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Objectives

What are elementary functions?

Power, exponential, logarithmic, trigonometric, inverse trigonometric functions

and their sums, differences, products, quotients, and compositions.

In this lecture, we review trigonometric functions (y = sinxz, y = cosz, y =tanz, y = cotx),

Also, we give the definition of an inverse function and discuss which functions have an inverse.
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Trigonometric functions: sine
y =sinz
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Domain: R
Range: [—1,1]
Periodicity: sin(x + 27n) = sinz for any integer n and any real z.
Symmetry: y = sinz is an odd function: sin(—x) = —sinz for any x.
The graph of y = sinz is symmetric about the origin.
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Trigonometric functions: cosine

Y = COS T
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Domain: R
Range: [—1,1]
Periodicity: cos(z + 27mn) = cosx for any integer n and any real x.
Symmetry: y = cosx is an even function: cos(—x) = cosx for any z.
The graph of y = cosx is symmetric about the y-axis.

. . . m

Cosine and sine are closely related: cosz = sin (x + 5) .
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Trigonometric functions: tangent
sin x
y = tanx (tanx: )
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Domain: R~ {5 + ﬂn} , where n is an integer.  Range: (—o0,0)
Periodicity: tan(z 4+ 7n) = tanz for any integer n.
Symmetry: y = tanx is an odd function: tan(—xz) = —tanaz for any x in the domain.
The graph of y = tanz is symmetric about the origin.
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Trigonometric functions: cotangent
cos T
y =cotx (cot €r = — )
sinx
Y y =cotx
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Domain: R~ {mn}, where n is an integer.  Range: (—o0,0)
Periodicity: cot(x + 7n) = cotx for any integer n and any real z.
Symmetry: y = cotx is an odd function: cot(—x) = —cota for any z in the domain.
The graph of y = cotx is symmetric about the origin.
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Inverse functions

Definition. A function f: D — R with domain D and range R is called invertible if there exists a
function f~': R — D,
with domain R and range D, which has the following property:

(flof)x)==a forany z € D and (fo f~H(y) =y forany y € R.

The function f~! is called the inverse of f.

D R
/f\A If y= f(x) is invertible, then

Te >y z= (o f)=) =) =F""(y)
‘\f—l/

If =% is aninverse for f,then y= f(z) <= = f"(y).
Remember: f~!(f(z)) =z forany z € D and

F(f7Hy)) =y forany y € R.
The inverse function is unique (if it exists).
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Warning about notations

/N The notation f~! is used in two different meanings.

We just discussed the notion of inverse function. A function inverse for f is denoted by f~!.

Also, f~! denotes the reciprocal of f: f='=—.

~| =

Do not confuse the notation f~! for the inverse function

: 1 .
and the notation f~! = = for the reciprocal.

f

As a rule, the meaning of f~! is clear from the context.
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Examples of invertible functions
Example 1. Let f:R — R be the function defined by f(z) = 3.
f is invertible, and its inverse is f~!:R — R given by f~!(y) = ¥/y.
Indeed, f~1(f(z)) = f1(a?) = Va3 =z for any z, and

FU W) = F() = (¥9)* =y for any y.
Example 2. Let f:R — R be the function defined by f(z) =3z —2.
Find the inverse of f.

Solution. Let y = 3x — 2. To find the inverse, we have to solve this equation for = in terms of .

2 12
y=3r-2 <= y+2=3r %:w = r=gyt g

1 2
Therefore, the inverse of f is f~':R — R given by f~1(y) = 3Y + 3
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The graph of the inverse function
How do we draw the graph of f~!, if we know the graph of f?

Since y = f(r) <= z = f~!(y), to draw the graph of f~! in the xy-plane
we have to swap the variables in = = f~1(y):

x=f"1(y)
The swap corresponds to the reflection in the line y = x.

Therefore, the graph of y = f~!(z) is obtained from the graph of y = f(z)

becomes y = f~!(z)

by the reflection in the line y = x .
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The graph of the inverse function

Example 1. Draw the graphs of the function f(x) = 2® and its inverse

Solution.

in the same coordinate plane.
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The graph of the inverse function

Example 2. Draw the graphs of the function f(x) =3z — 2 and its inverse

. in the same coordinate plane.
Solution.

y=3x—2
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Which functions have an inverse?

If the function f: D — R hasinverse f~': R — D,
then for any y € R there exists a unique = € D such that = = f~1(y).

Graphically, this means that any horizontal line y = constant
intersects the graph of y = f(z) at most once.

This gives the so called horizontal line test, used to check if a function is invertible.

Ya Y
/ /./\__\\ ,/ -
/7
this function is invertible this function is not invertible
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Monotonic functions

Definition. A function is called monotonic on an interval if
it is either strictly increasing on that interval, or strictly decreasing on that interval.

2 is monotonic on (—o0,0] (it is strictly decreasing there),

and on [0,00) (it is strictly increasing there).

Example 1. f(z) ==z

It is not monotonic on (—o0, 00) .
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Monotonic functions are invertible

Theorem. If a function is monotonic on an interval, then it is invertible on that interval.

Proof. Assume that f is strictly increasing on an interval I.

(For a strictly decreasing function the reasoning is similar.)

Take any z1, xo € I . If 1 # xo, then z1 < x5 or z1 > 2.

In case 21 < za, we have f(z1) < f(z2).

In case x1 > za, we have f(z1) > f(z2).

In either case, f(x1) # f(z2).

This means that for different values of the variable, f takes different values:
x1 # o = f(x1) # f(x2) for all zq, z9 € 1.

Let R={f(z)|x € I} be the range of f.
Since f takes different values for different values of the variable,
for each y € R there exists a unique x € I such that y = f(x).

This means that there exists an inverse function f~': R — I.
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Summary

In this lecture, we have gone over the following:

e trigonometric functions

y=sinz, y =cosz, t =tanz, y = cotz and their domains, ranges and graphs
e the notion of an inverse function

e the graphs of a function and its inverse are symmetric about the line y =«

e monotonic functions are invertible
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Comprehension checkpoint
e s it true that sin(z +7) =sinx?
o Is it true that tan(z + 27) =tanx?
e How does the graph of y = tanx look like?

1 1

e Explain why the functions y =2x + 1 and z = V=3
are inverse to each other.
e Which functions are called monotonic?
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