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This talk is on joint work with Aaron Naber.

We describe a general method for improv-

ing estimates on Hausdorff dimension or

Hausdorff measure of singular sets of ellip-

tic or parabolic equations to estimates on

the volumes of sets on which the ”regular-

ity scale” is small.

Applications include Einstein metrics, min-

imal hypersurfaces, harmonic maps, mean

curvature flow and critical sets of solutions

to linear homogeneous elliptic equations.

The key point in the proofs is the introduc-

tion of a quantitative stratification Skη,r and

an estimate for the volume of Skη,r.

This provides an quantitative replacement

for iterated blow up arguments which en-

ables one to work on a fixed scale.
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The regularity scale.

Riemannian manifolds and their limits.

For riemannian manifolds, or more gener-

ally for for noncollapsed Gromov-Hausdorff

limit spaces we define the regularity scale

to be the curvature radius

r|Rm|(x) := max{0 < r < 1 | sup
Br(x)

r2·|Rm| ≤ 1} ,

where, we put r|Rm|(x) = 0 if the space is

not smooth in any neighborhood of x.

Harmonic maps.

For f : M → N a measurable map, we de-

fine the regularity scale rf(x) by

rf(x)

:= max{0 < r < 1 | sup
Br(x)

≤ r · |∇f | + r2|∇2f | ≤ 1} ,

where we put rf(x) = 0 if f is not C2 in a

neighborhood of x.
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Minimal hypersurfaces.

Let I be a minimizing hypersurface taken

to be either an integral rectifiable current

or a varifold in a smooth manifold M .

Let A denote the second fundamental form

and fix a positive integer N > 0.

Put rNI (x) = 0 if I is not the union of at

most N connected graphical C2 submani-

folds in a neighborhood of x.

Otherwise, let rN0,I denote the sup of those

r such that I ∩Br(x) is such a union.

Define the regularity scale rNI (x) by

rNI (x) := max{0 < r ≤ rN0,I(x) | sup
Br(x)

r·|A| ≤ 1} .
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Uniform control on rescaled balls.

In each instance, the regularity scale at x is

the sup of r ≤ 1 such that when the data on

Br(x) is rescaled to unit size, then the data

on the rescaled ball is uniformly bounded in

norm by 1.

Thus, the regularity scale at x provides much

more information than a bound on the quan-

tities,

|Rm(x)|, |∇f(x)|, |A(x)| .

In particular,

|Rm(x)| ≤ r−2
|Rm|(x) ,

etc.
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Riemannian manifolds.

Theorem A. Let Y n denote the Gromov-

Hausdorff limit of a sequence of Einstein

manifolds satisfying

RicMn
i
≥ −(n− 1) , (1)

Vol(B1(pi)) ≥ v > 0 . (2)

Then:

1. For all 0 < q < 1, there exists C =

C(n, v, q) such that

−
∫

B1(p)
|Rm|q ≤ −

∫

B1(p)
r
−2q
|Rm| ≤ C .

2. If Mn is Kähler, then for all 0 < q < 2,

there exists C = C(n, v, q) such that

−
∫

B1(p)
|Rm|q ≤ −

∫

B1(p)
r
−2q
|Rm| ≤ C .

Equivalently, for q as in 1., 2., above:

Vol({x ∈ B1(p) | r|Rm|(x) ≤ r}) ≤ C · r2q .
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3. If Mn is Kähler and satisfies
∫

B2(p)
|Rm|q ≤ Λ ,

then for C = C(n, v, q,Λ), we have

Vol({x ∈ B1(p) | r|Rm|(x) ≤ r}) ≤ C · r2q .

Remark. Theorem A improves the fol-

lowing earlier results (of Cheeger, Colding,

Tian) for the Hausdorff dimension of S the

singular set of the Gromov-Hausdorff limit

of a sequence of Einstein manifolds satis-

fying the above bounds:

1. dim S ≤ n− 2.

2. dim S ≤ n− 4.

3. Hn−2q(S ∩B1(p)) ≤ C .

Remark. Corresponding improvements oc-

cur in the applications to harmonic maps,

minimal hyper-surfaces and mean curvature

flow.
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Harmonic maps.

Theorem B. Let B2(0
n) ⊂ R

n and let f :

B2(0
n) → N denote a minimizing harmonic

map with
∫

B1(p)
|∇f |2 ≤ Λ .

Then for all 0 < q < 3, there exists C =

C(N,Λ, q) such that

−
∫

B1(p)
|∇f |q + |∇2f |q/2 ≤ −

∫

r
−q
f ≤ C .

Equivalently, for all q < 3,

Vol({x ∈ B1(p) | rf(x) ≤ r}) ≤ C · rq .

Remark. With suitable modification, Rn

can be replaced by Mn.
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Minimal hypersurfaces.

Let I = In−1 denote a minimal hypersur-

face in Rn and A its second fundamental

form.

Theorem C. Assume the mass bound

|I| ≤ Λ .

Then for every 0 < q < 7 there exists C(n,Λ, q)

> 0 and a positive integer N = N(n,Λ),

such that

−
∫

B1(p)∩I
|A|q d|I| ≤ −

∫

B1(p)∩I
(rNI )−q d|I| ≤ C .

Equivalently,

Vol({x ∈ B1(p) | r
N
f (x) ≤ r}) ≤ C · rq .

Remark. With suitable modifications, Rn

can be replaced by Mn.
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General methodology.

We will illustrate the general methodology

by indicating the proofs of 1. and 2. of

Theorem A in the Einstein case.

In the harmonic map and minimal hypersur-

face cases, the titles of the transparencies

which follow would remain unchanged.

Only the precise notions of “energy den-

sity”, “cone”, “splitting off a Euclidean fac-

tor” and “close” change appropriately.

Recall: 1. of Theorem A states that for all

0 < q < 1 there exists C = C(n, v, q) such

that

Vol({x ∈ B1(p) | r|Rm|(x) ≤ r}) ≤ C · r2q .

(3)

2. States that in the Kähler-Einstein case,

(3) holds for all 0 < q < 2.

Remark. Conjecturally, (3) also holds for

all q < 2 in the real case.
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Setting and notation.

Let dGH denote the Gromov-Hausdorff dis-

tance between metric compact spaces.

So in the riemannian case, “close” means

close in the Gromov-Hausdorff sense.

From now on, our underlying space is either

a riemannian manifold satisfying (1) and

(2), or the Gromov-Hausdorff limit Y n, of

a sequence of such manifolds.

When we come to the ǫ-regularity theorem,

we will also assume Einstein (respectively

Kähler-Einstein).

Let denote the metric cone with cross-section

C(Z) and vertex z∗.

So in this case, “cone” means metric cone

and “splitting off a Euclidean factor” means

an isometric splitting

R
k+1 × C(Z) .
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Quantitative stratification.

Let 0 denote the origin in Rk+1.

For all η > 0, 0 < r ≤ 1, we define the

k-th effective singular stratum:

Skη,r := {y | dGH(Bs(y), Bs((0, z
∗)) ≥ ηs,

for all R
k+1 × C(Z) and all r ≤ s ≤ 1} .

Clearly,

Skη,r ⊂ Sk
′

η′,r′ (if k′ ≤ k, η′ ≤ η, r ≤ r′) .

Also, for Gromov-Hausdoff limit spaces, if

Sk denotes the kth stratum of the standard

stratification of the singular set S, then
⋃

η

⋂

r
Skη,r = Sk .

In the smooth case, S = ∅, but the Skη,r
need not be empty.
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Volume estimate for Skη,r.

Theorem D. Let Y n denote the Gromov-

Hausdorff limit of a sequence of manifolds

satisfying

RicMn
i
≥ −(n− 1) ,

and for all x ∈Mn
i ,

Vol(B1(x)) ≥ v > 0 .

Then for all η > 0, there exists c(n, v, η) > 0

such that for all y ∈ Y n,

Vol(Skη,r ∩B1
2
(y)) ≤ c(n, v, η)rn−k−η.

Equivalently, Skη,r∩B1
2
(y) can be covered by

at most

c(n, v, η)r−(k+η)

balls of radius r.
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ǫ-regularity theorem.

Suppose y 6∈ Skη,r.

Then for some s with r ≤ s ≤ 1, there exists

C(Z) such that for z∗ the vertex of C(Z)

and 0 the origin in Rk+1,

dGH(Bs(y), Bs((0, z
∗)) < ηs . (4)

Theorem E. (Cheeger, Colding, Tian) There

exists η = η(n, v) > 0 such that in the Ein-

stein case, if (4) holds with k + 1 = n − 1

and η ≤ η, then

r|Rm|(y) ≥
1

2
s ≥

1

2
r . (5)

In the Kähler-Einstein case, the same is

true for k+ 1 = n− 3.

Proof (of Theorem A): 1. and 2. of The-

orem A follow immediately by combining

Theorem D and Theorem E.
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Proof of Theorem D; top down.

Fix η > 0.

To obtain the general case, it clearly suf-

fices to restrict attention to r of the form

γj, where γ = γ(η) < 1, and an appropriate

choice turns out to be

γ = c
−2
η

0 , (6)

where in particular, c0 = c0(n) is such that

γ < η.

We will define a collection of sets {Ck
η,γj

},

such that:

Lemma. There exists c1 = c1(n) ≥ c0,

K = K(n, v, η), such that for every j ∈ Z+,

1. The set Sk
η,γj

∩B1(x) is contained in the

union of ≤ jK nonempty sets Ck
η,γj

.

2. Each set Ck
η,γj

is the union of at most

(c1γ
−n)K ·(c0γ

−k)j−K balls of radius γj.
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By volume comparision,

Vol(Bγj(x)) ≤ c2(n)(γ
j)n . (7)

From (7) and, 1., 2., we get the volume

bound

jK ·
[

(c1γ
−n)K · (c0γ

−k)(j−K)
]

·c2(γ
j)n . (8)

By (6) we have c
j
0 = (γj)

η
2.

Also jK ≤ c(n, v, γ)(γj)−
η
2.

Substituting these two in (8) and recalling

γ = γ(η) gives

Vol(Sk
η,γj

∩B1
2
(y)) ≤ c(n, v, η) · (γj)n−k−η .

Modulo proving 1. and 2. of the lemma,

this completes the proof of Theorem D.
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Almost conicality apart from a definite

number of scales.

Proposition 10 below, whose proof will be

given later, is a quantitative expression of

the fact that for noncollapsed limit spaces

satisfying (1), (2), every tangent cone is a

metric cone.

Fix 0 < ǫ = ǫ(n, η) << η sufficiently small,

to be specified below in the cone-splitting

lemma.

Associate to each x an ∞-tuple T∞(x) whose

i-th entry is 0 if there exists a metric cone

C(W ) with vertex w∗ such that

dGH(Bγ−n·γi(x), Bγ−n·γi(w
∗)) ≤ ǫ · γi . (9)

Otherwise, the i-th entry of T∞(x) is 1.

Let |T∞(x)| denote number entries of T∞(x)

that are equal to 1.

Proposition 10. For all x

|T∞(x)| < K(n, v, η) <∞ .
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The decomposition lemma and item 1.

Let T j(x) be the j-tuple consisting of the

first j entries of T∞(x).

For each j-tuple T j whose entries consist

of 0’s and 1’s define

ET j = {x ∈ B1(x) |T
j(x) = T j}.

Proposition 10 immediately implies:

Lemma. (Decomposition) At most jK of

the sets ET j are nonempty.

Each set Ck
η,γj

= Ck
η,γj

(ET j) in item 1. is

a covering by balls of radius γj of some

nonempty set ET j.

Remark. The fact that we are able to con-

sider each set ET j individually, vastly simpli-

fies the geometry, leading to the cardinality

bound on the number of balls as in item 2.
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Coverings of the ET j and item. 2.

We fix T j, and inductively construct cover-

ings for i ≤ j of ET j ∩B1(x)..

At a bad scale, where the i-th entry of

T j(x) is 1, we take a standard recovering

of Bγi−1(x) ∩ ET j by:

∼ γ−n balls of radius γi.

Claim: At a good scale, where the i-th en-

try of T j(x) is 0, we can recover Bγi−1(x)∩

ET j by:

∼ γ−k balls of radius γi.

Note that from the bound

|T j(x)| ≤ K ,

if ET j is nonempty, there are at most K bad

scales.

This gives item 2.

The Claim is a consequence of the Cone-

splitting principle which we now explain.
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Cone-splitting.

Let X be a metric space and let x1, x2 ∈ X

be distict points, x1 6= x2.

Suppose there exist metric cones, C(Wi)

with vertices w∗
i and isometries

Fi : (X,xi) → (C(Wi), w
∗
i ) (i = 1,2) .

Then there is a metric cone C(Z) with ver-

tex z∗ and an isometry

I : X → R × C(Z) ,

such that

I(xi) ∈ R × {z∗} (i = 1,2) .

Remark. In particular, if X can be given

the structure of a cone in two different

ways, it must split off a line isometrically.

Remark. The following lemma, which im-

plies the Claim, relies on a quantitative ver-

sion of the Cone-splitting principle.
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Quantitative cone-splitting.

Suppose x ∈ Sk
η,γj

, that i-th entry of both

T j(x) of and T j(x′) is 0 and that x′ ∈ B1
2γ

i−1(x).

Lemma (Cone-splitting) If ǫ = ǫ(n, η) in

(9) is chosen sufficiently small, then there

exists a cone

R
ℓ × C(Z) (ℓ ≤ k) ,

with vertex (0ℓ, z∗), and an 1
10 · γi Gromov-

Hausdorff equivalence,

I : Bγi−1(x) → Bγi−1((0
ℓ, z∗))) ,

such that

I(x) = (0ℓ, z∗) ,

and I(x′) is contained in the 1
10γ

i tubular

neighborhood of the isometric factor

R
ℓ × {z∗} (ℓ ≤ k) .
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Indication of proof of cone-splitting.

By a contradiction argument and an induc-

tion argument, one reduces the assertion,

I(x′) ∈ T 1
10γ

i((R
ℓ × {z∗}) ,

to the case ǫ = 0, ℓ = k.

Thus, I is an isometry and in addition,

there is a cone C(W ′) and an isometry

F ′ : Bγi−1(x
′) → Bγi−1(w

′∗) .

By the Cone-splitting principle, unless

I(x′) ∈ R
k × {z∗} ,

the cone Rℓ × C(Z) would split off an ad-

ditional R factor.

This would contradict x ∈ Sk
η,γi

.
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Monotone bounded energy density.

By (2) and the Bishop-Gromov inequality,

0 ≤ Er(x) = log
Vol−1(r)

Vol(Br(x))
↑ .

where Vol−1(r) denotes the volume of the

unit ball in n-dimensional hyperbolic space.

The noncollapsing condition (2) implies that

E1(x) ≤ Λ(n, v) ,

where Λ = log
Vol−1(r)

v .

If the nondecreasing function Er(x) is con-

stant on an interval 1
2r1 ≤ r ≤ r1, then

Br1(x) is isometric to a Br1,(x), in a warped

product with warping function sinh r.
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Almost rigidity.

For r ≤ ψ(n, ǫ) sufficiently small, Br(x) is

ǫr Gromov-Hausdorff close to a ball Br(w∗)

in a metric cone C(W ), with vertex w∗.

Theorem (Cheeger-Colding) There exists

δ = δ(n, ǫ) such that if r ≤ ψ(n, ǫ) and

E2r(x) − E1
2r

(x) ≤ δ ,

then for some metric cone C(W ) with ver-

tex w∗,

dGH(Br(x), Br(w
∗)) ≤ ǫr .
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Proof of Proposition 10; |T∞(x)| ≤ K.

Let ǫ = ǫ(n, η) be as in in (9).

By the theorem on the previous transparency,

there exists δ = δ(n, ǫ), ψ = ψ(n, ǫ) ≤ γn,

such that if

2γi ≤ ψ , (10)

E2γ−n·γi(x) − E1
2γ

−n·γi
(x) ≤ δ , (11)

then for some cone C(W ) with vertex w∗,

dGH(Bγ−n·γi(x), Bγ−n·γi(w
∗)) ≤ ǫ · γi . (12)

Since

E1(x) ≤ Λ(n, v) ,

by Markov’s inequality, there are at most

K(n, η) values of i for which (10), (11) fail

to hold.

For the remaining values of i, (10), (11)

hold, and hence, (12) holds as well.

This proves Proposition 10.
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