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Objectives

Remember that The Fundamental Theorem of Calculus (FTC) establishes
a connection between the definite and indefinite integrals:

If f(z) is a continuous function on [a,b], then

= | s = s

2) / f(z)dz = F(b) — F(a), where F' is an antiderivative of f,
‘ that is, any function F' with F'(z) = f(z).

In this lecture we will show how to apply the Fundamental Theorem of Calculus
to the differentiation of integrals and the calculation of definite integrals.
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Differentiating an integral
Problem. Using the FTC, find the derivatives of the following integrals:
T 2 631
a)/ e dt, b)/ cos(?) dt c)/ V2 +tdt.
0 T 1
Solution. Observe that all the integrands are continuous functions,
: a [*
so we may apply the first part of FTC: d_/ ft)ydt = f(z).
x a
d * —t? -2
a/o e “dt=e
d ! 2 _ d ¢ 2 _ d * 2 _ 2
b) a/L cos(t?) dt = . (—/1 cos(t )dt) =0 (/1 cos(t )dt) = — cos(x”)
c) a / VIE2+tdt [y =e3c] = i/ Vit2 +tdt  use the chain rule
dx J; dr Jq
S < / N +tdt) RT3 = 3V T e = 3/ T 12
U 1 X
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Differentiating an integral

COosS T
Problem. Find i i .
dl' sinx 1 — t2

Solution. The FTC can't be used directly since the integral to differentiate
xT
is not of the type / f(t)dt.
a

To proceed, we split the integral into a sum of two integrals
in each of which the variable = appears only once:

o i - ¢ _dt + osE o dt It will turn out that
. 1—¢2 o1 —¢2 1 —t2 "~ the choice of a does not matter.
s x sinx a

Reverse the limits of integration in the first integral:

a dt sinx dt
/ T2 / Tk Now we are ready to differentiate:
s a -

inx

d cosx dt d sin x dt cosx dt
a sinx 1t2:£</a 1t2+/a 1t2>
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Differentiating an integral
d cos T dt d sin x dt Cos T dt
% sinx 1_t2%<_/a 1_t2+/a 1_t2>
d »sin @ dt d COS T dt
- -+ — Use the chai [
I : 1—t2+dx/a =2 se the chain rule
1 d . n 1 d
=————s—) —sinx ———— | —cosx
1 —sin?z /) dx 1—cos?z /) dx
B Ccos T sinx _ cosx sin x B 1 1
 1—sin?2x 1—cos2z  cos?2z sinfx  cosz sinz
COosS T dt 1 1
Answer: — = — — —
dzr J4p, 1—1t2 cosx sinz
5/21



Calculus for probability
In probability theory and statistics there is a very important function
1 [T e
i —t°/2 gt
e :
V 2 /—oo
which is called the cumulative distribution function for the normal distribution.

Let us consider a simplified version.
"X

Problem. Let f(x)= / e Pt
0

a) Find the extreme points of f.
b) Find a linear approximation to f near x =0.

c) Find the inflection points of f.

Solution. -

/ —t2 —x?
a) f'(z) o /0 e e
Since f'(z) #0, of f has no extreme points.
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Calculus for probability
b) For the linear approximation L(x) of f(x) near z =0, we use the formula
0
f(z) = L(z) = f(0) + f/(0)(x —0). Since f(0)= / e dt =0 and
0
F(0) = e’ W 1, we obtain L(z)=0+1-(z—0)==x.
Therefore / e dt ~ x near 0.
0
c) For the inflection points of f, we study f”:
d

[ (x) = %6*12 = —2ze "

+ 0 - "

o 0 o~
inflection
The only inflection point of f is x =0.
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Elementary integration

1
by B30 1 o : -
1. redx | = — — — = —. Intergration is the inverse of differentiation.
0 \/ 0 3 3 3

differentiate

2T 21 20 1

1
2. 2xd = — = — — — = —
/0 v hr12O In2 In2 In2

1 1
d d 1
3. /_1 ?22 = 2/0 Txgﬁ since f(z) = 722 is even and [—1,1] is symmetric.

= 2arctan :2(arctan1—arctan0):2<%—0> :g.
0
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Elementary integration
2 7 2
4. / (x3—2w+1)dm:<——x2+m>
. 4 »
24 (—1)4 1 15
== 2242 (—L (-1’ 4+ ()| =4—-4+2—- (> -1-1) =—
o (S - v (! ;
8 33 _ 8/ . 8 )
5. / Mdm/ <x32+§:1:2)d:z:/ (:z:3+§:1:2>d:z:
J1 x J1 xz 1 xz
=1 /:lradm: Lot a#—1 /@:ln\ar\
a+1 T
. . 8 8
—4+1 _ —241 —(_9,—% -1
(_§+1x +31n || it > 1 ( 373 +3n|z| + 2 ) 1
_1 —1 _1 1 3 1 5
~3-87F 4+ 38487 = (=3 17F 43 m1+171) = —S 492+ S +3 -1 =2 +9In2
2 8 8
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Area via the integral

Problem 1. Find the area of the region located between one arc of the sine curve and the x-axis.

)
=
™

s

T
A/ sinxdxr = —cosx
0

> T 0

y=sinz = —(cosm — cos0) :—(—1—1):

1007
Problem 2. Evaluate / | sin x|dx .
0

Yy .
w=|sinz|
A A T ,/x\/
> T
A w\-/ 2T . \/10077

~1007
/ |sinz|dr = = 1004 =100 -2 =[200]

0
10 / 21
The integral via area
1
Problem 3. Evaluate / arccos xdx .
0
The integral represents the area under the graph of y = arccosz:
Yy = arccosx 3 4
B = alhalf of the area under one arc of the cosine curve
=—-.2=1, see Problem 1.
B ) 2
/1 ‘ 1 1
J Therefore, / arccos rdr = 3 2= .
P 0
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What is In x, really?

How would you explain Inx to your little brother or sister?
1
Draw the graph of y = n for positive t:

Y
y=1/t Consider the region under the graph

between the lines t =1 and t =2 > 1.

1"1 t=x
Its area is /;dt:lnt‘ . =lnhz—-—Inl =lnz
=

> 1

Area=Inzx

Therefore, Inx is the area of the region under the graph of the hyperbola.

Control question: How would you explain to your little brother or sister

Inz if0<ax<1?
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Warning

1
1
Problem. Evaluate the integral / —dx .
-1

22
1
1 . ” 1 1 1
Solution”. —2dx = ——
1T X 4

= —(1—(-1)) = -2.

The answer doesn't seem to be plausible:

we integrated a positive function and obtained a negative result.

: 1
What went wrong? The integral represents the area under the curve y = —:
x
y

Y=

x

The region under the graph is not bounded.
What could its area be?
This topic will be discussed in Calculus Il

> T

1
Applying of the FTC to this integral is illegal, since f(x) = — is not continuous on [—1,1].
T
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The area of the region between two curves

Theorem. Let f(x),g(x) be continuous functions with f(x) > g(z) on [a,b].

Y Then the area of the region bounded by
y = f(z) the curves y = f(z), y = g(z)
and the vertical lines x =a, x =b
a 5~ * s given by the formula / (f(x) — g(x))dx.

y=g(x) a

Proof. /C;b(f(m) ~ g(@))da = /abf(m)dm - /abg(x)dx -

(signed area between f and the x-axis) — (signed area between g and the x-axis)
Yy = area between f and g.

o
+
o

y = g(z)
14 /21
The area between two curves
Example 1. Find the area of the region bounded by y = 2> and y = /= .
Solution.
y y = 22
Fist, find the intersection points of the curves:
V= Ve =z = 2t=1r = 2(@3-1)=0
1 = z(z-1@*+2+1)=0
0‘ T - = =00 z=1.
The area between the upper curve y = /= and the lower curve y = 22 is
1
1 3
2 x 2 1 1
2 _2.3/2_ _2_ |z
r—ax%)dr = -x = =
/0 (Ve ) 3 3 0 3 3 3
Answer: the area of the region is 1/3 square units.
I The area of a region is always non-negative.
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The area between two curves

: . : 2
Example 2. Find the area of the region situated below the curve y = T
x
and above the line y = 1.
Solution.
y
2
Y= T L2 What are the intersection points
= — =17
y=1 of y 522 and y =17
2
/ \ =1 < 2=142> < z=+1
! ! 14 22
. : >~ T
-1 ?

1 1 1 1
. 2 2 d
The area between the curves is / —— —1)dx = 2/ —— —1)dx = 4/—33 — 2/dx
14+ 22 1422 1422
0 0 0

=1

= 4arctanx —2 =4(arctanl —arctan0) — 2

2=0 :4.1_2:

16 / 21

The area between the waves
Example 3. Find the area of one of the regions between the sine and cosine curves.

Solution. Draw a picture:

Find the intersection points of the curves over one period:

y =sinz

/><y o

<
e E N
g u>|§1

sinz =cosz = z=mn/4 and z =57/4.

The area between the waves is

5w

X
X

4
/,7 (sinz — cosz)dx = (—cosx —sinx) = —(cosx +sinx) = — (cos 2 +sin 2T) + (cos T +sin 7)
pi

- (- 4)+ (44 4) -4

5]
5]
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The area bounded by three curves

1
Example 4. Find the area of the region bounded by y = —,
X

Solution.
y _
‘ y=dz This region is not between two curves.
Split it into two regions A; and As which are.
Find the limits of integration:
: 1
} — =4z = 4’=1 = x=1/2,
: Az y=ux/4 *
4 y=1z lzf = 22=4 = r=2.
1 2 z X 4
2

The area bounded by these three curves is the sum of areas of A; and As:

1/2 2 1/2 2
/0 (4x—:c/4)dx+/l/2(1/x—x/4)dx = [2x2—m2/8}0 + [lnx—mz/S}

1/2
1 1

1 1 1
5*3—2+1n2f§fln§+§ —ln2+ln2f

y=4x and y = % in the 1st quadrant.
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The area between a curve and its tangent
Example 5. Find the area of the region bounded by
the parabola y = 2 — 22 + 2, its tangent line at = = 2, and the y-axis.
Solution. Draw a picture:
2 Y . L
,_.? 2.4, Theequation of the tangent lineis y—y(2) = y/(2)(z-2).
Since ' =22 — 2, we have /(2) = 2,
and the equationis y—2 =2(z—-2) <= y=2r—-2.
‘ 2
| The area of the region is / (22 —224+2—(22—2))dx
i 2 002
L :/(x2—4x—|—4)dx :/(x—2)2dx
1 2 8
= (r—2 3 ‘ — | =
3( ) 0 3
19 /21

10



Summary

In this lecture we demonstrated some important applications

of the Fundamental Theorem of Calculus.

20 / 21
Comprehension checkpoint
“lInt d
Let f(x) = —dt. Find — .
olet f(o)= [ it Find f()
e Evaluate the following integrals:
/2 1 1,
/ sin z dx, / 2 + 2% dx, / ———dz
—n 0 0o T+
e Find the area of the region bounded by
the curve y = €%, its tangent line at x = 0 and the vertical line z = 1.
21 / 21
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