Lecture 28

The Definite Integral

Objectives
Indefinite and definite integrals
The definite integral
The definite integral as area
Integral notation
The definite integral: is continuity important?
The definite integral for a non-positive function
Evaluation of integrals as signed areas
Evaluation of integrals as signed areas
Evaluation of integrals as signed areas
The integral of a piecewise continuous function
Properties of the definite integral
Use the properties!
Use the properties!
Summary
Comprehension checkpoint

Objectives

In this lecture we will discuss the definition and properties of the definite integral.

2 / 22

Indefinite and definite integrals

Recall that in calculus there are two kinds of integrals: **indefinite** and **definite**:

The indefinite and definite integrals are **related** by the Fundamental Theorem of Calculus, which we will study soon.

Don't confuse indefinite and definite integrals!

The definite integral

The notion of the definite integral can be explained using the notion of area of a plane figure.

To each plane figure, we associate a real number, called its area, which satisfies four properties called the **axioms of area**: monotonicity, additivity, invariance and normalization.

Understanding the definite integral as a special area helps

to operate easily with properties of the definite integral.

4 / 22

The definite integral as area

Let a, b be real numbers, $a \le b$, and f(x) be a non-negative continuous function defined on [a, b].

Let A be the **area** of the region below the graph y=f(x), above the x-axis, and between the lines x=a, x=b.

Definition. The definite integral of f(x) over the interval [a,b] is

$$\int_{a}^{b} f(x)dx = A$$

f(x) is called the *integrand*, a, b are called the *limits* of integration,

dx is called the *differential*.

Integral notation

Why does the integral sign \int , which we have already used for the general antiderivative, appear here?

The integral sign \int is a "designer's" version of the letter "S" standing for a sum. But which sum?

f(x)dx is the **area** of a narrow strip.

It is called the area element

The total area $\,A\,$ below the graph is obtained when we

sum up infinitely many infinitely "thin" areas.

A= Area under the graph = the infinite sum of "thin" areas $=\int_a^b f(x)dx$

6 / 22

The definite integral: is continuity important?

For a **non-negative continuous** function, the definite integral is defined as the **area** under the graph.

Is the continuity important? Not really, the definition makes sense also for a **piecewise continuous** and **bounded** function:

y=f(x) $\int_a^b f(x)dx=$ Area under the graph.

Is non-negativity important? Not really, the definition will be adjusted to work for functions taking positive and negative values.

The definite integral for a non-positive function

Let f be a piece-wise continuous function.

$$\int_{a}^{b} f(x)dx = A_{1} - A_{2} + A_{3}$$

Definition. The *definite integral of* f(x) *over the interval* [a,b], written $\int_a^b f(x)dx$,

is the **signed** area of the region bounded

by the graph of f, the x-axis, and the lines $x=a,\,x=b$.

The area **above** the x-axis adds to the total, the area below the x-axis **subtracts** from the total.

8 / 22

Evaluation of integrals as signed areas

Example 1. Evaluate the integral $\int_{-2}^{1} 2 dx$ interpreting it as a **signed area**.

Solution. Draw the graph of the integrand f(x) = 2:

Draw the lines x = -2 and x = 1.

Determine the region with signed area

given by the integral.

$$\int_{-2}^{1} 2 \, dx = \text{ Area of } \left(\begin{array}{c} \\ \\ 3 \end{array} \right) = 6 \, .$$

Evaluation of integrals as signed areas

Example 2. Evaluate the integral $\int_{0}^{3} (1-x) dx$ interpreting it as a **signed area**.

Solution. Draw the region between the graph of y=1-x , the x -axis, and the lines x=0 , x=3 :

$$\int_{0}^{3} (1-x) dx = A_{1} - A_{2}$$

$$= \frac{1}{2} \cdot 1 \cdot 1 - \frac{1}{2} \cdot 2 \cdot 2 = \boxed{-\frac{3}{2}}$$

An area is always **non-negative**, a definite integral may be **any** number.

10 / 22

Evaluation of integrals as signed areas

Example 3. Evaluate the integral $\int_{-3}^{3} \sqrt{9-x^2} dx$ interpreting it as a **signed area**.

Solution. To draw the graph of $y=\sqrt{9-x^2}$, observe that $y^2=9-x^2$, that is $x^2+y^2=9$.

Since $-3 \leq x \leq 3$ and $y \geq 0$,

the graph of $y=\sqrt{9-x^2}$ is the upper half of the circle $x^2+y^2=9$.

The integral represents the area between the graph and the x-axis:

$$\int_{-3}^{3} \sqrt{9 - x^2} \, dx = \frac{1}{2} \pi 3^2 = \boxed{\frac{9\pi}{2}}$$

The integral of a piecewise continuous function

Example 4. Evaluate the integral $\int_{-1}^{3} \frac{x^2 - x}{|x - 1|} dx$.

Solution. First, we simplify the integrand:

$$f(x) = \frac{x^2 - x}{|x - 1|} = \frac{x(x - 1)}{|x - 1|} = \begin{cases} x, & \text{if } x > 1\\ -x, & \text{if } x < 1. \end{cases}$$

Note that f(x) is not defined at x = 1

Indicate the limits of integration x=-1, x=3. Determine the area represented by the integral.

$$\int_{x}^{3} \frac{x^{2} - x}{|x - 1|} dx = A_{1} - A_{2} + A_{3} = A_{3} = \frac{1+3}{2} \cdot 2 = \boxed{4}$$

12 / 22

Properties of the definite integral

Properties of the definite integral follow from the properties of area.

1. The integral measures area

If $f \geq 0$ is a piecewise continuous function on [a,b], then

 $\int_a^b f(x) dx = ext{ the area } ext{ of the region}$ below the graph y = f(x) ,

7

and between the lines x = a, x = b.

2. The integral can measure length (only works when integrand is 1)

$$\int_{a}^{b} dx = b - a$$

Properties of the definite integral

3. Linearity with respect to the integrand

$$\int_a^b \big(f(x)+g(x)\big)dx=\int_a^b f(x)dx+\int_a^b g(x)dx$$

$$\int_a^b Cf(x)dx=C\int_a^b f(x)dx \text{ , where } C \text{ is a constant}$$

4. Additivity with respect to the interval on integration

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

$$\uparrow^{y}$$

14 / 22

Properties of the definite integral

5. Monotonicity

If $f(x) \leq g(x)$ on [a,b], then $\int_a^b f(x) dx \leq \int_a^b g(x) dx$

In particular, if $f(x) \geq 0$ on [a,b], then $\int_a^b f(x) dx \geq 0$.

Properties of the definite integral

5. Lower and upper bounds

If $m \le f(x) \le M$ on [a,b] for some constants m and M, then

$$m(b-a) \le \int_a^b f(x)dx \le M(b-a)$$

m(b-a) is the area of the lower rectangle

y=f(x) M(b-a) is the area of the upper rectangle $\int_a^b f(x) dx \ \ {
m is the area of the region}$

The inequality $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$ shows that

the area of the region under the graph is somewhere between the areas of the rectangles.

16 / 22

Properties of the definite integral

6. Symmetry

• If f is **odd** (that is f(-x) = -f(x) for all x) and the interval of integration is symmetric about the origin, then

$$\int_{-a}^{a} f(x)dx = 0$$

• If f is **even** (that is f(-x) = f(x) for all x) and the interval of integration is symmetric about the origin, then

$$\int_{a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx$$

9

Properties of the definite integral

6. Integration over an interval of zero length gives zero:

$$\int_{a}^{a} f(x)dx = 0$$

7. Reversing the limits of integration reserves the sign of the integral:

If
$$b < a$$
 then $\int_a^b f(x)dx = -\int_b^a f(x)dx$

Indeed,
$$0 = \int_b^b f(x)dx = \int_b^a f(x)dx + \int_a^b f(x)dx$$
.

So
$$\int_a^b f(x)dx = -\int_b^a f(x)dx$$
.

18 / 22

Use the properties!

Example 1. Evaluate the integral $\int_{-2}^{2} (3+5x)dx$.

Solution.
$$\int_{-2}^{2} (3+5x)dx = \int_{-2}^{2} 3dx + 5 \int_{-2}^{2} xdx$$
 (by linearity)

$$= 3 \cdot \underbrace{(2 - (-2))}_{\text{length of } [-2,2]} + 5 \cdot 0 \quad \text{(since } f(x) = x \text{ is odd and the interval is symmetric)}$$

$$=3\cdot 4=\boxed{12}$$

Example 2. Evaluate the integral $\int_{-\pi}^{\pi} \frac{\sin^3 x}{1+x^2} dx$.

Solution. The integrand $f(x) = \frac{\sin^3 x}{1 + x^2}$ is odd:

$$f(-x) = \frac{\sin^3(-x)}{1 + (-x)^2} = \frac{(-\sin x)^3}{1 + x^2} = -\frac{\sin x^3}{1 + x^2} = -f(x) \text{ and }$$

the interval $[-\pi,\pi]$ is **symmetric**. Therefore, $\int_{-\pi}^{\pi} \frac{\sin^3 x}{1+x^2} dx = \boxed{0}$.

Use the properties!

Example 3. Find lower and upper bounds for $\int_0^1 e^{-x^2} dx$.

Solution. We have to **estimate** the integral from above and below

$$\underbrace{c}_{\text{lower bound}} \leq \int_0^1 e^{-x^2} dx \leq \underbrace{C}_{\text{upper bound}}$$

by finding a lower bound c and an upper bound C.

Use the fact that e^{-x^2} is monotonic to find c and C. Since $f(x)=e^{-x^2}$ is decreasing on [0,1] ($f'(x)=-2xe^{-x^2}<0$ for x>0),

$$e^{-1} = f(1) < e^{-x^2} < f(0) = 1$$
 for any $x \in [0,1]$. Therefore,

$$e^{-1} \cdot (1-0) \leq \int_0^1 e^{-x^2} dx \leq 1 \cdot (1-0) \text{ , that is } \boxed{e^{-1}} \leq \int_0^1 e^{-x^2} dx \leq \boxed{1}.$$

20 / 22

Summary

In this lecture, we studied

- the definite integral of a function over an intervalas a signed area of a special region
- properties of the definite integral
- evaluation techniques for the definite integral based on understanding the integral as a signed area.

Comprehension checkpoint

- $\bullet \ \, \mathsf{Let} \ \, f(x) = \begin{cases} 1, & \text{if } x < 0 \\ x 1, & \text{if } x \geq 0. \end{cases} \qquad \mathsf{Calculate} \ \, \int_{-2}^4 f(x) \, dx$
- ullet Without calculation of the integrals, explain why $\int_0^1 e^{x^2}\,dx > \int_0^1 \arctan x\,dx$
- Evaluate the integral $\int_{-1}^{1} \frac{x^5 + x}{\cos x} \, dx$