Lecture 2

Operations on Functions

Objectives
Operations on functions
Composition of functions
Composition of more than two functions
Graph transformations
Vertical shifts
Graph transformations: horizontal shifts
Graph transformations: vertical stretch/shrink
Graph transformations: horizontal stretch/shrink
Graph transformations: reflections about the axes
Using graph transformation for graphing
Using graph transformation for graphing
Summary
Comprehension checkpoint

Objectives

In this lecture, we will consider **operations** on functions:

- addition
- subtraction
- multiplication
- division
- composition

We will go over transformations of graphs:

- vertical and horizontal shifts
- vertical and horizontal stretch/shrink
- reflections about the coordinate axes

2 / 15

Operations on functions

Given two functions f and g, one can construct new functions

by taking their sum, difference, product, or quotient.

The sum $\,f+g\,$, difference $\,f-g\,$, product $\,fg\,$, and quotient $\,f/g\,$

of two functions f and g are defined as follows:

$$(f+g)(x) = f(x) + g(x),$$
 $(f-g)(x) = f(x) - g(x),$

$$(fg)(x) = f(x)g(x),$$
 $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}.$

The domain of f+g , f-g , fg is the ${\bf intersections}$ of the domains of f,g .

To obtain the domain of f/g, one needs to intersect the domains of f and g,

and delete the points where g=0.

Example. Find the domain of $f(x) = \frac{\sqrt{x}}{x-1}$.

Solution. The function f is the quotient of two functions, $f_1(x) = \sqrt{x}$, $f_2(x) = x - 1$.

 f_1 is defined for all $x \ge 0$, f_2 is defined for all x .

The denominator of the fraction should be different from 0, so $x \neq 1$.

Therefore, the domain of f is $[0,1) \cup (1,\infty)$.

Composition of functions

Definition. The *composition* of the functions f and g is a function $g \circ f$ defined by $(g \circ f)(x) = g(f(x))$.

f and g are called the *inner* and *outer* functions of the composition. In the composition $g \circ f$, f is performed first, and g is performed second:

Example. Let f(x) = |x|, g(x) = x - 1. Find $g \circ f$ and $f \circ g$.

Solution.
$$(g \circ f)(x) = g(f(x)) = g(|x|) = |x| - 1$$

Solution.
$$(g \circ f)(x) = g(\underbrace{f(x)}) = g(|x|) = |x| - 1$$
. $(f \circ g)(x) = f(\underbrace{g(x)}) = f(x-1) = |x-1|$. $f(x) = f(x) = f(x$

4 / 15

Composition of more than two functions

The composition of more than two functions is defined similarly.

For example, the composition of f_1 , f_2 and f_3 is defined as follows:

$$(f_3 \circ f_2 \circ f_1)(x) = f_3(f_2(f_1(x))).$$

Example. The function $f(x) = \cos^2(x+5)$ is a composition of three functions:

$$f_1(x) = x + 5$$
, $f_2(x) = \cos x$, $f_3(x) = x^2$:

Extra questions: What is $f_1 \circ f_2 \circ f_3$? $(f_1 \circ f_2 \circ f_3)(x) = \cos(x^2) + 5$.

What is $f_3 \circ f_1 \circ f_2$? $(f_3 \circ f_1 \circ f_2)(x) = (\cos x + 5)^2$.

Graph transformations

We review the transformations of the graphs by solving the following problem.

Problem. Given the graph of a function y = f(x).

Construct the graphs of the following functions:

$$\begin{split} y &= f(x) + 1 \text{ , } y = f(x) - 1 \text{ , } y = f(x+1) \text{ , } y = f(x-1) \text{ , } \\ y &= 2f(x) \text{ , } y = \frac{1}{2}f(x) \text{ , } y = -f(x) \text{ , } y = f(-x) \text{ , } y = f(2x) \text{ , } y = f\left(\frac{x}{2}\right) \text{ .} \end{split}$$

6 / 15

Vertical shifts

Solution.

Graph transformations: horizontal shifts

8 / 15

Graph transformations: vertical stretch/shrink

vertical stretch by the factor of 2 away from the x-axis

vertical shrink by the factor of $\,2\,$ towards the $\,x\!$ -axis

Graph transformations: horizontal stretch/shrink

horizontal stretch by the factor of $\,2\,$ away from the y-axis

horizontal shrink by the factor of 2 towards the y-axis

10 / 15

Graph transformations: reflections about the axes

reflection about the x-axis

reflection about the $\it y$ -axis

Using graph transformation for graphing

Example. Draw the graph of the function $y = \frac{x-1}{x+1}$.

Solution. We use polynomial division to break the quotient into the sum of two simpler functions:

$$y = \frac{x-1}{x+1} = \frac{(x+1)-2}{x+1} = 1 - \frac{2}{x+1}.$$

Now we organize our drawing into several steps:

We draw, one after the other, the graphs of the four functions above.

12 / 15

Summary

In this lecture we studied the following topics:

- how to add, subtract, multiply and divide functions
- what a composition of functions is
- how to construct graphs of functions using graphs transformations

14 / 15

Comprehension checkpoint

- \bullet If $f(x)=x^2-1$ and $g(x)=\tan x$, what are $g\circ f$ and $f\circ g$?
- $(g \circ f)(x) = \tan(x^2 1)$, $(f \circ g)(x) = \tan^2 x 1$.
- \bullet Given the graph of $\,y=x^2\,\text{,}$ construct the graph of $\,y=-(x-1)^2+2\,$

