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It is possible to write endlessly on elliptic curves.
(This is not a threat.)
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1704: Enumeratio Linearum Terti Ordinis

D




Newton corrected
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A Rich Literature

During the next 140 years cubic curves (and elliptic integrals)
were studied by many mathematicians:

Colin Maclaurin,
Jean le Rond d’Alembert,
Leonhard Euler,
Adrien-Marie Legendre,
Niels Henrik Abel,
Carl Gustav Jacobi



1844: Otto Hesse

xX+y3+ 2% = 3kxyz.

xX3+y>3 428

(x,y,2) = k = 3xZ






The Hessian determinant of ¢(x,y,z) .

q>XX q>X_}/ q>XZ
H¢(X,y,2) - det q)yx ¢yy q)yz
q>ZX q>Z_}/ q>ZZ

Theorem. If C c P? is a smooth curve with defining
equation ®(x,y,z)=0, then (x:y:z)eC isa
flex point if and only if He(x,y,2) =0.

It follows (with some work) that:

Every smooth complex cubic curve has exactly
nine flex points.

Example:

o, y,2)=x3+y*+ 28, Ho(x,y,2)=6%xyz.



The Fermat Curve in the real affine plane {(x : y : 1)}:




Projective equivalence
Every nonsingular linear transformation
(x,y,2) — (X,Y,2)
of C® induces a projective automorphism
(x:y:2) —» (X:Y:2)
of the projective plane P?(C).
Two algebraic curves Cy and Cp in P? are called

projectively equivalent if there is a projective
automorphism of P> which maps one onto the other.

Theorem. Every smooth cubic curve C C P?(C) is projectively
equivalent to one in the Hesse normal form

P4y 4+ 28 =3kxyz.

(But k is not unique!)



The chord-tangentmap C xC — C.

N
pxq = r.

For a flex point: pxp=p.



The additive group structure C xC — C.

Choose a flex point o € C as base point,
andset p+qg=(pxq)x*o.

p+q

Lemma. pxq=r = p+qg+r=o.
Note also that pxo = —p.



Theorem.

The line between two flex points always intersects C in a third
flex point.



Nine flex points and 12 lines between them.
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Other Fields.
Let F be any field with

QcFcCcC.

If the curve C has defining equation ®(x, y,z) = 0 with
coefficients in F, let C(F)=CnNP?(F) be the set of all
points (x : y : z) € C with coordinates x, y, z€ F.
Then p,qeC(F) = pxqeC(F).

If o € C(F), itfollows that C(F) is a subgroup of C.

In particular, for any n € Z we can define multiplication by n as
amap mp:C(F)—C(F).
The construction is inductive:

mo(p) =0, and My 4(p) =mMu(p) +p.
These maps form a semigroup, with composition:

mpomyg =My, and with mp(p) + mg(p) = myk(p) -



Extending m, to a map from P? to itself.

Consider the “foliation” of P by the curves
Ck={(x:y:2); x*+y*+2°* =3xy2z}
in the Hesse pencil.

Theorem. The various maps m, : Cx — Ci fit together to yield
a rational map
m,: P2 — ——> P2,



Examples (taking (0: —1: 1) as base point).

mox:y:2z) = (x(°=2%):y(22-x%):z(y® - x3)>
(Desboves, 1886)

m_(x:y:z) = (x:z:y)

mo(x:y:2) (0:—1:1)

mi(x:y:2z) (x:y:2)

ma(x:y:2) = X(y3—23):Z(ys—xs):y(zs—x3))

—~ N

ms(x:y:z)= <xyz x84+ y® 428 — X3y —x328 — 379
Oy + 22+ 22X (X2 + 422 + 2452 — xy22% — y22x3 — 22y -

x3y8 4+ 328 4 Z8x8 — 3x3y3z3) .



Weierstrass Normal Form and the J-invariant

Theorem (Nagel 1928). Every smooth cubic curve is
projectively equivalent to one in the normal form

y2 = (X — H)(X — I‘g)(X — f3) with n+nrn+rn = 0

= x3+s,x—5,,

where the s; are elementary symmetric functions.

Furthermore: two such curves are projectively
equivalent if and only if they have the same invariant
4s3
4s3 + 2755



Triangles and the J-invariant.

The J-invariant characterizes the “shape” of the triangle with

vertices ry, I, r3.
m.] in upper half-plane

J<0 O<Xkl1l =1 >>1

%J in lower half-plane



The function kK — J

k3(k® + 8)3
T B4k —1)3°



Real Cubic Curves

Theorem. Every smooth real cubic curve is real projectively
equivalent to a curve Ci in the Hesse normal form
for one and only one real value of k, with kK £ 1.




