Lecture 3

Elementary Functions. Part 1

Objectives
Which functions are called elementary
Power functions
Power functions $y = x^n \dots \dots$
All together
Power functions $y = \frac{1}{x^n} = x^{-n}$
Power functions $y = \sqrt[n]{x} = x^{1/n}$
$y=x^n$ all together
Polynomials
Quadratic functions
How to draw a parabola
Rational functions
Exponential functions
The graphs of exponential functions
Exponential functions $y=a^x$ all together
The laws of exponents (reminder)
Graphing exponential functions
The number e
Summary
Comprehension checkpoint

Objectives

In the next three lectures, we will discuss the class of elementary functions.

This lecture is devoted to

- power functions
- polynomials
- rational functions
- exponential functions.

2 / 21

Which functions are called elementary

In our calculus course, we are going to deal mostly with *elementary functions*.

They are

```
power functions (x^2, \sqrt{x}, x^{1/3}, ...), exponential functions (2^x, \pi^x, e^x, ...), logarithmic functions (\ln x, \log_2 x, ...), trigonometric functions (\sin x, \cos x, \tan x, ...), inverse trigonometric functions (\arcsin x, \arctan x, ...)
```

and their sums, differences, products, quotients, and compositions.

For example,

$$f(x) = \frac{\arcsin\sqrt{x^2 - 3}}{\ln(x^4 + 5) - \tan e^{\cos x}} \ \text{is an elementary function}.$$

There are many non-elementary functions, for example

$$f(x) = \int\limits_0^x rac{\sin t}{t} \, dt$$
 is **not** an elementary function.

Power functions

Definition. A *power* function is a function of the form $f(x) = x^a$, where a is a given constant.

For example, $y=x,\ y=x^5,\ y=\sqrt[3]{x}=x^{1/3},\ y=x^{2/3}$ are power functions.

In a power function $f(x) = x^a$, the base x is a variable, and the exponent a is a constant.

The appearance of the graph of a power function depends on the constant $\it a$.

For a = 0, $y = x^0 = 1$

 $\text{For } a=1 \text{,} \quad y=x^1=x$

4 / 21

Power functions $y = x^n$

If n is an integer greater than 1, then the overall shape of the graph of $y=x^n$

is determined by the parity of n (whether n is even or odd).

If n is even, then the graph has a shape similar to the parabola $y=x^2$:

If n is odd, then the graph has a shape similar to the cubic parabola $y = x^3$:

6 / 21

Power functions $y = \frac{1}{x^n} = x^{-n}$

If n is a positive integer greater than 1, then the overall shape of the graph of $y=\frac{1}{x^n}$ is determined by the parity of n (whether n is even or odd).

Power functions $y = \sqrt[n]{x} = x^{1/n}$

If n is an positive integer, then the overall shape of the graph of $y=\sqrt[n]{x}=x^{1/n}$ is determined by the parity of n (whether n is even or odd).

8 / 2

$y=x^n$ all together

Here are the graphs of $y = x^n$ for some rational n and x > 0:

Polynomials

Definition. Let n be a non-negative integer.

A *polynomial* in the variable x of degree n is a function of the form

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
,

where $a_0, a_1, \ldots, a_{n-1}, a_n$ are constants (they are called the *coefficients* of the polynomial) and $a_n \neq 0$. The integer n is called the *degree* of the polynomial.

A polynomial is the sum of *monomials* $a_k x^k$.

Example 1. A *linear function* y = mx + b, where m and b are constants,

is a polynomial of degree 1.

The graph of a linear function is a straight line:

m is the *slope* of the line, $m = \tan \theta$ b is the y-intercept.

10 / 21

Quadratic functions

Example 2. A *quadratic function* $y = ax^2 + bx + c$, where a, b, c are constants, is a polynomial of degree 2.

The graph of a quadratic function is a *parabola*. Its appearance depends on the coefficients a, b, c.

Check your calculus readiness:

Draw the graph of $y = 3x^2 + 2x - 1$.

How long did it take?

If less than 2 minutes, then you are ready!

If you are not quite ready, let us review how to draw a parabola.

How to draw a parabola

To draw a parabola $y = ax^2 + bx + c$, follow the following scheme.

- 1. Determine the parabolas **vertex**. It is located at the point $\left(\frac{-b}{2a}, y\left(\frac{-b}{2a}\right)\right)$
- 2. Draw the axis of symmetry. It is the vertical line $x = \frac{-b}{2a}$.
- 3. Determine if the parabola opens **up** (a > 0) or **down** (a < 0)
- 4. Determine the intercepts. The y-intercept is (0,c), the x-intercepts are $(x_1,0), (x_2,0)$, where x_1,x_2 are the solutions of the quadratic equation $ax^2 + bx + c = 0$ (if there are any).
- 5. Plot the vertex, the axis of symmetry, the intercepts on a coordinate system and construct a smooth parabola.

Exercise. Use the scheme above to draw the parabola $y = 3x^2 + 2x - 1$.

12 / 21

Rational functions

Definition. A rational function is a function of the form

$$f(x) = \frac{P(x)}{Q(x)}$$
, where $P(x)$ and $Q(x)$ are polynomials.

For example,

$$f(x) = \frac{1}{4x^2 + 3x - 1} \quad \text{and} \quad f(x) = \frac{2x^3 - x + 1}{x^2 - 3} \quad \text{are rational function}.$$

The domain of a rational function is the set of all real numbers

for which the denominator is not zero.

Exponential functions

Definition. An exponential function is a function of the form $f(x) = a^x$,

where a is a given positive constant.

For example, $y=2^x,\ y=\left(\frac{3}{5}\right)^x,\ y=e^x,\ y=(\sqrt{2})^x$ are exponential functions.

In an exponential function $f(x) = a^x$, the base a is a constant, and the exponent x is a variable.

Marning. Don't confuse exponential $(y = a^x)$ and power $(y = x^a)$ functions!

The appearance of the graph of an exponential function depends on a.

The graph of each exponential function $f(x) = a^x$

intersects the y-axis at the point (0,1), since $f(0)=a^0=1$.

If a=1, then the exponential function is $y=1^x=1$. It is a constant function.

14 / 21

The graphs of exponential functions

Remember: The domain of any exponential function is \mathbb{R} , since $y=a^x$ is defined for all x.

The range of $y=a^x$ is $(0,\infty)$, since a is positive and therefore $a^x>0$ for any x.

Exponential functions $y = a^x$ all together

16 / 21

The laws of exponents (reminder)

Let $\,a>0\,,\,\,b>0\,$, and $\,x,y\,$ be any real numbers. Then

$$a^{0} = 1$$
 $a^{x+y} = a^{x}a^{y}$ $a^{-x} = \frac{1}{a^{x}}$ $a^{x-y} = \frac{a^{x}}{a^{y}}$

$$(a^x)^y = a^{xy}$$

$$(ab)^x = a^x b^x$$

Graphing exponential functions

Problem. Draw the graph of the function $f(x) = 2^{-x} - 1$.

Solution. We need to know the graph of the standard function $y=2^x$,

and to be familiar with graph transformations.

Steps to follow in drawing the graph:

18 / 21

The number *e*

This is the most amazing number in mathematics!

It may be defined in many different ways. For example, like this:

The number e is the base of the exponential function

whose graph has the tangent line at (0,1) with slope 1.

The exact definition of the tangent line to the graph of a function at a point will be given later.

Summary

In this lecture we reviewed the following topics:

- **power** functions $f(x) = x^a$ and their graphs
- polynomials
- quadratic functions and their graphs
- exponential functions $f(x) = a^x$ and their graphs
- Laws of exponents
- ullet the number e.

20 / 21

Comprehension checkpoint

• What are the names of the following functions:

$$y = \sqrt[3]{x^2}$$
$$y = \left(\frac{2}{3}\right)^x$$

$$y = -5x^3 + 6x^2 + 1$$

$$y = \frac{3x+2}{-x^2+4x+2}$$

- What is e?
- How does the graph of $y = e^x$ look like?