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Objectives
In this lecture we will continue to work with the definite integral as the limit of Riemann sums.

Remember that for a piece-wise continuous function f(z), the definite integral
may be calculated as the limit of a Riemann sum L, or R,:

n—oQ n—oo

b
/ f(x)dx = lim L, = lim R,, where
o n—1

L, = > f(x;)Ax is the left Riemann sum,
i=0

R, = Z f(zi)Az is the right Riemann sum,
i=1

_b-a

Ax are n subintervals of [a,b],

x; = a+iAx are the points subdividing [a, b].

Riemann sums have a simple geometric interpretation.
In this lecture, we will do some elementary calculations with Riemann sums.
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The area under a parabola
1
Problem. 1. Approximate / z?dz by Ly and R.
2. Calculate the Riemann sums L, and R, , where n is a positive integer.
1
3. Calculate / z?dx explicitly as the limit of L,, and R, .
0
Solution. The integrand is f(z) = 22, the interval is [0,1].
b— 1
1. To calculate Ly and Ry, we subdivide [0,1] into two equal parts of length Az = ¢_ 5
n
L L S .
PR Ny The subdivision points are
—o 1
0 1 1 T90=0,21==,29=1.
2 2
3/19



The area under a parabola

1
The integral / x2dx represents the area under the parabola y = 22 between 2 =0 and z =1:
0

Y, y = 22
1 |- -
1
4
> T
0 ;1
1 1 1 1 1 1
Lo = A Ar = L L, Z —p.242.2=|2].
1 1 1 1 1 )
= A Azr = f(1). = .2 =Z.241.-2=|21.
1 1 1 5
/ 2idr ~ Ly = 3 (underestimate), / 2?dx ~ Ry = S (overestimate)
0 0
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The area under a parabola
2. To calculate the general Riemann sums L, , R,,
1
we subdivide [0,1] into n equal parts of length Az = S—
n n
1 .
The points of the subdivision are x; = 29 + 1Az =0+ i— = L , where ¢ =0,1,...,n.
n o n
Lo="S fa)de =" 1 <Z> : nf(i)Q e
= €T €r = — —_ = — _ = — 1 ,
" i=0 ' i=0 n)n S \n) n w5
. . . 2
n n 7\ no( 1 12 .
L o ol C I ot
" i=1 ' i=1 n)n Zi\n) n nP=
As we know from Algebra (or can prove by induction),
n 1)(2 1
SN 2o12 42y g. gz MOT )6( ntl)
i=1
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The area under a parabola

Therefore,
1=l (n—=1)n2n-1)
L,= El;) ¢ = 63 and
12, nn+1)2n+1)
R, = — '/2 - - .
" nd Z;I 6n3

1
The Riemann sums L,, and R,, approximate / z?dx and,
0

2 is increasing on [0,1], we have

since f(z) ==

1
L, < / 2%dx < R,, for any positive integer n. Calculate the limits:
0

: . (n=Dn@en-1) . (1-4H-1-(2-4) 1-1.2 1
: onm+D@e+1) 1 (I4+4)-(2445) 1-1-2 1
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The area under a parabola
In the inequality for the integral, let n — oco:
1
L, S/ 22dx < Ry,
0 1 ) 1
\ I / Therefore, / rdr = — .
n — 0o 1 n — 0o 0 3
3
y
y=a?
! 1
E / 22dr = lim L, = =
0 n—00 3
! 1
/ z?dr = lim Ry, = =
0 n—00 3
x
0 1
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Approximating an Integral by Riemann sums

2

Problem. 1. Approximate / (2 — 2z)dz by Lg and Rg.
—1
2. Calculate the Riemann sums L, and R, , where n is a positive integer.

2

3. Calculate / (2% — 2x)dx as the limit of L, and R, .
-1

Solution. The integrand is f(z) = 23 — 2z, the interval is [—1,2].

1. To calculate Lg and Rg, we subdivide [—1,2] into six equal parts

b—a 2-(-1) 3 1
Of Ie th Axr = — = _ =_:
neth Sr=—y 6 6 2
o ES T2 3 T4 5 e
1 1 1 1 1 1 |
—1 —.5 0 .5 1 1.5 2
The subdivision points are
o = 71, T = 7.5, To = 0, Tr3 = .5, T4 = 1, s = 15, Te = 2.
In abbreviated form, z; = z¢ + iAx = -1+ % , where i =0,1,...,6.
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The integral as a signed area
2
The integral / (23 — 2z)dx represents the signed area
-1
between the graph of y = 2> — 2z and the z— axis:
v p Yy = z3 — 2z
+ +
> T
—1 _ 2
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The geometric interpretation of the left Riemann sum

= f(@o)Ax + f(x1)Ax + f(22) Az + f(23) Az + f(24) Az + f(25) Az
1 3

= (f(*l) + f(=5) + £(0) + f(.5) + f(1) + f(1,5)> -5 =|as

Y, .
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The geometric interpretation of the right Riemann sum
6
Rs = ;f(wi)Ax
= f(z1)Az + f(z2) Az + f(23)Az + f(z4) Az + f(25) + f(26) A
27
= (F(=5) + FO) + £(5) + F() + F(1L5) + £(2) - = |28
Yy y=a3— 2z
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Left and right Riemann sums
27

3
We have calculated Lg = — and Rg = — .
16 16

Both left and right Riemann sums approximate the value of the integral:
3 3
3 27
/ (2% — 22)dz ~ — and / (2% — 22)dx ~ = .
1 16 -1 16

The exact value of the integral, as we will calculate soon, is

2
; 3 12
/ (l'3 —2x)dx = - =

1 4716
Lg Exact value Rs
| | | >
I I I
3 12 27
16 16 16
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General left and right Riemann sums
2
To compute L, and R, for / (m?’ — 2x)dx , recall the formulas:
-1
n—1 n
L,= > f(z;))Azx and R, =) f(z;)Azx, where
i=0 i=1
2—(-1) 3 _ 3.
Ar=———"=— and z;=x9+idx=-14+—, i=0,1,2,...,n.
n n n
. N 3 .
Since f(sci):f(lJrﬁ) = <1+ﬁ> 2<1+ﬁ> , we find
n n n
n-l n-l 3i\* 3\ | 3
L, = AT = —14+—) =2(—-14— — and
Srese= 5| (105) 2 (4 5)] L
R *if(x-)Ax*z —1—1—% 3—2 —1—1—% 3
" =1 ' B i=1 n n n’
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General left and right Riemann sums

After algebraic manipulations, we get

3 n=l 3. 27, 27 nl 8lnl, 8ln
L, =-— 1 _'__ — = — 1 — - — ;2 ;3
) 3 +g(n—1)n 81(n—DLn@2n—1) 81 ((n—1n\"

T a2 2 n3 6 n? 2

(0250102 (D

So lim L, =3+-—-27T4+—=—.

n—oo 2 4 4
n 2 2 ><
Similarly, R,, = § > (1+ § - —72 + —72 ) and lim R, = §
n ;= n n—00 4

In our calculations (*), we used the following formulas:

Sl i n(n+1) S i = (n+1)6(2n+1)’ z”:ig,:(n(n;-l))

1=1 1=1 =1 =1

14 / 19
The integral as the limit of Riemann sums
b b
Since / f(z)dz = lim L, or / f(z)dr = lim R, , we have
a n—oo a n—o0
2 n—1
‘ 3 3. 27 27 . 3
3 1 . -2 .3 o
/_1(x —2x)dx—nlgrologizz(‘:<l+gz—ﬁz —i-ﬁz > =0
2 n
3 3. 27 27 3
3 o - 2 3\ _
/1(x _Qx)dx_gi%oﬁ;(l—i_ﬁl_ml + gl > =1
2 3
Finally, / (2% — 22)dx = =
1 4
I The calculation of definite integrals using Riemann sums is tedious.
A more efficient method of calculation (using the Fundamental Theorem
of Calculus) will be given in the next lecture.
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Calculation of limits

n—1 ]

T n—i

Example. Calculate the limit lim » 5 —
n—oo ;i —5 N

Solution. We calculate the limit by interpreting it as the limit of a Riemann sum, and expressing the
limit of the Riemann sum as an integral.
n 1 n—1

n—1, _
The sum > — " looks like the left Riemann sum > flzi)Ax.
i=0 T i=0
. N 1
That would make — 5 - f(x;)Az, which we can write as <1 - l) — = f(x;)Az. This gives
n n)n
b—a 1 i
Ax = - :E,fﬂz‘:g.f(fﬂi)il—%-

0
It follows that b—a =1, a=2p=—=0, f(z)=1—=.
n

Putting it all together, a =0, b=1, f(z) =1—x and

n—=1p _ 1
lim Zn—zl/ (1 —x)dx.
0

n—oo ;2 M
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Calculation of limits
1
Now we evaluate the integral / (1 —2x)dx.
0
Y
1
y=1—=x 'L . 1
/ (1 — x)dz = Area of triangle = 3
0
> T
0 1
. oonzln—4 1 1
Finally, nh—>Holo Z;) = /0 (1—-z)dr = 3|
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Summary

Riemann sums may be used for the approximate calculation of definite integrals.

Remember the following formulas:
/ f(z)dx = hm L, = lim R,, where
n—oo

n—1

L, = > f(x;)Ax is the left Riemann sum,
i=0

=Y f(z;)Ax is the right Riemann sum,

i=1

b—a .
Ax = are subintervals,

x; = a+ iAx are the subdivision points of [a, b].

18 / 19

Comprehension checkpoint

1
e Approximate the integral / e d by the Riemann sums Lo, Ry and L4, Ry. Use a calculator!
0

Give geometric interpretations of these Riemann sums.

Are the approximations underestimates or overestimates?

19 / 19
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