PSU
Tuesday, March 20	From Complex Numbers to Quaternions, and Beyond	Dr. John Roe, PSU
Tuesday, April 17	The Mathematics of Rock Climbing	Dr. Tadashi Tokieda, University of Cambridge
Monday, April 23	Discontinuous calculus, indiscrete calculus	Dr. Misha Guysinski, PSU
Tuesday, May 15	Counting infinite sets	
Thursday, May 24	Picnic Party	

My end of the 2011 season GEM talk:

Polynomials and Pyramids.

How many golf balls are there? (I brought a box of about 500).

Answer: we proved that the 'pyramidal numbers' are

$$
\binom{n+2}{3}=\frac{n(n+1)(n+2)}{6}
$$

the closest to 500 being 455, corresponding to $n=13$.

As to polynomials, we proved that the polynomials, having integer values for all integer arguments, are

$$
f(x)=\sum_{k=0}^{n} c_{k}\binom{x}{k},
$$

where $c_{k} \in \mathbf{Z}$.

Math Circle at Radio Park Elementary School

 Some favorite problems:- Cut a hole in a sheet of paper, large enough for you to pass through.
- How many (topologically) different 7-pronged stars are there? 9-pronged ones? 10-pronged ones? 12-pronged ones?
- There are 4 Mondays and 4 Fridays in January. Which day is January 1-st?
- Solve: $A B C+A C B=B C A$.
- Make the earth equator 1 yard longer. Will a dog be able to crawl underneath it?
- Two people run down a moving escalator. Who will count more steps: the one who runs faster or slower?
- The population of the United States is about 300 million. Explain why there is not enough room for 300 people on the $1: 1,000,000$ scale map of the USA.
- Throw a tennis ball vertically up. Does it take more time going up or down?

Certificate of Merit

Is awarded to
Anna Graef
For the successful completion of
Math Club Program
During the 2004-2005 academic year Radio Park Elementary School
Third grade, class of Mrs. J. Jobe

Math Club Advisors

Sergei Tabachnikov, "Dr. T."
Professor of Mathematics, PSU

Howard Weiss
Professor of Mathematics, PSU

Thank you!

