Lecture 7

Calculation of Limits

Jbjectives	
Direct substitution	3
Continuity	4
When direct substitution does not work	5
When direct substitution does not work	6
Algebraic transformations	7
Algebraic transformations for limit calculations	8
Algebraic transformations for limit calculation	9
The squeeze theorem	. 10
Limit calculations using the squeeze theorem	. 11
imits calculation using squeeze theorem	. 12
The squeeze theorem: illustration	. 13
Bummary	. 14
Comprehension checkpoint	15

Objectives

In this lecture, we will discuss various techniques for the calculation of limits:

- Direct substitution
- Algebraic transformations
- The squeeze theorem

2 / 15

Direct substitution

Direct substitution is used to calculate the limit of a function

at a point where the function is **continuous**.

In this case, the limit is equal to the value of the function:

$$\lim_{x \to a} f(x) = f(a)$$

Remember that elementary functions are continuous where defined.

Example 1.
$$\lim_{x\to 0} \frac{3x-1}{x^2+1} = \frac{3\cdot 0-1}{0^2+1} = -1$$

$$\lim_{x \to \pi} \frac{\cos x}{\sin^2 x - 1} = \frac{\cos \pi}{\sin^2 \pi - 1} = \frac{-1}{(0^2) - 1} = 1$$

$$\lim_{x \to 1} e^{x \ln x} = e^{1 \cdot \ln 1} = e^0 = 1$$

$$\lim_{x \to -1} \frac{|x+1|}{x-1} = \frac{|-1+1|}{-1-1} = \frac{|0|}{-2} = 0$$

Continuity

Example 2. Find the intervals of continuity of the function $f(x)=\frac{x}{\sin x}$. Evaluate $\lim_{x\to\pi/2}\frac{x}{\sin x}$.

Solution. f is an elementary function and it is continuous on its domain.

f is defined for all x where $\sin x \neq 0$, that is for $x \neq n\pi$, $n \in \mathbb{Z}$.

Therefore, the domain of f is the union of infinitely many open intervals:

$$\ldots \cup (-2\pi, -\pi) \cup (-\pi, 0) \cup (0, \pi) \cup (\pi, 2\pi) \cup \ldots = \bigcup_{n \in \mathbb{Z}} (n\pi, (n+1)\pi).$$

Therefore, f is continuous on $\bigcup_{n\in\mathbb{Z}} \left(n\pi,(n+1)\pi\right)$.

Since f is continuous at $x=\pi/2$, the limit is calculated by

direct substitution: $\lim_{x \to \pi/2} \frac{x}{\sin x} = \frac{\pi/2}{\sin \pi/2} = \frac{\pi/2}{1} = \frac{\pi}{2}$.

4 / 15

When direct substitution does not work

Example 1. Find $\lim_{x\to 0} \frac{|x|}{x}$.

Solution. Direct substitution of 0 into $\frac{|x|}{x}$ makes **no** sense: $\frac{|0|}{0}$ is not defined.

Let us investigate the behavior of the function $y = \frac{|x|}{x}$ near 0.

Since
$$|x|=\left\{ egin{array}{ll} x,\,\,x\geq0 \\ -x,\,\,x<0, \end{array}
ight.$$
 we have $\frac{|x|}{x}=\left\{ egin{array}{ll} \dfrac{x}{x}=1,\quad x>0 \\ \dfrac{-x}{x}=-1,\,\,x<0. \end{array}
ight.$

$$\lim_{x \to 0^+} \frac{y = \frac{|x|}{x}}{x}$$

$$\lim_{x \to 0^+} \frac{|x|}{x} = 1, \quad \lim_{x \to 0^-} \frac{|x|}{x} = -1.$$
 Therefore,
$$\lim_{x \to 0} \frac{|x|}{x}$$
 does not exist.

When direct substitution does not work

Example 2. Calculate $\lim_{x\to 1} \frac{x^2-1}{x-1}$.

Solution. Direct substitution of x=1 into $\frac{x^2-1}{x-1}$ does not work: $\frac{1^2-1}{1-1}=\frac{0}{0}$ is undefined.

The quotient rule for limits $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \frac{\lim_{x \to 1} (x^2 - 1)}{\lim_{x \to 1} (x - 1)}$ does not work either,

since the limit in the denominator is 0: $\lim_{x\to 1}(x-1)=0$

What should we do?

6 / 15

Algebraic transformations

Let's do some algebra:

$$\frac{x^2-1}{x-1} = \frac{(x-1)(x+1)}{x-1} = x+1, \text{ if } x \neq 1.$$

We have two functions, $f(x) = \frac{x^2 - 1}{x - 1}$ and g(x) = x + 1.

4

Since f(x)=g(x) for all $x \neq 1$, we may use the **substitution of a function** rule:

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1} (x + 1) = 1 + 1 = 2.$$

Algebraic transformations for limit calculations

Rationalizing can be used to clear the denominator.

Example 1. Evaluate $\lim_{x\to 0} \frac{\sqrt{x^2+9}-3}{x^2}$.

Solution. Direct substitution of x=0 is not good: $\frac{\sqrt{0^2+9}-3}{0^2}=\frac{3-3}{0}=\frac{0}{0}$.

Here we can rationalize the numerator:

$$\lim_{x \to 0} \frac{\sqrt{x^2 + 9} - 3}{x^2} = \lim_{x \to 0} \frac{(\sqrt{x^2 + 9} - 3)(\sqrt{x^2 + 9} + 3)}{x^2(\sqrt{x^2 + 9} + 3)}$$

$$= \lim_{x \to 0} \frac{(\sqrt{x^2 + 9})^2 - 3^2}{x^2(\sqrt{x^2 + 9} + 3)} = \lim_{x \to 0} \frac{(x^2 + 9) - 9}{x^2(\sqrt{x^2 + 9} + 3)} = \lim_{x \to 0} \frac{x^2}{x^2(\sqrt{x^2 + 9} + 3)}$$

$$= \lim_{x \to 0} \frac{1}{\sqrt{x^2 + 9} + 3} = \frac{1}{\sqrt{0^2 + 9} + 3} = \frac{1}{3 + 3} = \frac{1}{6}.$$

8 / 15

Algebraic transformations for limit calculation

Example 2. Evaluate $\lim_{x\to 2} \frac{x^4-16}{x^3-8}$.

Solution. Direct substitution does not work: $\lim_{x\to 2} \frac{x^4-16}{x^3-8} = \frac{2^4-16}{2^3-8} = \frac{0}{0}$

Try algebra: $x^4 - 16 = (x^2)^2 - 4^2 = (x^2 - 4)(x^2 + 4) = (x - 2)(x + 2)(x^2 + 4)$.

$$x^3 - 8 = x^3 - 2^3 = (x - 2)(x^2 + 2x + 4)$$

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

So in this case we may **simplify** the expression before taking the limit:

$$\lim_{x \to 2} \frac{x^4 - 16}{x^3 - 8} = \lim_{x \to 2} \frac{(x - 2)(x + 2)(x^2 + 4)}{(x - 2)(x^2 + 2x + 4)} = \lim_{x \to 2} \frac{\cancel{(x - 2)}(x + 2)(x^2 + 4)}{\cancel{(x - 2)}(x^2 + 2x + 4)}$$

$$\lim_{x \to 2} \frac{(x+2)(x^2+4)}{x^2+2x+4} = \frac{(2+2)(2^2+4)}{2^2+2\cdot 2+4} = \frac{4\cdot 8}{4\cdot 3} = \frac{8}{3}$$

The squeeze theorem

Let $g(x) \le f(x) \le h(x)$ for all x near a (except possibly x = a itself).

If $\lim_{x\to a}g(x)=\lim_{x\to a}h(x)=L$, then $\lim_{x\to a}f(x)=L$.

Other names for the squeeze theorem:

the sandwich theorem

the two policemen theorem

10 / 15

Limit calculations using the squeeze theorem

Example. Calculate $\lim_{x\to 0} x^2 \sin\left(\frac{1}{x}\right)$.

Solution. The product rule $\lim_{x\to 0} x^2 \sin\left(\frac{1}{x}\right) = \lim_{x\to 0} x^2 \cdot \lim_{x\to 0} \sin\left(\frac{1}{x}\right)$

is **not** applicable, since $\lim_{x\to 0} \sin\left(\frac{1}{x}\right)$ does not exist:

Limits calculation using squeeze theorem

Let us estimate the function $x^2 \sin\left(\frac{1}{x}\right)$ from below and from above, that is, find functions g and h whose limits we know such that

$$g(x) \le x^2 \sin\left(\frac{1}{x}\right) \le h(x)$$
.

We know that $-1 \le \sin\left(\frac{1}{x}\right) \le 1$ any x . Multiply all terms of this inequality by x^2 (note that $x^2>0$):

$$-x^2 \le x^2 \sin\left(\frac{1}{x}\right) \le x^2 \ . \ \text{So, taking} \ g(x) = -x^2 \ , \ h(x) = x^2 \ .$$

$$x \to 0 \qquad \qquad \downarrow x \to 0 \qquad \qquad \downarrow x \to 0$$

$$0 \qquad 0 \qquad 0$$

The squeeze theorem implies that $\lim_{x\to 0} x^2 \sin\left(\frac{1}{x}\right) = 0.$

12 / 15

The squeeze theorem: illustration

The graph of the function $f(x) = x^2 \sin\left(\frac{1}{x}\right)$

is **squeezed** between the graphs of $g(x) = -x^2$ and $h(x) = x^2$:

Summary

In this lecture, we learned how to calculate limits by

- direct substitution
- algebraic transformations leading to clearing the denominator
- squeeze theorem

14 / 15

Comprehension checkpoint

- Calculate the limit $\lim_{x \to 3} \frac{\sin(x^2 9)}{\tan x}$
- $\bullet \ \, \text{Calculate the limit} \ \, \lim_{x \to 4} \frac{\sqrt{x} 2}{x 4} \\$
- Let $\sqrt{4-2x^2} \leq f(x) \leq \sqrt{4-x^2}$ for $-1 \leq x \leq 1$. Find $\lim_{x \to 0} f(x)$.