Lecture 30

Riemann Sums. Part 2

Objectives
The area under a parabola
The area under a parabola \ldots \ldots \ldots $\overline{7}$
Approximating an Integral by Riemann sums
The integral as a signed area
The geometric interpretation of the left Riemann sum
The geometric interpretation of the right Riemann sum
Left and right Riemann sums
General left and right Riemann sums
General left and right Riemann sums
The integral as the limit of Riemann sums
Calculation of limits
Calculation of limits
Summary
Comprehension checkpoint

Objectives

In this lecture we will continue to work with the definite integral as the limit of Riemann sums.

Remember that for a piece-wise continuous function f(x), the definite integral may be calculated as the limit of a Riemann sum L_n or R_n :

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} L_n = \lim_{n \to \infty} R_n, \text{ where}$$

$$L_n = \sum_{i=0}^{n-1} f(x_i) \Delta x$$
 is the left Riemann sum,

$$R_n = \sum\limits_{i=1}^n f(x_i) \Delta x$$
 is the right Riemann sum,

$$\Delta x = \frac{b-a}{n} \ \ \text{are} \ \ n \ \ \text{subintervals of} \ \ [a,b],$$

$$x_i = a + i\Delta x$$
 are the points subdividing $[a, b]$.

Riemann sums have a simple geometric interpretation.

In this lecture, we will do some elementary calculations with Riemann sums.

2 / 19

The area under a parabola

Problem. 1. Approximate $\int_0^1 x^2 dx$ by L_2 and R_2 .

2. Calculate the Riemann sums L_n and R_n , where n is a positive integer.

3. Calculate
$$\int_0^1 x^2 dx$$
 explicitly as the limit of L_n and R_n .

Solution. The integrand is $f(x)=x^2$, the interval is [0,1] .

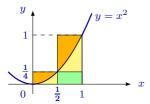
1. To calculate L_2 and R_2 , we subdivide [0,1] into **two** equal parts of length $\Delta x = \frac{b-a}{n} = \frac{1}{2}$:

The subdivision points are

$$x_0 = 0, x_1 = \frac{1}{2}, x_2 = 1.$$

The area under a parabola

The integral $\int_0^1 x^2 dx$ represents the area under the parabola $y = x^2$ between x = 0 and x = 1:



$$L_2 = f(x_0)\Delta x + f(x_1)\Delta x = f(0) \cdot \frac{1}{2} + f(\frac{1}{2}) \cdot \frac{1}{2} = 0 \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} = \boxed{\frac{1}{8}}.$$

$$R_2 = f(x_1)\Delta x + f(x_2)\Delta x = f(\frac{1}{2}) \cdot \frac{1}{2} + f(1) \cdot \frac{1}{2} = \frac{1}{4} \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \left| \frac{5}{8} \right|.$$

$$\begin{split} & L_2 = f(x_0) \Delta x + f(x_1) \Delta x &= f(0) \cdot \frac{1}{2} + f(\frac{1}{2}) \cdot \frac{1}{2} &= 0 \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{2} = \boxed{\frac{1}{8}} \,. \\ & R_2 = f(x_1) \Delta x + f(x_2) \Delta x &= f(\frac{1}{2}) \cdot \frac{1}{2} + f(1) \cdot \frac{1}{2} &= \frac{1}{4} \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = \boxed{\frac{5}{8}} \,. \\ & \int_0^1 x^2 dx \approx L_2 = \frac{1}{8} \quad \text{(underestimate)}, \quad \int_0^1 x^2 dx \approx R_2 = \frac{5}{8} \quad \text{(overestimate)} \end{split}$$

4 / 19

The area under a parabola

2. To calculate the general Riemann sums L_n , R_n , we subdivide [0,1] into n equal parts of length $\Delta x = \frac{b-a}{n} = \frac{1}{n}$.

The points of the subdivision are $x_i = x_0 + i\Delta x = 0 + i\frac{1}{n} = \frac{i}{n}$, where $i = 0, 1, \dots, n$.

$$L_n = \sum_{i=0}^{n-1} f(x_i) \Delta x = \sum_{i=0}^{n-1} f\left(\frac{i}{n}\right) \frac{i}{n} = \sum_{i=0}^{n-1} \left(\frac{i}{n}\right)^2 \frac{1}{n} = \frac{1}{n^3} \sum_{i=0}^{n-1} i^2,$$

$$R_n = \sum_{i=1}^n f(x_i) \Delta x = \sum_{i=1}^n f\left(\frac{i}{n}\right) \frac{i}{n} = \sum_{i=1}^n \left(\frac{i}{n}\right)^2 \frac{1}{n} = \frac{1}{n^3} \sum_{i=1}^n i^2.$$

As we know from Algebra (or can prove by induction),
$$\sum_{i=1}^n i^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

The area under a parabola

$$L_n = \frac{1}{n^3} \sum_{i=0}^{n-1} i^2 = \frac{(n-1)n(2n-1)}{6n^3}$$
 and

$$R_n = \frac{1}{n^3} \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6n^3}.$$

The Riemann sums L_n and R_n approximate $\int_0^1 x^2 dx$ and, since $f(x) = x^2$ is increasing on [0,1], we have

 $L_n \leq \int_0^1 x^2 dx \leq R_n$ for any positive integer n. Calculate the limits:

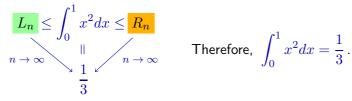
$$\lim_{n \to \infty} L_n = \lim_{n \to \infty} \frac{(n-1)n(2n-1)}{6n^3} = \lim_{n \to \infty} \frac{\left(1 - \frac{1}{n}\right) \cdot 1 \cdot \left(2 - \frac{1}{n}\right)}{6} = \frac{1 \cdot 1 \cdot 2}{6} = \frac{1}{3},$$

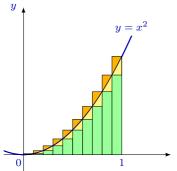
$$\lim_{n \to \infty} R_n = \lim_{n \to \infty} \frac{n(n+1)(2n+1)}{6n^3} = \lim_{n \to \infty} \frac{1 \cdot \left(1 + \frac{1}{n}\right) \cdot \left(2 + \frac{1}{n}\right)}{6} = \frac{1 \cdot 1 \cdot 2}{6} = \frac{1}{3}.$$

6 / 19

The area under a parabola

In the inequality for the integral, let $n \to \infty$:





$$\int_0^1 x^2 dx = \lim_{n \to \infty} |L_n| = \frac{1}{3}$$

$$\int_0^1 x^2 dx = \lim_{n \to \infty} \frac{R_n}{R_n} = \frac{1}{3}$$

Approximating an Integral by Riemann sums

Problem. 1. Approximate $\int_{-1}^{2} (x^3 - 2x) dx$ by L_6 and R_6 . **2.** Calculate the Riemann sums L_n and R_n , where n is a positive integer.

- **3.** Calculate $\int_{-1}^{2} (x^3 2x) dx$ as the limit of L_n and R_n .

Solution. The integrand is $f(x) = x^3 - 2x$, the interval is [-1,2].

1. To calculate $\,L_6\,$ and $\,R_6\,$, we subdivide $\,[-1,2]\,$ into ${f six}\,$ equal parts

of length
$$\Delta x = \frac{b-a}{n} = \frac{2-(-1)}{6} = \frac{3}{6} = \frac{1}{2}$$
:

The subdivision points are

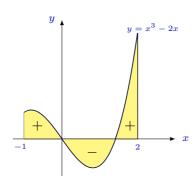
$$x_0 = -1, x_1 = -.5, x_2 = 0, x_3 = .5, x_4 = 1, x_5 = 1.5, x_6 = 2.$$

In abbreviated form, $x_i=x_0+i\Delta x=-1+rac{i}{2}$, where $i=0,1,\ldots,6$.

8 / 19

The integral as a signed area

The integral $\int_{-1}^{2} (x^3 - 2x) dx$ represents the **signed** area between the graph of $y = x^3 - 2x$ and the x-axis:

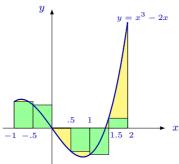


The geometric interpretation of the left Riemann sum

$$L_{6} = \sum_{i=0}^{5} f(x_{i}) \Delta x$$

$$= f(x_{0}) \Delta x + f(x_{1}) \Delta x + f(x_{2}) \Delta x + f(x_{3}) \Delta x + f(x_{4}) \Delta x + f(x_{5}) \Delta x$$

$$= \left(f(-1) + f(-.5) + f(0) + f(.5) + f(1) + f(1.5) \right) \cdot \frac{1}{2} = \frac{3}{16}$$



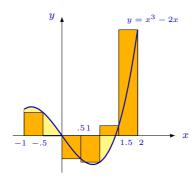
10 / 19

The geometric interpretation of the right Riemann sum

$$R_6 = \sum_{i=1}^{6} f(x_i) \Delta x$$

$$= f(x_1) \Delta x + f(x_2) \Delta x + f(x_3) \Delta x + f(x_4) \Delta x + f(x_5) + f(x_6) \Delta x$$

$$= \left(f(-.5) + f(0) + f(.5) + f(1) + f(1.5) + f(2) \right) \cdot \frac{1}{2} = \frac{27}{16}$$



Left and right Riemann sums

We have calculated $L_6 = \frac{3}{16}$ and $R_6 = \frac{27}{16}$.

Both left and right Riemann sums approximate the value of the integral:

$$\int_{-1}^3 (x^3-2x) dx \approx \frac{3}{16} \quad \text{and} \quad \int_{-1}^3 (x^3-2x) dx \approx \frac{27}{16} \, .$$

The exact value of the integral, as we will calculate soon, is

$$\int_{-1}^{2} (x^3 - 2x) dx = \frac{3}{4} = \frac{12}{16}.$$

L_6	Exact value	R_6
3	12	27
$\overline{16}$	$\overline{16}$	$\overline{16}$

12 / 19

General left and right Riemann sums

To compute L_n and R_n for $\int_{-1}^2 (x^3-2x)dx$, recall the formulas:

$$L_n = \sum\limits_{i=0}^{n-1} f(x_i) \Delta x$$
 and $R_n = \sum\limits_{i=1}^n f(x_i) \Delta x$, where

$$\Delta x = rac{2-(-1)}{n} = rac{3}{n}$$
 and $x_i = x_0 + i\Delta x = -1 + rac{3i}{n}$, $i = 0, 1, 2, \dots, n$.

Since
$$f(x_i) = f\left(-1 + \frac{3i}{n}\right) = \left(-1 + \frac{3i}{n}\right)^3 - 2\left(-1 + \frac{3i}{n}\right)$$
, we find

$$L_n = \sum_{i=0}^{n-1} f(x_i) \Delta x = \sum_{i=0}^{n-1} \left[\left(-1 + \frac{3i}{n} \right)^3 - 2 \left(-1 + \frac{3i}{n} \right) \right] \frac{3}{n} \text{ and }$$

$$R_n = \sum_{i=1}^n f(x_i) \Delta x = \sum_{i=1}^n \left[\left(-1 + \frac{3i}{n} \right)^3 - 2 \left(-1 + \frac{3i}{n} \right) \right] \frac{3}{n}.$$

General left and right Riemann sums

After algebraic manipulations, we get

$$L_n = \frac{3}{n} \sum_{i=0}^{n-1} \left(1 + \frac{3}{n}i - \frac{27}{n^2}i^2 + \frac{27}{n^3}i^3 \right) = \frac{3}{n} \sum_{i=0}^{n-1} 1 + \frac{9}{n^2} \sum_{i=0}^{n-1} i - \frac{81}{n^3} \sum_{i=0}^{n-1} i^2 + \frac{81}{n^4} \sum_{i=0}^{n-1} i^3 + \frac{1}{n^4} \sum_{i=0}$$

$$\stackrel{(*)}{=} \frac{3}{n}n + \frac{9}{n^2}\frac{(n-1)n}{2} - \frac{81}{n^3}\frac{(n-1)n(2n-1)}{6} + \frac{81}{n^4}\left(\frac{(n-1)n}{2}\right)^2$$

$$= 3 + \frac{9}{2} \left(1 - \frac{1}{n} \right) - \frac{27}{2} \left(1 - \frac{1}{n} \right) 1 \left(2 - \frac{1}{n} \right) + \frac{81}{4} \left(\left(1 - \frac{1}{n} \right) 1 \right)^2.$$
So $\lim_{n \to \infty} L_n = 3 + \frac{9}{2} - 27 + \frac{81}{4} = \frac{3}{4}.$

So
$$\lim_{n\to\infty} L_n = 3 + \frac{9}{2} - 27 + \frac{81}{4} = \frac{3}{4}$$
.

Similarly,
$$R_n=rac{3}{n}\sum\limits_{i=1}^n\left(1+rac{3}{n}i-rac{27}{n^2}i^2+rac{27}{n^3}i^3
ight)$$
 , and $\lim_{n o\infty}R_n\stackrel{ extbf{(*)}}{=}rac{3}{4}$

In our calculations (*), we used the following formulas:

$$\sum_{i=1}^{n} 1 = n, \quad \sum_{i=1}^{n} i = \frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \quad \sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$

14 / 19

The integral as the limit of Riemann sums

Since
$$\int_a^b f(x)dx = \lim_{n \to \infty} L_n$$
 or $\int_a^b f(x)dx = \lim_{n \to \infty} R_n$, we have

$$\int_{-1}^{2} (x^3 - 2x) dx = \lim_{n \to \infty} \frac{3}{n} \sum_{i=0}^{n-1} \left(1 + \frac{3}{n}i - \frac{27}{n^2}i^2 + \frac{27}{n^3}i^3 \right) = \frac{3}{4} \text{ or }$$

$$\int_{-1}^{2} (x^3 - 2x) dx = \lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left(1 + \frac{3}{n}i - \frac{27}{n^2}i^2 + \frac{27}{n^3}i^3 \right) = \frac{3}{4}.$$

Finally,
$$\int_{-1}^{2} (x^3 - 2x) dx = \frac{3}{4}$$
.

The calculation of definite integrals using Riemann sums is tedious.

A more efficient method of calculation (using the Fundamental Theorem of Calculus) will be given in the next lecture.

Calculation of limits

Example. Calculate the limit $\lim_{n \to \infty} \sum_{i=0}^{n-1} \frac{n-i}{n^2}$.

Solution. We calculate the limit by interpreting it as the limit of a Riemann sum, and expressing the limit of the Riemann sum as an integral.

The sum $\sum\limits_{i=0}^{n-1} rac{n-i}{n^2}$ looks like the **left** Riemann sum $\sum\limits_{i=0}^{n-1} f(x_i) \Delta x$.

That would make $\frac{n-i}{n^2}=f(x_i)\Delta x$, which we can write as $\left(1-\frac{i}{n}\right)\frac{1}{n}=f(x_i)\Delta x$. This gives

$$\Delta x = \frac{b-a}{n} = \frac{1}{n}$$
, $x_i = \frac{i}{n}$, $f(x_i) = 1 - x_i$.

It follows that b-a=1 , $a=x_0=\frac{0}{n}=0$, f(x)=1-x .

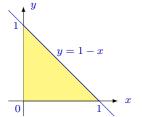
Putting it all together, $a=0,\,b=1,\,f(x)=1-x$ and

$$\lim_{n \to \infty} \sum_{i=0}^{n-1} \frac{n-i}{n^2} = \int_0^1 (1-x) dx.$$

16 / 19

Calculation of limits

Now we evaluate the integral $\int_0^1 (1-x) dx$.



$$\int_0^1 (1-x)dx = \text{Area of triangle} = \frac{1}{2}$$

Finally,
$$\lim_{n\to\infty}\sum_{i=0}^{n-1}\frac{n-i}{n^2}=\int_0^1(1-x)dx=\boxed{\frac{1}{2}}.$$

Summary

Riemann sums may be used for the approximate calculation of definite integrals.

Remember the following formulas:

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} L_n = \lim_{n \to \infty} R_n, \text{ where}$$

$$L_n = \sum\limits_{i=0}^{n-1} f(x_i) \Delta x$$
 is the left Riemann sum,

$$R_n = \sum\limits_{i=1}^n f(x_i) \Delta x$$
 is the right Riemann sum,

$$\Delta x = \frac{b-a}{n} \ \ \text{are subintervals,}$$

 $x_i = a + i\Delta x$ are the subdivision points of [a,b].

18 / 19

Comprehension checkpoint

• Approximate the integral $\int_0^1 e^{x^2} dx$ by the Riemann sums L_2, R_2 and L_4, R_4 . Use a calculator!

Give geometric interpretations of these Riemann sums.

Are the approximations underestimates or overestimates?