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Objectives

In this lecture, we will discuss various techniques for the calculation of limits:

e Direct substitution
e Algebraic transformations

e The squeeze theorem
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Direct substitution

Direct substitution is used to calculate the limit of a function

at a point where the function is continuous.

In this case, the limit is equal to the value of the function:

lim f(2) = f(a)

Remember that elementary functions are continuous where defined.
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Continuity
X

Example 2. Find the intervals of continuity of the function f(z) = —.
sin

Evaluate lim — .
z—/2 sinx

Solution. f is an elementary function and it is continuous on its domain.
f is defined for all  where sinx # 0, thatis for x #nnr, n € Z.

O 1% O x

—27 - 6 ™ 21

Therefore, the domain of f is the union of infinitely many open intervals:

U(=2m,—m) U (=7, 0) U (0,m) U (m,2m)U...= |J (nm, (n+1)m) .
nez
Therefore, f is continuous on |J (nm, (n+1)7).
nez
Since f is continuous at x = /2, the limit is calculated by
direct substitution: lim -~ — _7T/2 = /2 S
e—7/2 sinx  sinw/2 1 2
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When direct substitution does not work
Example 1. Find lim |i
z—0 X
T 0 .
Solution. Direct substitution of 0 into u makes no sense: % is not defined.
x
Let us investigate the behavior of the function y = m near 0.
x
x
Since |z| = we have — = ¢ 7
—z, x <0, z —=-1,z<0.
T b
e o o
! lim =1, lim — =—1.
z—0t T z—0- T
% -1 .o .
Therefore, lim — does not exist.
z—0 X
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When direct substitution does not work

2 —1
Example 2. Calculate lim )
z—1 x—1

2 2
— 1< -1 0 .
Solution. Direct substitution of £ =1 into z 7 does not work: T 1 = 0 is undefined.
1‘ _ _
2_ 1 lim (2 1)
The quotient rule for limits lim = 2zl does not work either,
a—1 x—1 hml(xfl)
Tr—r

since the limit in the denominator is 0: liml(gc -1)=0
T—r

What should we do?
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Algebraic transformations
Let's do some algebra:
-1 -1 1
r :(x )@ + ):m+1,ifm761.
z—1 z—1
) 2 -1
We have two functions, f(z) = and g(x) =z +1.
1‘ J—
f(x) is not defined for x =1, and f(z) = g(z) forall = #1:
Since f(x) =g(x) forall z # 1, we may use the substitution of a function rule:
2
—1
lim &= = lim(z+1)=1+1=2.
z—1 T — z—1
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Algebraic transformations for limit calculations

Rationalizing can be used to clear the denominator.

/72 _
Example 1. Evaluate lim %93
z—0 x
V02+9-3 3-3 0
Solution. Direct substitution of x = 0 is not good: 40_2 =0 0
Here we can rationalize the numerator:
. \/ﬂc2 . (Va2 +9-3) (Va2 +9+3)
lim = lim
x—0 x—0 1-2(\/‘1/2 + + 3)
e (Vo2 +9)? — 32 i (22 4+9) -9 i z?
— = ]l1m = 111m
z—0 xQ(\/xQ 9+3) =0 22(Va2+9+3) 220 22(Va?2 49+ 3)
~ i 1 1 1
= 111m = = —.
250 \/2—+3 V02+9+3 3+3 6
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Algebraic transformations for limit calculation
1-16
Example 2. Evaluate lim x 3
r—2 o — 8
. - zt—16 21—-16 0
Solution. Direct substitution does not work: lim — = =-— O
=2 13 — 8 23 — 8 0
Try algebra: 2% — 16 = (22)2 — 42 = (22 —4)(2® + 4) = (v — 2)(z + 2)(z? + 4).
3 -8=2%-23=(z—2)(z? + 27 +4)
= g% — b3 = (a—b)(a® + ab+ b?)
So in this case we may simplify the expression before taking the limit:
2t —16 . (z—2)(x+2)(2% +4) . (2T (z +2) (22 + 4)
lim ———— = lim = lim
a2 13 —8 152 (x—2)(22+2x+4) o2 (2—2)(2? 4 2z +4)
(z+2)(x*+4) (2+2)(22+4) 4-8 8
im = = -2
=2 124 2x+4 224+2.2+4 4-3 3
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The squeeze theorem
Let g(x) < f(x) < h(x) for all x near a (except possibly = = a itself).

If lim g(z) = lim h(z) = L, then lim f(z) = L.
T—a T—a T—a

near r = a Y
y = h(z)

L y = f(z)

=g(z)

Other names for the squeeze theorem:

the sandwich theorem

the two policemen theorem
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Limit calculations using the squeeze theorem
1
Example. Calculate lim z?sin (—) )
z—0 T
. . 2 . 1 . 2 . . 1
Solution. The product rule lim z“sin [ — | = lim z* - lim sin [ —
z—0 xT z—0 z—0 T
. . . .. (1 .
is not applicable, since lim sin [ — | does not exist:
z—0 T
y
y = sin —
x
x
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Limits calculation using squeeze theorem

. 1
2gin [ = | from below and from above,
X

that is, find functions g and h whose limits we know such that

g(z) < #?sin (1> < ().

x

Let us estimate the function z

1
We know that —1 <sin <—> <1anyz.
T

Multiply all terms of this inequality by x? (note that x? > 0):

1
—x? < 2?sin (—) < 2?%. So, taking g(x) = —22, h(z) = 22.

x
T — Ol T % 0 lx —0
0 0 0
N . 9 . (1
The squeeze theorem implies that lim z“sin | — | = 0.
x—0 X
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The squeeze theorem: illustration .
The graph of the function f(z) = 2% sin | —
x
is squeezed between the graphs of g(z) = —2? and h(z) = 22:
y
X
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Summary

In this lecture, we learned how to calculate limits by

e direct substitution

e algebraic transformations leading to clearing the denominator

e squeeze theorem
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Comprehension checkpoint

. 2
.. .. sin(xz*—9
e Calculate the limit lim ¥
x—3 tan x

- — 2
e Calculate the limit lim Vi
z—4 1 —4

o let V4 —222< f(z) <v4—22 for =1 <z <1. Find lil%f(x).
T—
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