Lecture 2

Numerical Expressions

umerical expressions	2
ithout parentheses	3
wo kinds of parentheses	4
arentheses around a negative number	5
arentheses rule	6
ımmary	7

Numerical expressions

A numerical expression consists of

numbers, symbols of operations and parentheses,

and describes an algorithm (a set of instructions) for calculation.

For example, $3 - 8 \div 4 \cdot (1 + 2)$.

The result of the calculation is called the **value** of the numerical expression.

The process of calculation is called evaluation.

In this lecture we will learn how to evaluate a numerical expression.

For example, here is the evaluation of the numerical expression given above:

$$3 - 8 \div 4 \cdot (1 + 2) =$$

 $3 - 8 \div 4 \cdot 3 =$
 $3 - 2 \cdot 3 =$
 $3 - 6 =$
 -3 .

In particular, we will learn in which order to perform the arithmetic operations.

2 / 7

Without parentheses

Multiplication and division have to be done before addition and subtraction,

if the formula does not contain parentheses.

By this rule, $1 + 2 \cdot 3 = 1 + 6 = 7$.

If the formula contains several multiplications and divisions(and still no parentheses), the multiplications and divisions are performed in order from left to right.

For example,
$$6 \div 3 \cdot 5 = \boxed{6 \div 3 \cdot 5} = 2 \cdot 5 = 10$$
 ,

$$6 \div 3 + 4 \cdot 5 = \boxed{6 \div 3} + \boxed{4 \cdot 5} = 2 + \boxed{4 \cdot 5} = 2 + 20 = 22$$
.

Additions and subtractions are done after all multiplications and divisions, also from left to right:

$$5 - 4 \div 2 + 3 \cdot 2 \div 6 = 5 - \boxed{4 \div 2} + \boxed{3 \cdot 2 \div 6} = 5 - 2 + 1 = \boxed{5 - 2} + 1 = 3 + 1 = 4$$
.

3 / 7

Two kinds of parentheses

In expressions, parentheses play two different roles.

• First, they help describe the **order of operations**:

$$(1+2) \cdot 3 = 3 \cdot 3 = 9$$
.

Notice that the expression above without parentheses has a different value:

$$1+2\cdot 3=1+6=7$$
.

• Second, parentheses have to surround a **negative** number, when the number comes after the sign of an arithmetic operation, as in

$$2+(-3)$$
 , or $2\cdot(-3)$.

4 / 7

Parentheses around a negative number

Parentheses around a negative number do not matter for the order of operations.

If all parentheses in a formula are of that kind,

then calculations should be performed as if there were no parentheses:

first, all multiplications and divisions from left to right,

then all additions and subtractions from left to right:

$$(-4) \div 2 + 3 \cdot (-5) = \boxed{(-4) \div 2} + \boxed{3 \cdot (-5)} = -2 + (-15) = -17.$$

5 / 7

Parentheses rule

If a formula contains parentheses which surround more than one number, then

- 1. find the innermost parentheses of this kind,
- 2. evaluate the formula within the parentheses,
- 3. and continue if needed.

For example,

$$(3-1) \cdot (1+4 \div (3-5)) = 2 \cdot (1+4 \div (3-5)) = 2 \cdot (1+4 \div (-2)) = 2 \cdot (1+(-2)) = 2 \cdot (-1) = -2.$$

6 / 7

Summary

In this lecture, we have learned

- what a numerical expression is
- what the **value** and **evaluation** of a numerical expression are
- ✓ how parentheses are used in a numerical expression
- in which order arithmetic operations are performed

7 / 7