Episode 38. Taylor series

As we know (see Episodes 35-36),
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has a dual nature. It represents
e a function expanded in a power series

e a power series converging to a function



Given a function, how to find its expansion into a power series, that is,
to find a power series converging to this function?

Theorem 1 (from the power series to a function).
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Proof. Take a = 0 for simplicity of calculations. The case of an arbitrary a is
handled similarly. —
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Since the power series » | ¢,x™ converges to the function f(z), we have
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Substitute x = 0:  f(0) = .

Differentiate the power series for f(x):
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Calculate the second derivative:
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Substitute z = 0:  f"(0) = 2¢a.

Calculate the third derivative:
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Substitute z = 0:  f"'(0) = 3 - 2cs. ‘

And so on. After n differentiations and substituting x = 0, we get
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Definition.

If a function f(z) has derivatives of all orders, then the power series
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(x — a)™ is called the Taylor series for f(x) centered at a.
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is called the Maclaurin series.

Given an infinitely differentiable function, we may construct its Taylor series.

Does this series converge? If yes, then to which function?

Theorem 2 (from the function to a power series).

If all derivatives of a function f are bounded near a,

then the Taylor series of f converges to f:

(x —a)" for |z—a|<R.
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Remark.

There are functions which Taylor series converge, but not to the function itself.
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