Lecture 1

Numbers and Operations

From chaos to harmony	2
What this course is about	3
Vhat Algebra studies	1
Numbers	5
Decimal presentations	ĵ
Real numbers and the real line	7
Summary	3

From chaos to harmony

For many of us, mathematics is a messy jumble of incomprehensible formulas:, just the way musical scores are for someone who can't read music.

Both formulas and scores hide meaning and harmony.

2 / 8

What this course is about

This a proficiency course in Algebra.

We will learn the basics of algebraic literacy:

- how to read, understand and manipulate algebraic expressions,
- how to solve simple equations and inequalities,
- how to visualize formulas by drawing graphs.

Enjoy the course!

3 / 8

What Algebra studies

- Numbers: $1, \frac{5}{7}, -27.4, 0, \sqrt{2}, \pi, \dots$
- Operations with numbers:

```
addition 1+2=3,
```

subtraction
$$3-1=2$$
,

multiplication
$$3 \cdot 2 = 6$$
,

division
$$6 \div 3 = 2$$
,

exponentiation
$$2^3 = 8$$
,

taking the radical
$$\sqrt{49} = 7$$
,

and their combinations
$$-5 + 2^3 \cdot (3 - \sqrt{4}) = 3$$
.

Often numbers are denoted by symbols (letters):

$$a, b, c, \ldots, x, y, z, A, B, C, \ldots, X, Y, Z, \alpha, \beta, \gamma, \ldots$$

Symbols are connected by operations into formulas:

$$1+2x$$
, $x-3y$, x^2-x+1 , $x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$, ...

4 / 8

Numbers

Positive integers: $1, 2, 3, 4, 5, \dots$

Integers: ... -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

Rational numbers are quotients $\frac{p}{q}$, where p and q are integers and $q \neq 0$.

For example, $\frac{1}{2}$, $\frac{2}{1}$, $\frac{6}{3}$, $\frac{-4}{7}$ are rational numbers.

Any integer is a rational number. For example, $3 = \frac{3}{1}$.

Irrational numbers are numbers which cannot be represented as a quotient of two integers.

For example, $\sqrt{2}$, $\sqrt[3]{5}$, $\sqrt{2} + \sqrt{3}$, π .

Decimal presentations

Rational numbers can be represented as decimals:

$$\frac{9}{2} = 4.5, \quad \frac{1}{3} = 0.333... = 0.\overline{3}$$

Any rational number is presented as either a **finite** decimal, like $\frac{9}{2}=4.5$ or $\frac{7}{8}=0.875$,

or a **repeating** decimal, like
$$\frac{1}{3}=0.333\ldots=0.\overline{3}$$
 or $\frac{168}{11}=15.272727\ldots=15.\overline{27}$.

Irrational numbers also have decimal representations. They are infinite and not repeating.

For example, $\sqrt{2}=1.41421356\ldots$ and $\pi=3.14159265\ldots$

6 / 8

Real numbers and the real line

Both rational and irrational numbers are called real numbers.

Real numbers live on the real line:

7 / 8

Summary

In this lecture, we have learned

- what this course is about
- what Algebra studies (numbers, operations, formulas)
- what kinds of numbers we are going to deal with (integers, rational and irrational numbers)
- what is a decimal representation of a number
- what real numbers are
- what the real line is

8 / 8