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Rouse Ball’s fallacy
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Source: Cut the knot, Bolgomolny
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A ladder of length L leans against a wall. The bottom has
distance x from the wall and the latter rests against the wall at
height y, so that

x2 + y2 = L2

The bottom of the ladder is pulled away from the wall at
constant velocity x� The downward velocity of the ladder is
by calculus:

2xx� + 2yy� = 0, or y� = −xx�/y.

If x� is constant. At x = L, y = 0, and y� =∞.
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A ladder that’s faster than light!
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Berkeley gave a famous criticism of Newton’s calculus:

If an increment is zero, then you cannot divide by it; and if it

is nonzero, then it cannot give the exact answer.

“However useful it may have been in practice, the concept of infinitesimal could scarcely withstand logical scrutiny. Derided

by Berkeley in the 18th century as ‘ghosts of departed quantities’, in the 19th century execrated by Cantor as

‘cholera-bacilli’ infecting mathematics, and in the 20th roundly condemned by Bertrand Russell as ‘unnecessary, erroneous,

and self-contradictory’, these useful, but logically dubious entities were believed to have been finally supplanted in the

foundations of analysis by the limit concept which took rigorous and final form in the latter half of the 19th century. By the

beginning of the 20th century, the concept of infinitesimal had become, in analysis at least, a virtual ‘unconcept’.

–Stanford Enclyclopedia of Philosophy

Continuity and Infinitesimals

Bell, John L.,
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Every natural number can be unambiguously specified in
fourteen words or less.

Proof by contradiction. Assume for a contradiction that there
is a natural number that cannot be unambiguously specified in
fourteen words or less.

Then there must be a smallest such number.

That number is “the smallest natural number that cannot be
unambiguously specified in fourteen words or less.”

This is an unambigous specification in fourteen words,
contrary to its assumed property. Therefore no such number
exists.
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Boolos gave a proof of Gödel’s incompleteness theorem based
on the Berry paradox.
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A mathematician faced with error
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2011, Henrik Kniberg Lean from the Trenches.

Report on software development for the Swedish national

police authority. (When a motorist gets pulled over, it goes

directly into the computer system this group designed.)

“If a bug is found, . . . , we have a decision to make ‘Is this bug

more important than any of the other top thirty bugs in the bug

tracker?’ . . . If not, then we ignore the new bug.” (p. 47) “If a

bug is unlikely to be fixed (because it didn’t make top thirty),

we are honest about that from start, instead of building up

false expectations.” (page 49).

9
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The book that describes itself as the “bestselling software
testing book of all time” states that “testers shouldn’t want to
to verify that a program runs correctly.”

Another book on software testing states “Don’t insist that
every bug be fixed . . . When the programmer fixes a minor
bug, he might create a more serious one.”

Former Intel President Andy Grove “I have come to the
conclusion that no microprocessor is ever perfect; they just
come closer to perfection.”

About one bug per hundred lines of computer code makes it to
market without detection.

10
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Consequences of Computer Bugs

13

• A library patron is fined $40 trillion for an overdue book.

• A dentist in San Diego is delivered 16,000 tax forms.

• A textbook on the “Making of the fly” sells for $23
million on Amazon.com. (The price dropped back down
to $79.99.)

12
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• The Intel Pentium division bug eventually cost Intel $500

million.

• The bug causing the explosion of the Ariane 5 rocket cost

hundreds of millions of dollars.

• The front page of the NYT reported on March 24, that

BATS, a major new electronic stock exchange, just

opened. However, “software bug in one of its computer

systems” caused havoc and eventually all of the trades

executed by the had to be canceled.

12
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Unjustified trust in computers?
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3 Issues of Trust

We all have first-hand experience of the bugs and glitches of software. We exchange sto-
ries when computers run amok. Science recently reported the story of a textbook “The
Making of a Fly” that was on sale at Amazon for more than 23 million dollars [Sci11].
The skyrocketing price was triggered by an automated bidding war between two sellers,
who let their algorithms run unsupervised. The textbook’s author, Berkeley professor
Peter Lawrence, said he hoped that the price would reach “a billion.” An overpriced
textbook on the fly is harmless, except for students who have it as a required text.

But what about the Flash Crash on Wall Street that brought a 600 point plunge in the
Dow Jones in just 5 minutes at 2:41 pm on May 6, 2010? According to the New York
Times [NYT10], the flash crash started when a mutual fund used a computer algorithm
“to sell $4.1 billion in futures contracts.” The algorithm was designed to sell “without
regard to price or time.. . .[A]s the computers of the high-frequency traders traded [fu-
tures] contracts back and forth, a ‘hot potato’ effect was created.” When computerized
traders backed away from the unstable markets, share prices of major companies fluc-
tuated even more wildly. “Over 20,000 trades across more than 300 securities were ex-
ecuted at prices more than 60% away from their values just moments before” [SEC10]
Throughout the crash, computers followed algorithms to a T, to the havoc of the global
economy.

3.1 mathematical error

Why use computers to verify mathematics? The simple answer is that carefully imple-
mented proof checkers make fewer errors than mathematicians (excepting J.-P. Serre).

Incorrect proofs of correct statements are so abundant that they are impossible to
catalogue. Kempe’s claimed proof of the four-color theorem stood for more than a
decade before Heawood refuted it [Mac01, p. 115]. “More than a thousand false proofs
[of Fermat’s Last Theorem] were published between 1908 and 1912 alone” [Cor10].
Ralph Boas, former executive editor of Math Reviews, once remarked that proofs are
wrong “half the time” [Aus08]. Many published theorems are like the hanging chad
ballots of the 2000 U.S. presidential election, with scrawls too ambivalent for a clear
yea or nay. Euclid gave us a method, but even he erred in the proof of the very first
proposition of the Elements when he assumed without proof that two circles, each pass-
ing through the other’s center, must intersect. The concept that is needed to repair the
gap in Euclid’s reasoning is an intermediate value theorem. This defect was not reme-
died until Hilbert’s ‘Foundations of Geometry.’ One mathematician even proposed to
me that a new journal is needed that unlike the others only publishes reliable results.

Examples of widely accepted proofs of false or unprovable statements show that
our methods of proof-checking are far from perfect. Lagrange thought he had a proof
of the parallel postulate, but had enough doubt in his argument to withhold it from
publication. In some cases, entire schools have become sloppy, such as the Italian
school of algebraic geometry or real analysis before the revolution in rigor towards
the end of the nineteenth century. Plemelj’s 1908 accepted solution to Hilbert’s 21st
problem on the monodromy of linear differential equations was refuted in 1989 by
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The near-implosion of Knight Capital Group Inc. in early
August sent shock waves through rival firms. . . . Knight, one
of the nation’s largest handlers of share orders for retail and
institutional investors, lost $440 million from a 40-minute
burst of trading because of faulty software.

“It’s terrifying,” said Mark Gorton, chief executive of Tower
Research LLC, which is among the biggest high-frequency
trading businesses in the U.S. . . . “You almost can’t know
there’s no bug, anywhere in your system, ever.”

“It’s pretty clear to us that the Knight Capital episode really
instilled some fear among financial-service firms,” [SEC
Chairman] Ms. Shapiro said.

quoted from Rapid-Fire Traders’ Big Fear: Themselves’ Wall
Street Journal, Sept 2, 2012
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Our experience with computers is that once given a consistent

set of instructions, they compute consistently. It’s just hard to

give them a consistent set. – Georges Gonthier
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Bugs as mathematical blunders
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Source: Mark Adams, aircraft guidance software
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Mathematical Certainty
Myth and Reality
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Almgren’s text
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Image: http://www.freigeist.cc/gallery/sofa.jpg
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3 Issues of Trust

We all have first-hand experience of the bugs and glitches of software. We exchange sto-
ries when computers run amok. Science recently reported the story of a textbook “The
Making of a Fly” that was on sale at Amazon for more than 23 million dollars [Sci11].
The skyrocketing price was triggered by an automated bidding war between two sellers,
who let their algorithms run unsupervised. The textbook’s author, Berkeley professor
Peter Lawrence, said he hoped that the price would reach “a billion.”

An overpriced textbook on the fly is harmless, except for students who have it as a
required text. But what about the Flash Crash on Wall Street that brought a 600 point
plunge in the Dow Jones in just 5 minutes at 2:41 pm on May 6, 2010? According to the
New York Times [NYT10], the flash crash started when a mutual fund used a computer
algorithm “to sell $4.1 billion in futures contracts.” The algorithm was designed to sell
“without regard to price or time.. . .[A]s the computers of the high-frequency traders
traded [futures] contracts back and forth, a ‘hot potato’ effect was created.” When com-
puterized traders backed away from the unstable markets, share prices of major compa-
nies fluctuated even more wildly. “Over 20,000 trades across more than 300 securities
were executed at prices more than 60% away from their values just moments before”
[SEC10] Throughout the crash, computers followed algorithms to a T, to the havoc of
the global economy.

3.1 mathematical error

Why use computers to verify mathematics? The simple answer is that carefully imple-
mented proof checkers make fewer errors than mathematicians (excepting J.-P. Serre).

Incorrect proofs of correct statements are so abundant that they are impossible to
catalogue. Kempe’s claimed proof of the four-color theorem stood for more than a
decade before Heawood refuted it [Mac01, p. 115]. “More than a thousand false proofs
[of Fermat’s Last Theorem] were published between 1908 and 1912 alone” [Cor10].
Ralph Boas, former executive editor of Math Reviews, once remarked that proofs are
wrong “half the time” [Aus08]. Many published theorems are like the hanging chad
ballots of the 2000 U.S. presidential election, with scrawls too ambivalent for a clear
yea or nay. Euclid gave us a method, but even he erred in the proof of the very first
proposition of the Elements when he assumed without proof that two circles, each pass-
ing through the other’s center, must intersect. The concept that is needed to repair the
gap in Euclid’s reasoning is an intermediate value theorem. This defect was not reme-
died until Hilbert’s ‘Foundations of Geometry.’ One mathematician even proposed to
me that a new journal is needed that unlike the others only publishes reliable results.

Examples of widely accepted proofs of false or unprovable statements show that
our methods of proof-checking are far from perfect. Lagrange thought he had a proof
of the parallel postulate, but had enough doubt in his argument to withhold it from
publication. In some cases, entire schools have become sloppy, such as the Italian
school of algebraic geometry or real analysis before the revolution in rigor towards
the end of the nineteenth century. Plemelj’s 1908 accepted solution to Hilbert’s 21st
problem on the monodromy of linear differential equations was refuted in 1989 by

“Verifying a paper [in mathematics] is becoming just as hard
as writing a paper,” Voevodsky said. “For writing, you get
some reward a promotion, perhaps but to verify someone
elses paper, no one gets a reward.” (Wired, March 2013)
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• The Kepler conjecture asserts that the densest packing of
congruent balls in R3 is achieved by the familiar
“cannonball” arrangement.

• The Kepler Conjecture was formulated in the booklet
“The six-cornered snowflake,” presented as a gift on New
Year’s day 1611 to Kepler’s patron Lord Wacker von
Wackenfels.
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• A proof of the Kepler conjecture was completed in 1998

by Ferguson and H.

• The proof was 300 pages and relied on long computer

calculations.

• 12 referees were assigned the task of checking the proof.

• After years of effort, the referees announced they were

99% sure that the proof was essentially correct.

• An editor eventually told me the proof would be

published, as soon as I could convince the editors of the

proof’s correctness.
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‘The referees put a level of energy into this that is, in my experience,
unprecedented. They ran a seminar on it for a long time. A number of
people were involved, and they worked hard. They checked many local
statements in the proof, and each time they found that what you claimed
was in fact correct. Some of these local checks were highly non-obvious
at first, and required weeks to see that they worked out. The fact that
some of these worked out is the basis for the 99% statement of Fejes Tóth
that you cite.”

“They have not been able to certify the correctness of the proof, and will
not be able to certify it in the future, because they have run out of energy
to devote to the problem.”
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How can an editor, who already has the paper in hand, be

further convinced that a proof has no blunders?

19
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Carl Sagan published a Baloney Detection Kit to help readers
test the validity of arguments.

20

• Wherever possible there must be independent
confirmation of the facts

• Encourage substantive debate on the evidence by
knowledgeable proponents of all points of view.

• Arguments from authority carry little weight (in science
there are no “authorities”).

21
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My math baloney detection kit.

• Is the claimed theorem a logical consequence of the
axioms of mathematics?

• Is the claimed theorem a logical consequence of the
axioms of mathematics?

• Is the claimed theorem a logical consequence of the
axioms of mathematics?

• Is the claimed theorem a logical consequence of the
axioms of mathematics?

• Is the claimed theorem a logical consequence of the
axioms of mathematics?

• Is the claimed theorem a logical consequence of the
axioms of mathematics?
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• Is the claimed theorem a logical consequence of the
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• Is the claimed theorem a logical consequence of the
axioms of mathematics?

• Is the claimed theorem a logical consequence of the
axioms of mathematics?
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A formal proof is a style of proof in which every logical

inference has been checked all the way back to the

fundamental axioms of mathematics.

No step of the proof is left unchecked, no matter how trivial.

NO EXCEPTIONS!

It is not allowed to say a step is “obvious,” even when it is

obvious. It is not allowed to say that the “other arguments

follow in a similar fashion” even if they do.

28
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Formal Proof
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When a proof is expanded in this fashion, it is generally done
by computer, because the number of logical steps can run into
the millions, even for ordinary mathematical theorems.

29
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In recent years, several other significant theorems have been formally veri-

fied. See Table 1. The table lists the theorems, which proof assistant was used

(there are many to choose from), the person who produced a formal proof, and

the mathematicians who produced the original proof. The Prime Number The-

orem, asserting that the number of primes less than n is asymptotic to n/ log n,

has two essentially different proofs: the elementary proof of Selberg and Erdös

and the analytic proof of Hadamard and de la Vallée Poussin. Formal versions of

both proofs have been produced. More ambitious projects are in store: Gonthier’s

team is now formalizing the Feit-Thompson odd order theorem, and the lead-

ing problem of the document Ten Challenging Research Problems for Computer
Science is the formalization of the proof of Fermat’s Last Theorem [3].

Table 1. Examples of Formal Proofs

Year Theorem Proof System Formalizer Traditional Proof

1986 First Incompleteness Boyer-Moore Shankar Gödel
1990 Quadratic Reciprocity Boyer-Moore Russinoff Eisenstein
1996 Fundamental - of Calculus HOL Light Harrison Henstock
2000 Fundamental - of Algebra Mizar Milewski Brynski
2000 Fundamental - of Algebra Coq Geuvers et al. Kneser
2004 Four Color Coq Gonthier Robertson et al.
2004 Prime Number Isabelle Avigad et al. Selberg-Erdös
2005 Jordan Curve HOL Light Hales Thomassen
2005 Brouwer Fixed Point HOL Light Harrison Kuhn
2006 Flyspeck I Isabelle Bauer-Nipkow Hales
2007 Cauchy Residue HOL Light Harrison classical
2008 Prime Number HOL Light Harrison analytic proof

Box ?? displays the statement of the Jordan Curve theorem, in computer

readable form, as it appears in the formal proof. The complete specification of

the theorem should also list all definitions, all the way back to the primitives.

Without giving the detailed definitions here, we note that top2 refers to the

standard topology on the plane; top2 A indicates that A is an open set in the

plane; euclid 2 is the Euclidean plane; and connected top2 A means that A is a

connected set in the plane.

The Formal Jordan Curve Theorem
∀C. simple closed curve top2 C ⇒

( ∃A B. top2 A ∧ top2 B ∧
connected top2 A ∧ connected top2 B ∧
A �= ∅ ∧ B �= ∅ ∧
A ∩B = ∅ ∧ A ∩ C = ∅ ∧ B ∩ C = ∅ ∧
A ∪B ∪ C = euclid 2 )
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Integre Technical Publishing Co., Inc. American Mathematical Monthly 114:10 August 29, 2007 11:42 a.m. hales.tex page 889

3. A SKETCH OF THOMASSEN’S PROOF. Although Thomassen avoided dia-
grams to “emphasize that the proofs are rigorous,” geometrical intuition guides his
proofs. The same intuition guides the expanded version of the proof that was used as
a script for the formal proof. Geometrical intuition guides the proof so strongly that
the entire detailed proof of the Jordan curve theorem could be presented as a sequence
of “proofs without words” in the style of a column in Mathematics Magazine. In fact,
even the finished product—the formal proof itself—is nonverbal to an extraordinary
degree. It completely bypasses the false opposition (that many profess) between pic-
ture and logical rigor, by specifying one through the other with absolutely minimal
intervention of human language. Although we do not go so far as to give proofs with-
out words, a few of the key lemmas of the proof are illustrated in this section.

Figure 7. The utility plant puzzle asks one to join each utility plant to each house with noncrossing paths. The
impossibility is essentially equivalent to the Jordan curve theorem.

Thomassen’s proof is based on the fact that the Jordan curve theorem is nearly
equivalent to the nonplanarity of the complete bipartite graph K33 (the graph obtained
by joining each of one set of three vertices to each of a second set of three vertices).
This graph is also known as the “utility graph,” because it is the graph that occurs in the
utility graph puzzle—a children’s puzzle of drawing paths from three houses to three
utility plants in such a way that none of the paths cross (Figure 7). From a slightly
different point of view, the utility graph can be represented as a hexagon (or a general
Jordan curve) with three diagonals (Figure 8).

Figure 8. The utility graph can be described as a hexagon with three diagonals.

The first step of the proof is to prove the Jordan curve theorem for rectagons. This
is treated in some detail in section 2.
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The proof then gives a construction that shows how to produce a planar embedding
of the utility graph from any counterexample to the Jordan curve theorem. There are
two figures illustrating the idea. The first (Figure 9) treats the case of a Jordan curve
with a connected complement, and the second (Figure 10) treats the case of a Jordan
curve whose complement has at least three connected regions.

Figure 9. A Jordan curve (heavy line) whose complement is connected could be used to solve the utility plant
puzzle as shown. Under the assumption of a connected complement, the house along the central line can be
joined to the utility plant outside the curve by a path (faint line) that does not cross the Jordan curve.

Figure 10. A Jordan curve (heavy line) whose complement has at least three connected components could be
used to solve the utility plant puzzle as shown. Under this assumption, each house can be situated in a different
connected component, and the apparent crossing in the center of the figure can be avoided, because the paths
lie in different connected components of the complement.

These figures gloss over what is perhaps the most important technical point in the
proof of the Jordan curve theorem: a simple arc A (A is a set that is homeomorphic to
the real interval [0, 1]) in the plane has a connected complement. This technical result
is required to show that the three points (utility plants) on the Jordan curve in Figure 10
are accessible from each of three connected components in the complement. The idea
of the proof is as follows. Given two points p and q that do not lie on A, we construct
a scaled rectagon1 with A in its interior and so tightly around the simple arc that both
p and q are in the exterior of the rectagon (Figure 11). Other than this subtle argument,
the figures adequately convey the idea of the proof.

A graph approximation theorem is then proved that takes any planar embedding
of the utility graph and constructs from it a planar embedding with piecewise linear

1A scaled rectagon is defined as rectagon, except that its basic unit of length for edges is a real number r ,
rather than fixed at 1. At this stage of the argument, the Jordan curve theorem is known for rectagons. This
allows us to refer to the a (scaled) rectagon’s interior and exterior.
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The formal proof of the 
Kepler conjecture

35

• The first proof was presented (by Ferguson and H. in

1998) and published in 2006.

• A project called Flyspeck seeks to give a formal proof of

the theorem, which involves a computer verification of

every single logical inference in the proof, all the way

back to the fundamental axioms of mathematics.

• FLYSPECK comes from F.*P.*K, for the Formal Proof of

the Kepler Conjecture.

• The Flyspeck project is about 80% complete.

4

94%
----
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There is a great need to improve the technology of formal
proofs so that someday this becomes the standard way for
researchers to check that they have not blundered.

We need logicians, computer scientists, and mathematicians
to turn to this area of research!
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