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Objectives

In this episode, we will learn how to solve

second-order homogeneous linear differential equation with constant coefficients.

What this long name means? A general equation of this type is written as

a
d2y

dx2
+ b

d y

dx
+ cy = 0, or ay′′ + by′ + cy = 0 ,

where a, b, c are given constants (they are called constant coefficients)
and y = y(x) is unknown function in variable x .

Second-order means that the highest derivative is of the second order.
For this reason, a 6= 0 .

Homogeneous means that the right hand side of the equation is zero.

Linear means that y , y′ and y′′ are involved with exponents of one.

For example, 3y′′ + y′ − 2y = 0 and y′′ = 0 are
second-order homogeneous linear equation with constant coefficients,

while y′′ − y2 = 0, y′′ + 2y′ = x+ 1 , y′ + y = 0 , y′′ − xy′ = 0 are not.
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Solutions and their linear behavior

A solution of the equation ay′′ + by′ + cy = 0 is any function satisfying the equation.
For example, y = ex is a solution of the equation y′′ − y = 0 , because (ex)′′ − ex = 0 .
This solution is not unique: y = e−x is also a solution since (e−x)′′ − e−x = 0.
Actually, the equation y′′ − y = 0, as any other second-order linear equation,
has infinitely many solutions. How to find them all?

Theorem (linear behavior of solutions). If y1 and y2 are solutions of ay′′ + by′ + cy = 0,
then so C1y1 + C2y2 is for any constants C1 and C2 .

Proof. Let y1, y2 be solutions of ay′′ + by′ + cy = 0. Then ay′′1 + by′1 + cy1 = 0 and ay′′2 + by′2 + cy2 = 0.
Let us check that C1y1 + C2y2 satisfies the equation for any choice of constants C1, C2 :

a(C1y1 + C2y2)
′′ + b(C1y1 + C2y2)

′ + c(C1y1 + C2y2)
?
= 0

aC1y
′′

1 + aC2y
′′

2 + bC1y
′

1 + bC2y
′

2 + cC1y1 + cC2y2
?
= 0

C1(ay
′′

1 + by′1 + cy1) + C2(ay
′′

2 + by′2 + cy2)
?
= 0

C1 · 0 + C2 · 0 ?
= 0

0 = 0 X
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Proportional solutions

Example 1. As we saw, y1 = ex and y2 = e−x are solutions of y′′ − y = 0 .
Therefore, y = C1e

x + C2e
−x is also a solution for any C1, C2 ∈ R .

Are there any other solutions besides y = C1e
x + C2e

−x ? (Spoiler: no!)

Example 2. The equation y′′ + y = 0 has solutions y1 = sinx and y2 = 5 sinx . Indeed,
y′′1 = (sinx)′′ = (cos x)′ = − sinx , so y′′1 + y1 = − sinx+ sinx = 0 ,
and y′′2 = (5 sin x)′′ = (5 cos x)′ = −5 sinx , so y′′2 + y2 = −5 sinx+ 5 sinx = 0 .
Therefore, y = C1 sinx+ C2 · 5 sinx = (C1 + 5C2) sin x = C sinx is a solution for any constant C .
Are here any other solutions besides y = C sinx ?
(Spoiler: yes! Take, for example, y = cos x. )

What is the difference between these two pairs of solutions,

y1 = ex and y2 = e−x in Example 1 and y1 = sinx and y2 = 5 sin x in Example 2?

It’s easy to observe that
sinx and 5 sinx are proportional, while ex and e−x are not.

Indeed, y1 = sinx and y2 = 5 sinx are proportional since y2 = 5y1 .
If we assume that ex and e−x are proportional, then y2 = Cy1 for some constant C .

But e−x = Cex ⇐⇒ 1 = Ce2x for all x, which is impossible.
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General solution

Two proportional solutions are called linearly dependent.
Non-proportional solutions are called linearly independent.

y1 = ex and y2 = e−x are linearly independent solutions of y′′ − y = 0 .

y1 = sinx and y2 = 5 sinx are linearly dependent solutions of y′′ + y = 0 .

Definition. A general solution of the equation ay′′ + by′ + cy = 0 is
y(x) = C1y1(x) +C2y2(x),

where y1(x), y2(x) are linearly independent solutions of the equation
and C1, C2 are arbitrary constants.
The expression C1y1(x) + C2y2(x), is called a linear combination of y1 and y2.

As it will be proven in the course of differential equations,
any solution of the equation ay′′ + by′ + cy = 0 can be obtained from the general solution
by an appropriate choice of the constants C1, C2 .

Therefore, to find a general solution, we need to find two linearly independent solutions y1, y2
and set up their linear combination C1y1 +C2y2 with arbitrary constants C1, C2 .
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How to find linearly independent solutions

We know that the first-order equation ay′ + by = 0 has an exponential solution
(it can be found by separation of variables).

Let us try to find a solution of ay′′ + by′ + cy = 0 in the exponential form y = eλx,
where λ is unknown constant (to be determined).
Substitute y = eλx , y′ = λeλx , and y′′ = λ2eλx into the equation:

aλ2eλx
︸ ︷︷ ︸

y′′

+b λeλx
︸︷︷︸

y′

+c eλx
︸︷︷︸

y

= 0.

Factor out eλx :

aλ2eλx + bλeλx + ceλx = 0 ⇐⇒ eλx(aλ2 + bλ+ c) = 0

We may cancel eλx out since it’s never zero:

eλx(aλ2 + bλ+ c) = 0 ⇐⇒ aλ2 + bλ+ c = 0.

If y = eλx is a solution of the equation ay′′ + by′ + cy = 0,
then λ is a root of the quadratic equation aλ2 + bλ+ c = 0 .

The quadratic equation aλ2 + bλ+ c = 0 is called
the characteristic equation of the differential equation ay′′ + by′ + cy = 0.
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The characteristic equation: real roots

The solutions of the characteristic equation are λ1,2 =
−b±

√
b2 − 4ac

2a
.

• If λ1, λ2 are real and distinct, then two linearly independent solutions are y1(x) = eλ1x and
y2(x) = eλ2x.

• If λ1 = λ2 (= λ = −b/2a) is a double root, then two linearly independent solutions are
y1(x) = eλx and y2(x) = xeλx.

Let us check that y2(x) = xeλx is a solution of ay′′ + by′ + cy = 0.
Substitute y′2(x) = (1 + λx)eλx and y′′2 (x) = (2λ+ λ2x)eλx

into the left hand side of the equation:

a(2λ+ λ2x)eλx + b(1 + λx)eλx + cxeλx = (aλ2 + bλ+ c)xeλx + (2aλ+ b)eλx = 0, since λ is a root of
aλ2 + bλ+ c , and 2aλ+ b = 2a(−b/2a) + b = 0.

Therefore, y2(x) = xeλx is indeed a solution of the differential equation.

The solutions y1(x) = eλx and y2(x) = xeλx are linearly independent
since they are not proportional.
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The characteristic equation: complex roots

• If λ1,2 = α± iβ are complex conjugate roots (α, β ∈ R ),
then two linearly independent solutions are

y∗1(x) = e(α+iβ)x and y∗2(x) = e(α−iβ)x. But they are not real-valued.

Since

y∗1(x) = e(α+iβ)x = eαxeiβx = eαx(cos(βx) + i sin(βx)) and

y∗2(x) = e(α−iβ)x = eαxe−iβx = eαx(cos(βx) − i sin(βx)),

we may reconfigure y∗1, y
∗

2 into real-valued functions:

y1 =
1

2
(y∗1 + y∗2) = eαx cos(βx),

y2 =
1

2i
(y∗1 − y∗2) = eαx sin(βx).

Finally, two real-valued linearly independent solutions are

y1(x) = eαx cos(βx) and y2(x) = eαx sin(βx).
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Summary

In order to find the general solution for the differential equation ay′′ + by′ + cy = 0,

1. Compose the characteristic equation aλ2 + bλ+ c = 0.

2. Find its roots λ1,2 =
−b±

√
b2 − 4ac

2a
.

3. Depending on roots, find linearly independent solutions y1, y2 :

• If λ1, λ2 are real and distinct, then y1 = eλ1x and y2 = eλ2x.

• If λ is a double root, then y1 = eλx and y2 = xeλx.

• If λ1,2 = α± iβ are complex conjugate roots, then y1 = eαx cos(βx) and y2 = eαx sin(βx).

4. Compose the general solution : y(x) = C1y1 + C2y2, where C1, C2 ∈ R.
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Examples: real roots

Example 1. Find the general solution of the equation y′′ + y′ − 2y = 0.

Solution. The characteristic equation is λ2 + λ− 2 = 0 ⇐⇒ (λ+ 2)(λ− 1) = 0.
The roots are λ1 = −2, λ2 = 1.

The linearly independent solutions are y1 = eλ1x = e−2x , y2 = eλ2x = ex.

The general solution is y(x) = C1y1 + C2y2 = C1e
−2x +C2e

x, C1, C2 ∈ R.

Example 2. Find the general solution of the equation y′′ − 6y′ + 9y = 0.

Solution. The characteristic equation is λ2 − 6λ+ 9 = 0 ⇐⇒ (λ− 3)2 = 0.
The double root is λ = 3.

The linearly independent solutions are y1 = eλx = e3x , y2 = xeλx = xe3x.

The general solution is y(x) = C1y1 + C2y2 = C1e
3x + C2xe

3x, C1, C2 ∈ R.
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Examples: complex roots

Example 3. Find the general solution of the equation y′′ + 2y′ + 3y = 0.

Solution. The characteristic equation is

λ2 + 2λ+ 3 = 0.

The roots are λ1,2 =
−2±

√
4− 12

2
=

−2±
√
−8

2
=

−2± 2i
√
2

2
= 1

︸︷︷︸

α

±i
√
2

︸︷︷︸

β

.

The linearly independent solutions are

y1 = eαx cos(βx) = ex cos(
√
2x) and

y2 = eαx sin(βx) = ex sin(
√
2x)

The general solution is

y(x) = C1y1 + C2y2 = C1e
x cos(

√
2x) + C2e

x sin(
√
2x) = ex(C1 cos(

√
2x) +C2 sin(

√
2x)),

C1, C2 ∈ R.
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