## Lecture 4

# Elementary Functions. Part 2

| Objectives                         |
|------------------------------------|
| Trigonometric functions: sine      |
| Trigonometric functions: cosine    |
| Trigonometric functions: tangent   |
| Trigonometric functions: cotangent |
| Inverse functions                  |
| Warning about notations            |
| Examples of invertible functions   |
| The graph of the inverse function  |
| The graph of the inverse function  |
| The graph of the inverse function  |
| Which functions have an inverse?   |
| Monotonic functions                |
| Monotonic functions are invertible |
| Summary                            |
| Comprehension checkpoint           |

## **Objectives**

What are elementary functions?

Power, exponential, logarithmic, trigonometric, inverse trigonometric functions and their sums, differences, products, quotients, and compositions.

In this lecture, we review **trigonometric functions**  $(y = \sin x, y = \cos x, y = \tan x, y = \cot x)$ ,

Also, we give the definition of an inverse function and discuss which functions have an inverse.

2 / 17

## Trigonometric functions: sine

 $y = \sin x$ 



Domain: R

Range: [-1, 1]

Periodicity:  $\sin(x+2\pi n)=\sin x$  for any integer n and any real x.

Symmetry:  $y = \sin x$  is an **odd** function:  $\sin(-x) = -\sin x$  for any x.

The graph of  $y = \sin x$  is symmetric about the origin.

## Trigonometric functions: cosine

 $y = \cos x$ 



Domain: R

Range: [-1,1]

Periodicity:  $\cos(x+2\pi n)=\cos x$  for any integer n and any real x.

Symmetry:  $y = \cos x$  is an **even** function:  $\cos(-x) = \cos x$  for any x.

The graph of  $y = \cos x$  is symmetric about the y-axis.

Cosine and sine are closely related:  $\cos x = \sin \left(x + \frac{\pi}{2}\right)$ .

4 / 17

## Trigonometric functions: tangent

 $y = \tan x \left( \tan x = \frac{\sin x}{\cos x} \right)$ 



Domain:  $\mathbb{R} \smallsetminus \left\{ \frac{\pi}{2} + \pi n \right\}$  , where n is an integer. Range:  $(-\infty, \infty)$ 

Periodicity:  $tan(x + \pi n) = tan x$  for any integer n.

Symmetry:  $y = \tan x$  is an **odd** function:  $\tan(-x) = -\tan x$  for any x in the domain.

The graph of  $y = \tan x$  is symmetric about the origin.

## Trigonometric functions: cotangent

$$y = \cot x \ \left(\cot x = \frac{\cos x}{\sin x}\right)$$



Domain:  $\mathbb{R} \smallsetminus \{\pi n\}$  , where n is an integer. Range:  $(-\infty,\infty)$ 

Periodicity:  $\cot(x + \pi n) = \cot x$  for any integer n and any real x.

Symmetry:  $y = \cot x$  is an **odd** function:  $\cot(-x) = -\cot x$  for any x in the domain.

The graph of  $y = \cot x$  is symmetric about the origin.

6 / 17

#### **Inverse functions**

**Definition.** A function  $f: D \to R$  with domain D and range R is called *invertible* if there exists a function  $f^{-1}: R \to D$ ,

with domain R and range D, which has the following property:

$$(f^{-1}\circ f)(x)=x$$
 for any  $x\in D$  and  $(f\circ f^{-1})(y)=y$  for any  $y\in R$  .

The function  $f^{-1}$  is called the *inverse* of f.



If y = f(x) is invertible, then

$$x = (f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y).$$

If  $f^{-1}$  is an inverse for f, then  $y = f(x) \iff x = f^{-1}(y)$ .

**Remember:**  $f^{-1}(f(x)) = x$  for any  $x \in D$  and

 $f(f^{-1}(y)) = y$  for any  $y \in R$ .

The inverse function is unique (if it exists).

## Warning about notations

We just discussed the notion of inverse function. A function inverse for f is denoted by  $f^{-1}$ .

Also,  $f^{-1}$  denotes the reciprocal of f:  $f^{-1} = \frac{1}{f}$ .

Do not confuse the notation  $f^{-1}$  for the inverse function and the notation  $f^{-1}=\frac{1}{f}$  for the reciprocal.

As a rule, the meaning of  $f^{-1}$  is clear from the context.

8 / 17

#### **Examples of invertible functions**

**Example 1.** Let  $f: \mathbb{R} \to \mathbb{R}$  be the function defined by  $f(x) = x^3$ .

f is invertible, and its inverse is  $f^{-1}:\mathbb{R}\to\mathbb{R}$  given by  $f^{-1}(y)=\sqrt[3]{y}$ .

Indeed,  $f^{-1}(f(x))=f^{-1}(x^3)=\sqrt[3]{x^3}=x$  for any x, and

$$f(f^{-1}(y)) = f(\sqrt[3]{y}) = (\sqrt[3]{y})^3 = y \text{ for any } y.$$

**Example 2.** Let  $f: \mathbb{R} \to \mathbb{R}$  be the function defined by f(x) = 3x - 2. Find the inverse of f.

**Solution.** Let y=3x-2. To find the inverse, we have to solve this equation for x in terms of y.

$$y = 3x - 2 \iff y + 2 = 3x \iff \frac{y + 2}{3} = x \iff x = \frac{1}{3}y + \frac{2}{3}.$$

Therefore, the inverse of f is  $f^{-1}:\mathbb{R}\to\mathbb{R}$  given by  $f^{-1}(y)=\frac{1}{3}y+\frac{2}{3}$  .

## The graph of the inverse function

How do we draw the graph of  $f^{-1}$ , if we know the graph of f?

Since  $y=f(x) \iff x=f^{-1}(y)$ , to draw the graph of  $f^{-1}$  in the xy-plane we have to swap the variables in  $x=f^{-1}(y)$ :

$$x = f^{-1}(y)$$
 becomes  $y = f^{-1}(x)$ 

The swap corresponds to the reflection in the line y=x .

Therefore, the graph of  $y = f^{-1}(x)$  is obtained from the graph of y = f(x)

by the **reflection** in the line y = x.

10 / 17

## The graph of the inverse function

**Example 1.** Draw the graphs of the function  $f(x) = x^3$  and its inverse

Solution.

in the same coordinate plane.



## The graph of the inverse function

**Example 2.** Draw the graphs of the function f(x) = 3x - 2 and its inverse

Solution.

in the same coordinate plane.



12 / 17

## Which functions have an inverse?

If the function  $\,f:D o R\,$  has inverse  $\,f^{-1}:R o D$  ,

then for any  $y \in R$  there exists a **unique**  $x \in D$  such that  $x = f^{-1}(y)$ .

Graphically, this means that **any** horizontal line y = constant

intersects the graph of y = f(x) at most once.

This gives the so called *horizontal line test*, used to check if a function is invertible.



this function is invertible



this function is not invertible

#### Monotonic functions

**Definition.** A function is called *monotonic* on an interval if

it is either strictly increasing on that interval, or strictly decreasing on that interval.

**Example 1.**  $f(x) = x^2$  is monotonic on  $(-\infty, 0]$  (it is strictly decreasing there), and on  $[0, \infty)$  (it is strictly increasing there).

It is **not** monotonic on  $(-\infty, \infty)$ .



14 / 17

#### Monotonic functions are invertible

**Theorem.** If a function is monotonic on an interval, then it is invertible on that interval.

**Proof.** Assume that f is strictly increasing on an interval I.

(For a strictly decreasing function the reasoning is similar.)

Take any  $x_1, \, x_2 \in I$  . If  $x_1 \neq x_2$  , then  $x_1 < x_2$  or  $x_1 > x_2$  .

In case  $x_1 < x_2$ , we have  $f(x_1) < f(x_2)$ .

In case  $x_1 > x_2$ , we have  $f(x_1) > f(x_2)$ .

In either case,  $f(x_1) \neq f(x_2)$ .

This means that for different values of the variable, f takes different values:

$$x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$
 for all  $x_1, x_2 \in I$ .

Let  $R = \{f(x) \mid x \in I\}$  be the range of f.

Since f takes different values for different values of the variable,

for each  $y \in R$  there exists a **unique**  $x \in I$  such that y = f(x).

This means that there exists an inverse function  $f^{-1}: R \to I$  .

## **Summary**

In this lecture, we have gone over the following:

• trigonometric functions

 $y = \sin x, \ y = \cos x, \ t = \tan x, \ y = \cot x$  and their domains, ranges and graphs

- the notion of an inverse function
- ullet the graphs of a function and its inverse are symmetric about the line y=x
- monotonic functions are invertible

16 / 17

## Comprehension checkpoint

- Is it true that  $\sin(x+\pi) = \sin x$ ?
- Is it true that  $\tan(x+2\pi) = \tan x$ ?
- ullet How does the graph of  $y = \tan x$  look like?
- Explain why the functions y=2x+1 and  $x=\frac{1}{2}y-\frac{1}{2}$  are inverse to each other.
- Which functions are called monotonic?