Lecture 14

Derivatives of Trigonometric Functions

Objectives
Derivatives of sine and cosine
Derivatives of tangent and cotangent
Example 1
Example 2
High-order derivatives
Jsing the derivative to calculate limits
Summary
Comprehension checkpoint

Objectives

In this lecture, we

compute derivatives of the trigonometric functions.

Our computation will use vectors.

2 / 10

Derivatives of sine and cosine

Theorem. $\frac{d}{dt}\sin t = \cos t, \ \frac{d}{dt}\cos t = -\sin t$. **Proof.** Consider the unit circle and a point P moving along it with unit speed.

 \overrightarrow{OP} is the position vector of P . Its coordinates depend on the angle t it makes with the $x\text{-axis}\colon$

 $\overrightarrow{OP} = (x(t), y(t))$. By the definition of cosine and sine, $x(t) = \cos t, \ y(t) = \sin t$. The velocity $\overrightarrow{v}(t) = (x'(t), y'(t))$ is tangent to the circle.

So, $\overrightarrow{v}(t) \perp \overrightarrow{OP}$.

Translate $\overrightarrow{v}(t)$ to $\overrightarrow{OP'}$ at the origin: $\overrightarrow{OP'} = \overrightarrow{v}(t)$

 $\overrightarrow{OP'} = (-y(t), x(t))$. Therefore,

$$\left(\frac{d}{dt}\cos t, \frac{d}{dt}\sin t\right) = (x'(t), y'(t)) = \overrightarrow{v}(t) = \overrightarrow{OP'} = (-y(t), x(t)) = (-\sin t, \cos t)$$

So
$$\left| \frac{d}{dt} \cos t = -\sin t \right|$$
 and $\left| \frac{d}{dt} \sin t = \cos t \right|$

Derivatives of tangent and cotangent

Problem. Find the derivative of the functions $y = \tan x$ and $y = \cot x$.

Solution.
$$\frac{d}{dx}\tan x = \frac{d}{dx}\left(\frac{\sin x}{\cos x}\right) = \frac{(\sin x)'\cos x - \sin x(\cos x)'}{\cos^2 x}$$
$$= \frac{\cos x \cos x - \sin x(-\sin x)}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}.$$

$$\frac{d}{dx}\cot x = \frac{d}{dx}\left(\frac{1}{\tan x}\right) = \frac{-(\tan x)'}{\tan^2 x} = \frac{-1/\cos^2 x}{\sin^2 x/\cos^2 x} = -\frac{1}{\sin^2 x}.$$

$$\frac{d}{dx}\tan x = \frac{1}{\cos^2 x}$$

$$\frac{d}{dx}\cot x = -\frac{1}{\sin^2 x}$$

4 / 10

Example 1

Example 1. Differentiate the functions

$$y = \sin(2x)$$
, $y = \cos^2 x$, $y = \cos(x^2)$, $y = \cos^2(x^2)$.

Solution.
$$\frac{d}{dx}\sin(2x) = \cos(2x) \cdot \frac{d}{dx}(2x) = \cos(2x) \cdot (2) = 2\cos(2x)$$
.

$$\frac{d}{dx}\cos^2 x = 2\cos x \cdot \frac{d}{dx}(\cos x) = 2\cos x \cdot (-\sin x) = -2\cos x \sin x = -\sin(2x).$$

use the double angle formula $\sin(2x) = 2\sin x \cos x$

$$\frac{d}{dx}\cos x^2 = -\sin x^2 \cdot \frac{d}{dx}(x^2) = -\sin x^2 \cdot (2x) = -2x\sin x^2.$$

$$\begin{split} \frac{d}{dx}\cos^2(x^2) &= 2\cos(x^2) \cdot \frac{d}{dx}\cos(x^2) \\ &= 2\cos(x^2)(-\sin(x^2)) \cdot \frac{d}{dx}x^2 = 2\cos(x^2)(-\sin(x^2))(2x) \\ &= -4x\cos(x^2)\sin(x^2) = -2x\sin(2x^2). \end{split}$$

Example 2

Example 2. Find all points where the graph of the function $f(x) = e^x \cos x$ has a horizontal tangent line.

Solution. The slope of a **horizontal** line is equal to 0.

Since the slope of the tangent line at a point x is equal to f'(x),

we have to find the points x for which f'(x) = 0.

$$f'(x) = \frac{d}{dx}(e^x \cos x) = \frac{d}{dx}(e^x) \cos x + e^x \frac{d}{dx}(\cos x) = e^x \cos x - e^x \sin x$$
$$= (\cos x - \sin x)e^x.$$

Solve the equation f'(x) = 0:

 $(\cos x - \sin x)e^x = 0 \iff \cos x = \sin x \iff \tan x = 1 \iff x = \frac{\pi}{4} + \pi k, k \in \mathbb{Z}.$

Answer: The graph has horizontal tangent lines

at points $x = \frac{\pi}{4} + \pi k, k \in \mathbb{Z}$.

6 / 10

High-order derivatives

Example 3. Find 2019 th derivative of $y = \sin x$.

Solution.

$$\sin x \xrightarrow{\frac{d}{dx}} \cos x \xrightarrow{\frac{d}{dx}} -\sin x \xrightarrow{\frac{d}{dx}} -\cos x \xrightarrow{\frac{d}{dx}} \sin x \xrightarrow{\frac{d}{dx}} \cdots$$

cycle of length 4

Divide 2019 by 4 with a remainder: $2019 = 4 \cdot 504 + 3$.

Therefore, $(\sin x)^{(2019)} = -\cos x$.

Example 4. Show that $y = \cos x$ is a solution of the differential equation y'' + y = 0.

Solution. We have to show that $y = \cos x$ satisfies the equation y'' + y = 0.

$$y' = (\cos x)' = -\sin x$$
, $y'' = (-\sin x)' = -\cos x$. Therefore,

 $-\cos x + \cos x = 0$, as required.

Using the derivative to calculate limits

Problem. Calculate the limit $\lim_{x\to 0} \frac{\sin x}{x}$.

Solution.
$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{h \to 0} \frac{\sin h}{h} = \lim_{h \to 0} \frac{\sin(0+h) - \sin 0}{h} = \frac{d}{dx} (\sin x) \Big|_{x=0} = \cos x \Big|_{x=0} = \cos 0 = 1.$$

8 / 10

Summary

In this lecture, we learned the derivatives of trigonometric functions. Here they are, for reference, and you should memorize them:

$$\frac{d}{dx}\sin x = \cos x$$

$$\frac{d}{dx}\cos x = -\sin x$$

$$\frac{d}{dx}\tan x = \frac{1}{\cos^2 x}$$

$$\frac{d}{dx}\cot x = -\frac{1}{\sin^2 x}$$

Comprehension checkpoint

• Find the derivatives of the following functions:

$$y = \cos(2x^3 + 1), \ y = \sin^3(2x), \ y = \tan\frac{1}{x}, \ y = \cot(\ln x), \ y = \sin(\cos x).$$

- \bullet Find all the points where the graph of the function $\,y=\frac{1}{\cos x}\,$ has a horizontal tangent line.
- \bullet Represent the limit $\lim_{x\to 0}\frac{\cos x-1}{x}$ as a $\mbox{derivative}$ and calculate it.