Lecture 31

The Fundamental Theorem of Calculus

ojectives	2
ımmy variable	3
ne area-so-far function	4
C: statement	5
C: discussion	6
C: discussion	7
C: discussion	8
$\overline{}$ C: proof	9
C: proof	10
$\overline{}$ C: proof	11
mmary	
emprehension checkpoint	13

Objectives

In this lecture we will discuss the Fundamental Theorem of Calculus (FTC) which establishes a **connection** between the definite and indefinite integrals.

We will **formulate** the theorem and give a sketch of a **proof**.

2 / 13

Dummy variable

As we know, the definite integral $\int_a^b f(x)dx$ represents the **signed area** of the region between the graph of f(x), the x-axis and the vertical lines x=a, x=b.

In this integral notation, the variable x appears as a placeholder.

The value of the integral does not depend on how we call the variable.

It is called a dummy variable and may be changed to any other variable

unless it would lead to confusion:

$$\int_a^b f(x)dx = \int_a^b f(t)dt = \int_a^b f(s)ds = \int_a^b f(y)dy \text{ etc.}$$

A similar phenomenon of dummy variable may be observed in summations:

$$\sum_{i=1}^{n} i = \sum_{j=1}^{n} j = \sum_{k=1}^{n} k = \frac{n(n+1)}{2} .$$

The area-so-far function

Let f(t) be a continuous function on [a, b]:

Consider a new function $\,A(x)\,=\,\int_a^x f(t)dt\,.$

A(x) is the signed area of the region between the graph of the function, the x-axis, and two vertical lines.

We call A(x) the "area-so-far" function.

$$A(a) = \int_{a}^{a} f(t)dt = 0$$

$$A(b) = \int_{a}^{b} f(t)dt = \int_{a}^{b} f(x)dx$$

What is the **rate of change** of A(x)? That is, $\frac{dA}{dx}$ =?

Spoiler: $\frac{dA}{dx} = f(x)$.

4 / 13

FTC: statement

Theorem (The Fundamental Theorem of Calculus).

Let f(x) be a **continuous** function on [a,b]. Then

1)
$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

2)
$$\int_a^b f(x)dx = F(b) - F(a)$$
, where F is an antiderivative of f ,

that is, any function with $\,F'(x)=f(x)\,.$

FTC: discussion

Remarks. Why is this theorem called fundamental?

1. It establishes a connection between the two main operations in calculus,

differentiation and integration:

$$\int_{a}^{x} f(t)dt \qquad \xrightarrow{\frac{d}{dx}} \qquad f(x)$$
 differentiate

$$F'(x) \xrightarrow{\int_a^b} F(b) - F(a)$$

Differentiation and integration are inverse processes:

what the derivative does, the definite integral undoes; what the definite integral does, the derivative undoes.

6 / 13

FTC: discussion

2. The second part of FTC, namely $\int_a^b f(x)dx = F(b) - F(a)$, is called the evaluation theorem or the Newton-Leibniz theorem.

It may be written out in different ways. Since $F'(x)dx=\frac{dF}{dx}dx=dF$, we may write

$$\int_a^b f(x)dx = \int_a^b F'(x)dx = \int_a^b \frac{dF}{dx} dx = \int_a^b dF.$$

Therefore,
$$\int_a^b f(x)dx = F(b) - F(a) \iff \int_a^b dF = F(b) - F(a)$$
.

It is convenient to use the following **evaluation** notation: F(b) - F(a) = F(x) Then the evaluation theorem takes the following form

$$\int_{a}^{b} f(x)dx = F(x) \bigg|_{a}^{b} \text{ or } \int_{a}^{b} dF = F(x) \bigg|_{a}^{b}$$

FTC: discussion

3. The evaluation theorem $\int_a^b f(x)dx = F(x) \bigg|^b$ establishes a **connection**

between the definite integral $\int_a^b f(x)dx$ and the indefinite integral F(x).

It gives the **primary tool** for calculation of definite integrals.

Other tools for computing integrals (signed areas or limits of Riemann sums) can't compete in efficiency with the evaluation theorem.

8 / 13

FTC: proof

1) We have to prove that if f(x) is a **continuous** function on [a,b], then

$$\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x).$$

 $y=f(x) \qquad \text{Let } A(x)=\int_a^x f(t)dt \text{ be the area-so-far function.}$ $X \qquad \text{We have to show that } A(x) \text{ is differentiable and }$ $A'(x)=f(x)\,.$

By the definition of the derivative, $A'(x) = \lim_{h \to 0} \frac{A(x+h) - A(x)}{h}$.

Let us study the area increment A(x+h) - A(x).

FTC: proof

The area increment A(x+h) - A(x) is the signed area of the region .

 $A(x+h)-A(x)\approx \text{ the signed area of the rectangle} = hf(x)$ with the approximation getting better as $h\to 0$.

Therefore, $A'(x)=\lim_{h\to 0} \frac{A(x+h)-A(x)}{h}=\lim_{h\to 0} \frac{hf(x)}{h}=f(x)$.

10 / 13

FTC: proof

2) We need to prove that $\int_a^b f(x)dx = F(x)\bigg|_a^b$ for any antiderivative F of f.

We know from 1) that A is an antiderivative of f since A'(x) = f(x).

Any two antiderivatives differ by a constant: A(x) = F(x) + C .

By the definition of A , $A(x)=\int_a^x f(t)dt$.

So $A(b)=\int_a^b f(t)dt$ and $A(a)=\int_a^a f(t)dt=0$.

Therefore.

 $\int_a^b f(x)dx = A(b) = A(b) - \underbrace{A(a)}_0 = F(b) + C - (F(a) + C) = F(b) - F(a) \,, \qquad \text{as required.}$

Summary

In this lecture, we stated and proved the Fundamental Theorem of Calculus:

If f(x) is a **continuous** function on $\left[a,b\right]$, then

- 1) $\frac{d}{dx} \int_a^x f(t)dt = f(x)$
- 2) $\int_a^b f(x) dx = F(b) F(a)$, where F is an antiderivative of f ,

that is, any function $\,F\,$ with $\,F'(x)=f(x)\,.$

12 / 13

Comprehension checkpoint

- State the Fundamental Theorem of Calculus.
- What does this theorem say for $f(x) = x^2$ and [a, b] = [0, 1]?

Give a geometric illustration for the theorem in this case.