MASS, an immersive undergraduate program

Stony Brook University, February 2015

www.math.psu.edu/mass
History

The program was founded by George Andrews, Svetlana and Anatole Katok in 1996. I joined, as the Director, in 2000, after Penn State received NSF VIGRE grant.
Structure of the program

- Three core custom-made courses (Algebra, Analysis and Geometry, broadly understood), with a research project and an oral final exam, 4 credits each;

- MASS Seminar, 3 credits;

- MASS Colloquium, 1 credit;

- Summer REU, loosely integrated with MASS.
All count as honors courses, totaling 16 credits, transferrable to home institutions.

Core courses: 3 lectures + 1 recitation a week + a written midterm exam.

Each core course has a dedicated TA (sometimes, a MASS graduate).
Examples of courses taught

- Arithmetic and geometry of the unimodular group by S. Katok;

- Number theory: from Fermat’s Little Theorem to his Last Theorem by K. Ono;

- The exponential universe by J. Roe;

- Aspects of symmetry: from representations to Quantum Field Theory by A. Ocneanu;

- Mathematical analysis of fluid flow by A. Belmonte;
• Geometry and relativity: an introduction by N. Higson;

• Topological dynamics by B. Kra;

• Integer partitions by G. Andrews;

• Mathematical theory of waves by A. Bressan;

• Computability, unsolvability and randomness by S. Simpson;

• Elliptic curves and applications to cryptography by K. Eisentraeger;
• Explorations in convexity by S. Tabachnikov;

• Differential equations from an algebraic perspective by N. Higson;

• Introduction to Ramsey Theory by J. Reimann;

• From Euclid to Alexandrov: a guided tour by A. Petrunin;

• Random walk and Brownian motion by A. Novikov;

• Number theory in the spirit of Ramanujan by G. Andrews.
Books based on MASS courses
(sometimes co-authored with the TAs)

Several more are in the pipeline.
MASS Colloquium (samples)

- From flapping birds to space telescopes: the mathematics of origami by R. Lang;

- About the numbers 12 and 24 by R. Howe;

- We vote, but do we get what we want? by D. Saari;

- Mathematical puzzles that s-t-r-e-t-c-h your intuition by P. Winkler;

- Seeing invisible: mathematics of medical imaging by P. Kuchment;
• Geometry and analysis on fractals by A. Kirillov;

• Tilings with rational polygons by R. Kenyon;

• Behind the Hofstadter’s butterfly: the competition between order and chaos by S. Jitomirskaya;

• Tropical geometry by I. Itenberg;

• Topological network topology by R. Ghrist;

• Topology and social choice by S. Weinberger;
• DNA topology by De Witt Sumners;

• Cantor and Sierpinski, Julia and Fatou: crazy topology in complex dynamics by R. Devane;

• Inverse problems in arithmetic combinatorics by A. Razborov;

• Packing discs in the plane by R. Graham;

• How old was Diophantus’s son? by D. Zagier;

• New solutions to the N-body problem by R. Montgomery;
• **What does the limit shape mean in geometry and combinatorics?** by A. Vershik;

• *Experiments with triangular billiards* by R. Schwartz;

• *Pascal triangles in modular arithmetic, entropy and algebraic functions* by H. Furstenberg;

• *Laurent phenomenon* by A. Zelevinsky;

• *Impossible Crystals* by R. Penrose;

• *Integral lexicographic codes* by J. Conway.
All talks are written down by a dedicated group of students, and some are published:
Final oral exams (much feared):

- Whole week, with 1-2 day breaks;
- One hour preparation (proctored), random ‘ticket’;
- Committee of three: instructor, TA, and a guest;
- Ticket questions, open-ended discussion, presentation of the research project.
Student research (samples)

The Octacube is a stainless-steel sculpture in the lobby of McAllister Building, home of Penn State's Department of Mathematics. Designed by Professor Adrian Ocneanu, the sculpture represents a regular four-dimensional solid commonly known as the 24-cell.

MASS Program 2015
The Department of Mathematics at Penn State University runs a semester-long intensive program for undergraduate students interested in pursuing a career in mathematical sciences. The Mathematics Advanced Study Semesters (MASS) program started in 1996 and is held during the fall semester of each year. The program combines advanced learning with research initiation and provides a highly charged interactive environment among a "critical mass" of talented and motivated students and a committed group of working research faculty and top graduate students. For majority of its participants, the MASS program serves as a springboard to graduate studies in mathematics.

The main idea behind MASS — and its principal difference from other honors and research programs — is its comprehensive character. MASS participants are literally immersed in mathematical studies. A key feature of the MASS experience is an intense and productive interaction among the students. The environment is designed to encourage such interaction. A classroom is dedicated full-time to MASS and furnished to serve as a lounge and computer lab outside class times. The students live together in a contiguous block of dormitory rooms and pursue various social activities together. The effect is dramatic: the students find themselves members of a cohesive group of like-minded people sharing a special formative experience.

Components of the Program
Three Core Courses
chosen from major areas in Algebra, Analysis, and Geometry, specially designed and offered exclusively to MASS participants.

MASS Colloquium
a weekly lecture series by visiting and resident mathematicians.

MASS Seminar
run by the program director.

Students with strong mathematical background may choose to work on a semester-long research project with a Penn State faculty member instead of taking one of the three courses. This option is subject to approval by the MASS Director.

The program elements total 16 credit hours, all of which are recognized by Penn State as honors credits and are transferable to participants' home universities.

MASS 2015 Core Courses
Lie Groups in Two, Three and Four Dimensions
Instructor: Nigel Higson
Evan Pugh Professor of Mathematics
Classical Mechanics and Calculus of Variations
Instructor: Mark Levi
Professor of Mathematics
Introduction to Applied Algebraic Geometry
Instructor: Jason Morton
Assistant Professor of Mathematics and Statistics

Financial Arrangements
All successful applicants will be awarded the Penn State MASS Fellowship which reduces the tuition to the in-state level. For students currently enrolled in U.S. colleges and universities, best efforts will be made not to increase their out-of-pocket expenses.

Application
Students may apply by going to MathPrograms.org or our website: www.math.psu.edu/mass/ Deadline for MASS applications: April 4, 2015

Contact Us
MASS Program
111 McAllister Building
Department of Mathematics
The Pennsylvania State University
University Park, PA 16802
Phone: 814-865-8462
Fax: 814-865-3735
E-mail: mass@math.psu.edu

www.math.psu.edu/mass/
Bringing Eastern European Mathematical Traditions to North American Students

Paul D. Humke, Yulij Ilyashenko, and Serge Tabachnikov

This article presents descriptions of three noteworthy programs designed to expose undergraduate mathematics majors to a wider variety of mathematical experiences than is typically found in college courses. The programs share a common philosophical core, in that they all draw on the mathematical and intellectual traditions of Eastern Europe.

The courses offered in the programs are quite different from the usual undergraduate fare, as the emphasis is on discovery and depth of understanding rather than on “covering the material” and preparing for examinations. These are not summer programs; rather, they offer semester-long courses that run during the regular academic year, and credits can be transferred to the students’ home institutions. By encouraging independent thinking and exploration, all three programs give students a taste of what it is like to do research in mathematics.

Further information about the programs is available on their respective websites. A list of such programs, together with other information of interest to undergraduate mathematics majors, may be found on the AMS website at http://www.ams.org/employment/undergrad.html.

―Allyn Jackson

Paul D. Humke, Yulij Ilyashenko, and Serge Tabachnikov

Budapest Semesters in Mathematics

http://www.cs.elte.hu/depts/north/budapest/

Paul D. Humke

Initiated by Paul Erdős, László Lovász, and Vera T. Sós in 1984, the Budapest Semesters in Mathematics (BSM) program offers a unique opportunity to North American undergraduates for a semester or a year of study in one of the world’s hubs of mathematical activity. A wide variety of courses in all areas of mathematics are offered under the tutelage of eminent Hungarian teacher-scholars, most of whom have had years of teaching experience in North America. Classes are small and taught in English, and credits are transferable to the student’s home institution. In keeping with the Hungarian tradition, professors closely monitor each individual student’s progress. A reasonable time is devoted to problem-solving and encouraging students to explore on their own. Students are encouraged to do research, both individually and as part of a team of students.

Further information about the programs is available on their respective websites. A list of such programs, together with other information of interest to undergraduate mathematics majors, may be found on the AMS website at http://www.ams.org/employment/undergrad.html.

―Allyn Jackson
Administration and finances

Administration: MASS Advisory Board, Director, Administrative assistant.

Financial arrangements: tuition reduced to the in-state level; R&B and travel; MASS stipend.

Size of the program: 15–20 students, recruited from across the USA (some are from Penn State).

Finding: NSF (VIGRE, MCTP) and a small endowment.
Participants (case studies)

Justin Holmer, MASS 1996 (undergraduate at Stony Brook, graduate student at University of Chicago, postdoc at UC Berkeley, now: Associate Professor at Brown).

The MASS program definitely helped me through a critical point in my education and career development. In addition to the actual material I leaned, it taught me about the learning process itself... I was forced to understand that the linear model of learning math from the elementary to the advanced was not accurate, but instead one acquires knowledge by seeing the same material on several separate passes from different perspectives, and on each pass more of material seeps into your brain.
Jayadev Athreya, MASS 1999 (undergraduate at Iowa State, graduate student at the University of Chicago, postdoc at Yale and Princeton, now: Assistant Professor at UIUC).

MASS was a crucial period in my mathematical formative years. The intense nature of the coursework and the mathematical social interaction really helped me prepare for graduate school, and also to develop long-lasting friendships. The year I took MASS, the courses were in Dynamical Systems (taught by Mark Levi), Geometry (Anatole Katok), and Analytic Number Theory (Robert Vaughan). My current research interests now lie somewhere at the intersection of these three areas, so the influence of these wonderful teachers, and in particular the emphasis on solving difficult problems, cannot be overemphasized. I would not be what I am now without MASS.
Alice Medvedev, MASS 2000 (undergraduate at Caltech, graduate student at UC Berkeley, postdoc at UIC and UC Berkeley, now: Assistant Professor at CUNY).

In MASS courses, I saw for the first time how different branches of mathematics are brought to bear on the same object, to great effect... Most importantly, it was the first time I interacted with mathematicians as a colleague rather than as a student. I learned to write mathematics by watching a grown-up mathematician trying to read my over-concise first drafts. I learned to pull ideas from different branches of mathematics together to solve problems. I began to think of myself as a mathematician.
Aaron Naber, MASS 2004 (undergraduate at Penn State, graduate student at Princeton, postdoc at MIT, now: Associate Professor at Northwestern), gave an invited sectional talk at ICM 2014 in Seoul: *The structure and meaning of Ricci curvature.*
Some statistics

Of those whom we have been able to track down and who have entered workforce, the career choices are, approximately, as follows:

- Tenure-line faculty at universities: 25%;
- Middle and high school teachers: 11%;
- Research staff at national labs, institutes and universities: 10%;
- Industry (mostly, mathematics-intense): 40%;
- Postdocs: 14%.
Auxiliary activity: Math Circles at State College

State College Area School District: nine elementary, two middle, and one high school; altogether, about 7,000 students.

Working with a number of teachers, coordinated by Greg Somers (Presidential Scholar Teacher of 2006).
Welcome to the Math Circle

We are a community of teachers and students who are enthusiastic about math. Our circle organizes various competitions, activities, trips, and other educational opportunities for those teachers and students involved. Our flagship program, the GEM Seminar series, has renowned and distinguished mathematical scholars, often professors from various prestigious institutes of higher education, lecture on interesting mathematical topics beyond the scope of the basic, standard math curriculum. It runs at the middle school and high schools and all who have been involved have found it to be an exceptionally excellent and rewarding educational opportunity.
A typical schedule:

2011-12 GEM Seminar

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday, October 14</td>
<td>Organizational Meeting</td>
<td></td>
</tr>
<tr>
<td>Tuesday, October 25</td>
<td>Cross-sections / 4D Objects</td>
<td>Dr. Levi / Dr. Tabachnikov, PSU</td>
</tr>
<tr>
<td>Friday, November 18</td>
<td>ARLM Power Contest</td>
<td>5th place nationwide :)</td>
</tr>
<tr>
<td>Tuesday, November 29</td>
<td>Fibonacci Numbers and More</td>
<td>Dr. James Sellers, PSU</td>
</tr>
<tr>
<td>Friday, December 9</td>
<td>Chebyshev Polynomials</td>
<td>Dr. Sergei Tabachnikov, PSU</td>
</tr>
<tr>
<td>Tuesday, December 20</td>
<td>Polynomials and Symmetry</td>
<td>Dr. Nigel Higson, PSU</td>
</tr>
<tr>
<td>Friday, January 6</td>
<td>---</td>
<td>cancelled</td>
</tr>
<tr>
<td>Tuesday, January 17</td>
<td>Curvature of Space (Einsteinian Gravity)</td>
<td>Dr. John Roe, PSU</td>
</tr>
<tr>
<td>Friday, February 3</td>
<td>---</td>
<td>cancelled</td>
</tr>
<tr>
<td>Tuesday, February 21</td>
<td>The Mathematical Mechanic</td>
<td>Dr. Mark Levi, PSU</td>
</tr>
<tr>
<td>Friday, March 9</td>
<td>Linear Equations and "Lights Out"</td>
<td>Dr. Misha Guysinski, PSU</td>
</tr>
<tr>
<td>Tuesday, March 20</td>
<td>From Complex Numbers to Quaternions, and Beyond</td>
<td>Dr. Sergei Tabachnikov, PSU</td>
</tr>
<tr>
<td>Tuesday, April 17</td>
<td>The Mathematics of Rock Climbing</td>
<td>Dr. John Roe, PSU</td>
</tr>
<tr>
<td>Monday, April 23</td>
<td>Discontinuous calculus, indiscrete calculus</td>
<td>Dr. Tadashi Tokieda, University of Cambridge</td>
</tr>
<tr>
<td>Tuesday, May 15</td>
<td>Counting infinite sets</td>
<td>Dr. Misha Guysinski, PSU</td>
</tr>
<tr>
<td>Thursday, May 24</td>
<td>Picnic Party</td>
<td></td>
</tr>
</tbody>
</table>
My end of the 2011 season GEM talk:
Polynomials and Pyramids.

How many golf balls are there? (I brought a box of about 500).
Answer: we proved that the ‘pyramidal numbers’ are
\[
\binom{n + 2}{3} = \frac{n(n + 1)(n + 2)}{6},
\]
the closest to 500 being 455, corresponding to \(n = 13 \).

As to polynomials, we proved that the polynomials, having integer values for all integer arguments, are
\[
f(x) = \sum_{k=0}^{n} c_k \binom{x}{k},
\]
where \(c_k \in \mathbb{Z} \).
Math Circle at Radio Park Elementary School
Some favorite problems:

- Cut a hole in a sheet of paper, large enough for you to pass through.

- How many (topologically) different 7-pronged stars are there? 9-pronged ones? 10-pronged ones? 12-pronged ones?

- There are 4 Mondays and 4 Fridays in January. Which day is January 1-st?

- Solve: $ABC + ACB = BCA$.
• Make the earth equator 1 yard longer. Will a dog be able to crawl underneath it?

• Two people run down a moving escalator. Who will count more steps: the one who runs faster or slower?

• The population of the United States is about 300 million. Explain why there is not enough room for 300 people on the 1:1,000,000 scale map of the USA.

• Throw a tennis ball vertically up. Does it take more time going up or down?
Certificate of Merit

Is awarded to

Anna Graef

For the successful completion of
Math Club Program
During the 2004-2005 academic year
Radio Park Elementary School
Third grade, class of Mrs. J. Jobe

Math Club Advisors

Sergei Tabachnikov, “Dr. T.”
Professor of Mathematics, PSU

Howard Weiss
Professor of Mathematics, PSU
Thank you!