1

What is the domain of the function $f(x) = \sqrt{x-1}$? What is the range?

2

Prove that the graph of the function $g(x) = x^3 + x$ is symmetric about the *y*-axis.

3

Given an example of a non-constant function $h : \mathbb{R} \to \mathbb{R}$ for which h(x) = h(x+2).

4

Consider the function $f(x) = x^3 - x^4$ as a map from \mathbb{R} to \mathbb{R} . Show that the range of f(x) is a *proper* subset of the codomain (i.e., not all of \mathbb{R}).

5

Prove that the composition of two odd functions is an odd function.

Answer Key

- 1. $[-1, \infty)$.
- 2. Suffices to show that g is odd.
- 3. $h(x) = \sin(\pi x)$.
- 4. *f* achieves a global maximum.

5.
$$f(g(-x)) = f(-g(x)) = -f(g(x))$$
.

Solutions

1. The function $g(x) = \sqrt{x}$ has domain $[0, \infty)$. In other words, the real-valued square root function is defined for all nonnegative real x values. Hence, the given function f(x) is defined whenever $x - 1 \ge 0$, and so has domain $[-1, \infty)$.

2. It suffices to show that *g* is an odd function, which is true because:

$$g(-x) = (-x)^3 + (-x) = -x^3 - x = -(x^3 + x) = -g(x)$$

3. Different functions would suffice, but a good option is $h(x) = \sin(\pi x)$. Then, $h(x + 2) = \sin(\pi x + 2\pi) = \sin(\pi x)$, since the sine function is 2π -periodic.

4. The key observation is that f achieves a global maximum value. We don't need to calculate this maximum value explicitly to solve this problem. Indeed, we observe that for all |x| > 1, we have $x^3 - x^4 < 0$. Moreover, it is certainly the case that when $|x| \le 1$, we certainly have $f(x) \le 2$, say. Indeed, $x^3 - x^4 = x^3(1-x)$, and when $|x| \le 1$, we have $1 - x \le 2$ while $x^3 \le 1$, and so $f(x) = x^3(1-x) \le 2$. Hence, f achieves a global maximum value on the interval [-1, 1] and therefore does not take on every value in the codomain.

5. Let f and g be odd functions. We have:

$$f(g(-x)) = f(-g(x)) = -f(g(x))$$

so that the composition $f \circ g(x) = f(g(x))$ is an odd function. Note that for the first equality we have used the fact that g is odd and for the second we have used the fact that f is odd.