A solution of Enflo's problem

Alexander Volberg joint work with Paata Ivanisvili and Ramon Van Handel

February 6, 2021

Embeddings and distortion

This is the talk about Ribe program popularized in many works of Bourgain, Naor, Lindenstrauss, Enflo, Pisier, Schechtman and many others. Ribe program: Do we really need linearity in the Banach space theory?
I will start with Bourgain's discretization theorem.
Suppose $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ are metric spaces and $D \geq 1$. We say that X embeds into Y with distortion D if there exists $f: X \rightarrow Y$ and $s>0$ such that for all $x, y \in X$,

$$
s d_{X}(x, y) \leq d_{Y}(f(x), f(y)) \leq s D d_{X}(x, y) \quad \forall x, y \in X
$$

The smallest D is called embedding constant and is denoted by $C_{Y}(X)$. If one of Y or X are linear normed spaces we can always think that $s=1$, so $C_{Y}(X)$ is the infimum of D 's such that

$$
d_{X}(x, y) \leq d_{Y}(f(x), f(y)) \leq D d_{X}(x, y) \quad \forall x, y \in X
$$

The estimates of distortion of metric space embeddings is one of the hottest topic now at the junction of harmonic analysis and big data theory.

Discretization

Given X, Y, where X being n-dimensional linear normed space, Y Banach space, let $\delta=\delta_{X \rightarrow Y}>0$, be the largest number such that if for every δ-net $N_{\delta}\left(B_{X}\right)$ of the unit ball B_{X} there is a K-embedding of this net into Y, then there is $2 K$-embedding of X into Y and this embedding $X \rightarrow Y$ is linear.

May be such $\delta>0$ does not exist for certain X, Y ? It turns out it always exists, and moreover is independent on geometry of X and Y.

It can be chosen depending only on n. This is Bourgain's discretization theorem.

Bourgain discretization theorem

Theorem (Bourgain)

Let X be an n dimensional normed space, let Y be a Banach space. Then there exists a linear map $T: X \rightarrow Y$ that realizes the following inequality

$$
C_{Y}(X) \leq 2 \sup _{\delta-n e t s} C_{Y}\left(N_{\delta}\left(B_{X}\right)\right), \text { as soon as } \delta=e^{-(2 n)^{C_{n}}}
$$

Figure of linearizability" á la Bourgain

Corollaries of Bourgain's discretization theorem

Corollary

Let X be a finite dimensional normed space, let Y be a Banach space. Let $f: X \rightarrow Y$ is a bi-Lipschitz map (not necessarily linear) with distortion D. Then there exists a linear embedding $T: X \rightarrow Y$ with distortion at most $2 D$ (in fact even $(1+\varepsilon) D$).

Proof.

Let $n=\operatorname{dim} X<\infty$. Choose any $e^{-(2 n)^{C_{n}}}$-net N in B_{X}. Map f embeds it with distortion D independent of the net. Use
Bourgain's discretization theorem. Get linear embedding T with distortion $\leq 2 D$.

What may happen for infinite dimension n ?

Famous problem: are any two bi-Lipschitz equivalent Banach spaces X, Y linearly isomorphic?

Kadec: any two separable Banach spaces are homeomorphic.
In between: two uniformly homeomorphic Banach spaces X, Y can be NOT linearly isomorphic (Johnson-Lindenstaruss-Schechtman). But if $Y=\ell^{p}, 1<p<\infty$, they are isomorphic.

Normed linear spaces are uniformly homeomorphic iff there exists invertible $F: X \rightarrow Y$ not necessarily linear such that F, F^{-1} are uniformly continuous. By Corson-Klee lemma this implies: there exists $f: X \rightarrow Y$
$\forall x, y \in X,\|x-y\|_{x} \geq 1 \Rightarrow\|x-y\|_{X} \leq\|f(x)-f(y)\|_{Y} \leq D\|x-y\|_{X}$

Corollaries of Bourgain's discretization theorem

Theorem (Martin Ribe)

If two Banach spaces X, Y are uniformly homeomorphic, then there exists D such that $\forall n<\infty, \forall X_{0}, \operatorname{dim} X_{0}=n, X_{0}$ linear subspace of X, there exists linear $T: X_{0} \rightarrow Y$ with distortion at most D. Symmetrically for $\forall Y_{0}, \operatorname{dim} Y_{0}=n, Y_{0}$ linear subspace of $Y \ldots$.

For bi-Lipschitz equivalent X, Y we saw that it follows from Bourgain discretization theorem. But for uniformly homeomorphic X, Y it also easily follows from Bourgain discretization theorem combined with Corson-Klee lemma.

Corollaries of Bourgain's discretization theorem

Corollary (Martin Ribe)

Let X, Y be two Banach spaces that are bi-Lipschitz equivalent (or just uniformly homeomorphic). Then they have the same type p.

Definition

We call $p, 1 \leq p \leq 2$, the Rademacher type of Banach space X if the following strengthening of triangle inequality holds

$$
\exists C<\infty \forall n<\infty, \forall x_{1}, \ldots, x_{n} \in X, \mathbb{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|_{X}^{p} \leq C \sum_{i=1}^{n}\left\|x_{i}\right\|_{X}^{p}
$$

It is easy to see that type can be only $p \leq 2$, and that ALL Banach spaces have type 1 ($=$ triangle inequality, $C=1$), so we say non-trivial type meaning $p>1$. For example, ${ }^{1}$ does not have non-trivial type.

Parallelograms in Banach space figure

But why this Ribe's corollary happened really?

What is the secret metric mechanism that exists and allows the type to be preserved under bi-Lipschitz maps?

The problem with Ribe's theorem is it is purely existential: it says that all local properties of infinite-dimensional Banach spaces (they are always linear properties) depend only on the metric structure of the Banach space (as they are invariant under uniform homeomorphisms), but it doesn't explain how to formulate these local notions metrically.

How to formulate local notions of Banach space metrically is important for several reasons:
(1) it makes it possible to extend these notions to more general metric spaces;
(2) it makes it possible to study embedding in Banach spaces of general metric spaces.
Bourgain initiated a program to find explicit metric descriptions of local properties of Banach spaces.

In the case of type, the natural conjecture was that Enflo's notion (which predates the Ribe program) is the right one in this context, and this is what we proved.

Local notions of p-type metrically: Enflo type

Hamming cube: It is a probability space $\left(\{-1,1\}^{n}, \mathbb{P}\right)$, $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$. We can think about ε_{i} 's as independent r.v.having values ± 1 with probability $1 / 2,1 / 2$. The integral $\int_{\{-1,1\}^{n}} f d \mathbb{P}$ will be denoted by \mathbb{E}. So $\mathbb{E} f(\varepsilon)=\frac{1}{2^{n}} \sum_{\varepsilon \in\{-1,1\}^{n}} f(\varepsilon)$. Let $f:\{-1,1\}^{n} \rightarrow X$ into Banach space be given by $f(\varepsilon)=\sum_{i=1}^{n} \varepsilon_{i} x_{i}$, in other words, let f be linear polynomial in ε_{i} with Banach coefficients. Then type p means the existence of $C<\infty$ such that for all \mathbf{X}-valued linear polynomials the following holds (ε^{i} changes ε in exactly only i-th place):

$$
\mathbb{E}\|f(\varepsilon)-f(-\varepsilon)\|_{X}^{p} \leq C \sum_{i=1}^{n} \mathbb{E}\left\|f(\varepsilon)-f\left(\varepsilon^{i}\right)\right\|_{X}^{p} .
$$

There is almost no linearity here. That involves only metric notion of distance between couples of points: (diagonals versus edges)

$$
\mathbb{E} d_{X}(f(\varepsilon), f(-\varepsilon))^{p} \leq C \sum_{i=1}^{n} \mathbb{E} d_{X}\left(f(\varepsilon), f\left(\varepsilon^{i}\right)\right)^{p} \quad f \text { is linear } .
$$

Enflo type p

Definition

Banach space X is called having Enflo type $p, 1 \leq p \leq 2$, if

$$
\mathbb{E}\|f(\varepsilon)-f(-\varepsilon)\|_{X}^{p} \leq C \sum_{i=1}^{n} \mathbb{E}\left\|f(\varepsilon)-f\left(\varepsilon^{i}\right)\right\|_{X}^{p}
$$

diagonals versus edges inequality holds not just for linear f, but for all $f:\{-1,1\}^{n} \rightarrow X$.

There is no linearity here at all. That involves only metric notion of distance between couples of points:
$\mathbb{E} d_{X}(f(\varepsilon), f(-\varepsilon))^{p} \leq C \sum_{i=1}^{n} \mathbb{E} d_{X}\left(f(\varepsilon), f\left(\varepsilon^{i}\right)\right)^{p} \quad \forall f:\{-1,1\}^{n} \rightarrow X$.
Linear implies non-linear principle. Enflo's problem: does it?

Geometric picture

Any "skewed" Hamming cube with vertices in Banach space X has the property that average of the p-th powers of lengths of main diagonals is controlled by of the p-th powers of lengths of all sides. This is the meaning of Enflo type p.
Obviously X of Enflo type $p \Rightarrow X$ is of Rademacher type p. In Enflo definition all polynomials $f:\{-1,1\}^{n} \rightarrow X$ participate, in Rademacher only linear polynomials.
Geometrically, in one definition "skewed" Hamming cubes with vertices in Banach space X participate, in another definition only "parallelogram" shaped Hamming cubes with vertices in Banach space X participate.
Enflo's problem: Does Rademacher type p implies Enflo type p ? In other words, is it true that if
$\mathbb{E}\|f(\varepsilon)-f(-\varepsilon)\|_{X}^{p} \leq C \sum_{i=1}^{n} \mathbb{E}\left\|f(\varepsilon)-f\left(\varepsilon^{i}\right)\right\|_{X}^{p}$ holds for only linear polynomials with coefficients in Banach space X, then it holds for all polynomials with coefficients in Banach space X independent of $\operatorname{deg} f$? May be with different but still finite C ?

Figure: "Parallelogram "-shaped and general Hamming cubes embedded in Banach space

Rademacher embedding of discrete cube in to

Linear-to-nonlinear Principle

Enflo's conjecture

Enflo embedding of discrete cube into X

Yes: from linear polynomial to all polynomial

Theorem (Ivanishvili-Van Handel-Volberg, Annals of Math. (2)
192 (2020), no. 2, 665-678)
For any Banach space $X, C_{p}^{\text {Enflo }}(X) \leq \frac{\pi}{\sqrt{2}} C_{p}^{\text {Rademacher }}(X)$
To explain the method I need to recall Pisier-Poincaré inequalities.

Previous results

It was formulated by Enflo in 1978, and there were numerous partial results.

1) Enflo: if Rademacher constant is 1 , then yes.
2) Bourgain-Milman-Wolfson: Rademacher type p implies Enflo type $p-\varepsilon$.
3) Schechtman-Naor, if X is a UMD space then yes.
4) Hytönen-Naor, if X is a $U M D^{+}$space then yes.
5) Eskenazis, again certain class of Banach spaces, then yes.
6) Pisier.

First Gaussian case: Let g, g^{\prime} be independent gaussian \mathbb{R}^{n}-vectors. Let $f: \mathbb{R}^{n} \rightarrow X$ be a function with values in an arbitrary Banach space X. Let $1 \leq p<\infty$. Then without any dependence on n we have

$$
\left(\mathbb{E}\|f(g)-\mathbb{E} f(g)\|_{X}^{p}\right)^{1 / p} \leq \frac{\pi}{2}\left(\mathbb{E}\left\|\sum_{j=1}^{n} g_{j}^{\prime} \frac{\partial f}{\partial x_{j}}(g)\right\|_{X}^{p}\right)^{1 / p}
$$

Examples of applications: 1) Let $f: \mathbb{R}^{n} \rightarrow M_{d \times d}^{\text {symm }}$ is a matrix-valued function, and on $M_{d \times d}^{\text {symm }}$ we have norm $\|A\|_{\sigma_{p}}=\left(\operatorname{Tr}\left[|A|^{p}\right]\right)^{1 / p}$.
Then we have concentration inequality for random matrices. Let $f: \mathbb{R}^{n} \rightarrow M_{d \times d}^{\text {symm }}$ is a test function, and on $M_{d \times d}^{\text {symm }}$. For large p, independently on f and d, using Pisier and also Fransoise Lust-Piquard non-commutative Khintchine inequality:

$$
\mathbb{E}\|f(g)-\mathbb{E} f(g)\|_{\sigma_{p}} \leq C^{p} p^{p / 2} \|\left[\left(\sum_{j}\left(\frac{\partial f}{\partial x_{j}}(g)\right)^{2}\right)^{1 / 2} \|_{\sigma_{\rho}}\right.
$$

More applications of Pisier-Poincaré inequality in Gaussian case

2) Scalar example, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, p$ is large:

$$
\left(\mathbb{E}|f(g)-\mathbb{E} f(g)|^{p}\right)^{1 / p} \leq C^{p} p^{1 / 2}\left(\mathbb{E}\|\nabla f(g)\|_{L^{p}\left(\ell^{2}\right)}\right)^{1 / p}
$$

This leads to Gaussian concentration inequality with constants free of dimension: Lipschitz functions of huge number of gaussian variables are very concentrated near their average.
3) Scalar example, $p=1$:

$$
\mathbb{E}|f(g)-\mathbb{E} f(g)| \leq \sqrt{\frac{\pi}{2}} \mathbb{E}\|\nabla f(g)\|
$$

This is Cheeger's gaussian inequality. Constant $\sqrt{\frac{\pi}{2}}$ is sharp and is attained on functions approximating the characteristic function of half-space.

One more application of Pisier's inequality

Let A_{1}, \ldots, A_{n} be in $M_{d \times d}^{\text {symm }}$. Non-commutative Khintchine inequality (NCK) says that

$$
\mathbb{E}\left\|\sum_{i=1}^{n} g_{i} A_{i}\right\|_{o p} \leq \sqrt{\log d}\left\|\sum_{i=1}^{n} A_{i}^{2}\right\|_{o p}^{1 / 2}
$$

(Margulis inequality.)
Then for any $f: \mathbb{R}^{n} \rightarrow M_{d \times d}^{\text {symm }}$, the following holds:

$$
\begin{gathered}
\mathbb{E}\|f-\mathbb{E} f\|_{o p} \leq^{\text {Pisier }} \frac{\pi}{2} \mathbb{E}\left\|\sum_{i=1}^{n} \tilde{g}_{i} D_{i} f(g)\right\|_{o p} \leq^{N C K} \\
\frac{\pi}{2} \sqrt{\log d} \mathbb{E}\left\|\sum_{i=1}^{n}\left(D_{i} f\right)^{2}\right\|_{o p}^{1 / 2}
\end{gathered}
$$

For example f can be matrix valued degree 2 (or 100) polynomial of any number of variables.

Pisier has an analog of his Gaussian inequality for Rademacher situation: let $\left\{\delta_{j}\right\}_{j=1}^{n}$ are i.i.d standard Rademacher r. v. independent from $\left\{\varepsilon_{j}\right\}_{j=1}^{n}$. Then

$$
\left(\mathbb{E}\|f(\varepsilon)-\mathbb{E} f(\varepsilon)\|_{X}^{p}\right)^{1 / p} \leq C(n)\left(\mathbb{E}\left\|\sum_{j=1}^{n} \delta_{j} \frac{\partial f}{\partial x_{j}}(\varepsilon)\right\|_{X}^{p}\right)^{1 / p}
$$

Unfortunately, unlike in the Gaussian case the constant in Pisier's proof was dependent on $n: C(n) \leq \log n+\log \log n+C_{0}$. Hytönen-Naor improved to $C(n) \leq \log n+C_{0}$.

If constant were independent of n then that inequality plus the definition of Rademacher type would prove Enflo's conjecture immediately.

Talagrand's counterexample

Talagrand proved that $C(n) \approx \log n$ is possible. In his example $X=L^{\infty}\left(\{-1,1\}^{n}\right)$ and
$f:\{-1,1\}^{n} \rightarrow L^{\infty}\left(\{-1,1\}^{n}\right), \quad f(\varepsilon, \tilde{\varepsilon}):=\max \left(0, \log \frac{\operatorname{dist}_{\text {Hamming }}(\varepsilon, \tilde{\varepsilon})}{\sqrt{n}}\right)$
this is sharp: $C(n) \geq \frac{1}{2} \log n-C_{0}$.
All the previous works on Enflo's conjecture concentrated on Pisier's inequality

$$
\left(\mathbb{E}\|f(\varepsilon)-\mathbb{E} f(\varepsilon)\|_{X}^{p}\right)^{1 / p} \leq C(n)\left(\mathbb{E}\left\|\sum_{j=1}^{n} \delta_{j} \frac{\partial f}{\partial x_{j}}(\varepsilon)\right\|_{X}^{p}\right)^{1 / p}
$$

and finding Banach spaces X, where one can prove $C(n)=O(1)$. The ultimate description of such X was not known till us.

Two questions

This raises two questions:
(1) How to prove Enflo's conjecture by by-passing Talagrand's obstacle? May be one needs to modify Pisier's inequality?
(2) What is the exact class of Banach spaces for which $C(n)=O(1)$ in Pisier's inequality for Rademacher r. v.?

Modification of Pisier's inequality for Rademacher variables. One more average, "skewed" Rademacher r. v.

Let

$$
\mathbb{P}\left\{\xi_{i}(t)= \pm 1\right\}=\frac{1 \pm e^{-t}}{2}, \quad \delta_{i}(t)=\frac{\xi_{i}(t)-\mathbb{E} \xi_{i}}{\left(\operatorname{Var} \xi_{i}(t)\right)^{1 / 2}}
$$

Theorem (Ivanisvili-Van Handel-Volberg)

$$
\left(\mathbb{E}\|f(\varepsilon)-\mathbb{E} f\|_{X}^{p}\right)^{1 / p} \leq \frac{\pi}{2} \int_{0}^{\infty}\left(\mathbb{E}\left\|\sum_{i=1}^{n} \delta_{i}(t) D_{i} f(\varepsilon)\right\|_{X}^{p}\right)^{1 / p} d \mu(t)
$$

for a certain concrete probability measure $d \mu(t)$ on $(0, \infty)$.

Corollary

By central limit theorem one gets Pisier gaussian inequality.

What are Banach spaces where Pisier's original inequality has $C(n)=O(1)$?

Theorem (Ivanisvili-Van Handel-Volberg)

Pisier's original inequality

$$
\left(\mathbb{E}\|f(\varepsilon)-\mathbb{E} f\|_{X}^{p}\right)^{1 / p} \leq C\left(\mathbb{E}\left\|\sum_{i=1}^{n} \delta_{i} D_{i} f(\varepsilon)\right\|_{X}^{p}\right)^{1 / p}
$$

holds with constant independent of n if and only if X has finite co-type. (Here $\left\{\delta_{i}\right\}$ are i.i.d standard Rademacher r. v. independent of $\left\{\varepsilon_{i}\right\}$.)

How it all started. Cheeger inequality on Hamming cube. Improving Lust-Piquard's constant

We saw gaussian (isoperimetric) inequality in the form of Cheeger's inequality:

$$
\mathbb{E}|f(g)-\mathbb{E} f(g)| \leq \sqrt{\frac{\pi}{2}} \mathbb{E}\left[|\nabla f|_{\ell_{n}^{2}}\right]
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, and g is standard gaussian vector in \mathbb{R}^{n}.
Constant is sharp. What about our Hamming cube?
Francoise Lust-Piquard proved on cube

$$
\mathbb{E}|f(\varepsilon)-\mathbb{E} f(\varepsilon)| \leq \frac{\pi}{2} \mathbb{E}\left[|\nabla f|_{\ell_{n}^{2}}\right]
$$

We came to Enflo's conjecture technique via improving Lust-Piquard's constant:
Theorem

$$
\mathbb{E}|f(\varepsilon)-\mathbb{E} f(\varepsilon)| \leq\left(\frac{\pi}{2}-10^{-10}\right) \mathbb{E}\left[|\nabla f|_{\ell_{n}^{2}}\right]
$$

Why L^{1}-Poincaré inequality on Hamming cube?

(1) It is closely related to Erdös-Rényi graphs and Margulis' sharp threshold theorem;
(2) Poincaré inequalities on Hamming cube, scalar or X-valued, are closely related to singular integral theory on Hamming cube, still in making;
(3) Francoise's proof of L^{1}-Poincaré inequality on Hamming cube was via quantum random variables. Which was amazing. At least for me.
(9) Our approach on previous slides gives very short proof of Talagrand's conjecture on improved Poincaré inequality for Boolean functions (proved in 2020 by Eldan-Gross), see below.

Example of singular integral problem on Hamming cube

Theorem (Ivanishvili-Van Handel-Volberg)

For any functions $f_{i}:\{-1,1\}^{n} \rightarrow X, i=1, \ldots, n, p \in[1, \infty)$, we have

$$
\begin{equation*}
\mathbb{E}\left\|\sum_{i=1}^{n} \Delta^{-1} D_{i} f_{i}\right\|_{X}^{p} \leq C(q, p) \mathbb{E}\left\|\sum_{i=1}^{n} \delta_{i} f_{i}\right\|_{X}^{p} \tag{**}
\end{equation*}
$$

if and only if $(X,\|\cdot\|)$ be a Banach space of finite co-type q.
(Put $f_{i}=D_{i} f$ to come back to Pisier's original form of inequality.)

Theorem (l-vH-V.)

Let X be a Banach space of finite co-type q. Let $1 \leq p<\infty$, $\varepsilon>0$. Then for any functions $f_{i}:\{-1,1\}^{n} \rightarrow X, i=1, \ldots, n$:

$$
\mathbb{E}\left\|\sum^{n} \Delta^{\frac{1}{\max (p, q)}-1-\varepsilon} D_{i} f_{i}\right\|^{p} \leq C(q, p, \varepsilon) \mathbb{E}\left\|\sum^{n} \delta_{i} f_{i}\right\|^{p} \quad(* *)
$$

Gradient via square root of Laplacian. Riesz transforms

 from above. Unexpected effect with $X \in U M D$.Inequality below of type (*) for $L^{p}(X)$ always implies (**) for $L^{p^{\prime}}\left(X^{*}\right)$

$$
\begin{equation*}
\mathbb{E}\left\|\sum_{i=1}^{n} \delta_{i} \Delta^{-a} D_{i} f\right\|_{X}^{p} \leq C_{p} \mathbb{E}\|f\|_{X}^{p}, \quad \frac{1}{2} \leq a \leq 1 \tag{*}
\end{equation*}
$$

1) holds for $1<p<\infty, X$ is UMD, gaussian case (Pisier, 1986);
2) holds for $2 \leq p<\infty, X=\mathbb{R}$, Hamming cube case (Bakry- 25 pages of probability, Lust-Piquard 98 -quantum r. v., us-Bellman function proof);
3) does not hold $1<p<2, X=\mathbb{R}$, Hamming cube case.
4) Does it hold for $X \in U M D, 2 \leq p<\infty$ for Hamming cube case? The answer is very unexpected: NO.
5) Scalar question. Let $1<p<2$, is it true that

$$
\mathbb{E}\left|\left\{\Delta^{-1 / p} D_{i} f\right\}\right|_{\ell^{2}}^{p} \leq C \mathbb{E}|f|^{p} .
$$

With $\Delta^{-1 / 2} D_{i} f$ false!!!, but morally $\Delta^{-1 / p} D_{i} f_{5} \leq \Delta^{-1 / 2} D_{i} f \quad p<2$.

Square root of Laplacian via gradient. Riesz transforms from below. Towards quantum r. v.

We come to results of type (+):

$$
\begin{equation*}
\left\|\Delta^{1 / 2} f\right\|_{X}^{p} \leq C_{p} \mathbb{E}\left\|\sum_{i} \delta_{i} D_{i} f(\varepsilon)\right\|_{X}^{p}, \tag{+}
\end{equation*}
$$

for the "simplest case" of $\left\{\varepsilon_{i}\right\},\left\{\delta_{i}\right\}$ are all i.i.d. Rademacher ± 1 random variables. Scalar case: Bakry, Lust-Piquard.
Generalization/reformulation (just put $f_{1}=\cdots=f_{n}=f$ below):

$$
\left\|\sum_{i} \Delta^{-1 / 2} D_{i} f_{i}\right\|_{X}^{p} \leq C_{p} \mathbb{E}\left\|\sum_{i} \delta_{i} D_{i} f_{i}(\varepsilon)\right\|_{X}^{p},
$$

Conjecture. It holds for any X of finite co-type, $1<p<\infty$. In particular, for any $X=L^{q}, q<\infty$.

Theorem

1) $1<p \leq 2, X=L^{q}, 1 \leq q \leq 2$, then holds. 2) For $p>2$ this holds for $X=L^{q}$ if $2 \leq q \leq p$. We do not know the rest.

Regime $1<p \leq 2, X=L^{q}, 1 \leq q \leq 2$

We use our formula with unbalanced Rademacher r. v.: modification of Pisier's formula.

Regime $2<p<\infty, X=L^{q}, 2 \leq q \leq p$. X-valued Riesz

 transforms on discrete cube
Theorem

1) $1<p \leq 2, X=L^{q}, 1 \leq q \leq 2$. 2) For $p>2$ this holds for $X=L^{q}$ if $2 \leq q \leq p$. Namely

$$
\left\|\sum_{i} \Delta^{-1 / 2} D_{i} f_{i}\right\|_{X}^{p} \leq C_{p} \mathbb{E}\left\|\sum_{i} \delta_{i} D_{i} f_{i}(\varepsilon)\right\|_{X}^{p}
$$

We do not know the rest of regimes.
The proof below is just for $X=\mathbb{R}$, the simplest case-the scalar case. Of course co-type $q=2$ for this case $X=\mathbb{R}$. Still the scalar case-a theorem about the usual functions of Rademacher variables-required quantum random variables.
So for usual real valued functions of Rademacher (Bernoulli) r. v. ε_{i}, we want to prove the following:

$$
\mathbb{E}_{\varepsilon}\left|\sum_{i} \Delta^{-1 / 2} D_{i} f_{i}(\varepsilon)\right|^{p} \leq C_{p} \mathbb{E}_{\delta, \varepsilon}\left|\sum_{i} \delta_{i} D_{i} f_{i}(\varepsilon)\right|^{p} \quad(+1)
$$

1. Quantum r. v. $2^{n} \times 2^{n}$ matrices Q_{A}, P_{B}

Let

$$
Q=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], P=\left[\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right], U=i Q P
$$

They have anti-commutative relationship

$$
Q P=-P Q
$$

Let $Q_{j}=I \otimes \ldots Q \otimes I \cdots \otimes I, P_{j}=I \otimes \ldots P \otimes I \cdots \otimes I$, on j-th place. These are independent non-commutative random variables in the sense of trace $=$ sum of diagonal elements divided by 2^{n}. Then $Q_{A}=\Pi_{i \in A} Q_{i}$. For any $f=\sum_{A \subset[n]} \hat{f}(A) \varepsilon^{A}$, the reasoning non-commutative scheme dictates to assign on non-commutative object, a matrix from $\mathcal{M}_{2^{n}}$ given by

$$
T_{f}=\sum_{A \subset[n]} \hat{f}(A) Q_{A} .
$$

Such matrices form commutative sub-algebra $M_{2^{n}} \in \mathcal{M}_{2^{n}}$.

2. Quantum r. v. Projection on $M_{2^{n}}$

Now one considers algebra generated by Q_{j}, P_{j} (this is algebra of all matrices $\mathcal{M}_{2^{n}}$). We have a projection \mathcal{P} from multi-linear polynomials in P_{j}, Q_{j} (notice $P^{2}=I, Q^{2}=I$) that kills everything except terms having only Q^{\prime} s.
Small (really easy) algebra shows that \mathcal{P} can be written as $\rho \operatorname{Diag} \rho^{*}$, where ρ is a unitary operator, and Diag, is the operator on matrices that just kills all matrix elements except the diagonal. This Diag is obviously the contraction on Schatten-von Neumann class S_{p} for any $p \in[1, \infty]$ (obvious for Hilbert-Schmidt $(p=2)$ class and for bounded operators $(p=\infty)$-so interpolation does that). Here $\rho=r \otimes \cdots \otimes r$, where r is "Hadamard gate":

$$
r=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

3. Quantum r. v. Non-commutative semigroup

Operators ∂_{j}, D_{j}, such that $\partial_{j} \varepsilon_{i}=\delta_{i j}$ and $D_{j}=\varepsilon_{j} \partial_{j}$, can be considered acting on $M_{2^{n}}$ and on $\mathcal{M}_{2^{n}}$ in a canonical way.

Non-commutative semigroup is given on elementary Q_{A}, P_{A} by:
$\mathcal{R}(\theta) Q_{A}=\Pi_{j \in A}\left(Q_{j} \cos \theta+P_{j} \sin \theta\right), \mathcal{R}(\theta) P_{A}=\Pi_{j \in A}\left(P_{j} \cos \theta-Q_{j} \sin \theta\right)$.
Operator $\mathcal{R}(\theta)$ is an automorphism of algebra $\mathcal{M}_{2^{n}}$ preserving all S_{p} norms. $\mathcal{R}(\theta)(T)$ is given by $R(\theta)^{*} T R(\theta)$, where $R(\theta)$ is a unitary matrix which is n-fold tensor product of

$$
\rho_{\theta}=\left[\begin{array}{cc}
1 & 0 \\
0 & e^{i \theta}
\end{array}\right]
$$

Semigroup $\mathcal{R}(\theta)$ can be written down as

$$
\begin{equation*}
\mathcal{R}(\theta) T=e^{\theta \mathcal{D}}(T), \quad \text { where } \mathcal{D}(T)=\sum_{i} P_{i} D_{i}(T), \forall T \in M_{2^{n}} \tag{1}
\end{equation*}
$$

4. Pisier's lemma

Pisier's lemma:

Lemma

The odd function $\frac{\operatorname{sgn} \theta}{t(\theta)}=\frac{\operatorname{sgn} \theta}{(-\log \cos \theta)^{1 / 2}}$ on $[-\pi / 2, \pi / 2]$ is such that a) $\phi(\theta)-\cot (\theta / 2)$ is bounded and

$$
\text { b) } \forall m \geq 0, \quad \int_{-\pi}^{\pi} \cos ^{m} \theta \sin \theta \frac{\operatorname{sgn} \theta}{t(\theta)} d \theta=c \frac{1}{\sqrt{m+1}} \text {. }
$$

5. Quantum r. v. Formula

Notice (here $\left.t(\theta):=(-\log \cos \theta)^{1 / 2}\right)$:

$$
\begin{equation*}
D_{j} \Delta^{-1 / 2} Q_{A}=\mathcal{P}\left(\int_{-\pi / 2}^{\pi / 2} \frac{\operatorname{sgn}(\theta)}{t(\theta)} e^{\theta \mathcal{D}} P_{j} \cdot\left[\partial_{j} Q_{A}\right]\right) \tag{2}
\end{equation*}
$$

In fact, if $j \notin A$ both sides are zero. Now let $j \in A$. Then

$$
e^{\theta \mathcal{D}} P_{j} \partial_{j} Q_{A}=e^{\theta \mathcal{D}} P_{j} Q_{A \backslash j}=
$$

$\prod_{s \in A, s<j}\left(\cos \theta Q_{s}+\sin \theta P_{s}\right)\left(\sin \theta Q_{j}-\cos \theta P_{j}\right) \prod_{s \in A, s>j}\left(\cos \theta Q_{s}+\sin \theta P_{s}\right)$
Thus

$$
\cos ^{|A|-1} \theta \sin \theta \cdot Q_{A}=\mathcal{P}\left(e^{\theta \mathcal{D}} P_{j} \cdot\left[\partial_{j} Q_{A}\right]\right)
$$

And now we integrate against $\frac{\operatorname{sgn}(\theta)}{t(\theta)}$ and use Pisier's lemma.

6. Quantum r. v. Final formula

Formula (2) gives us (for any $T=T_{f} \in M_{2^{n}}$), $D_{j} \Delta^{-1 / 2}\left(\varepsilon_{j} \partial_{j} f\right)=$

$$
\begin{equation*}
D_{j} \Delta^{-1 / 2} f=\mathcal{P}\left(\int_{-\pi / 2}^{\pi / 2} \frac{\operatorname{sgn}(\theta)}{(-\log \cos \theta)^{1 / 2}} e^{\theta \mathcal{D}} P_{j} \cdot\left[\partial_{j} T_{f}\right]\right) \tag{3}
\end{equation*}
$$

Having proved formula (3) we can finish the proof of our end-point inequality. Let f_{1}, \ldots, f_{n}, we consider $T_{1}=T_{f_{1}}, \ldots, T_{n}=T_{f_{n}}$. Then

$$
\sum_{j} D_{j} \Delta^{-1 / 2} f_{j}=\mathcal{P}\left(\int_{-\pi / 2}^{\pi / 2} \frac{\operatorname{sgn}(\theta)}{(-\log \cos \theta)^{1 / 2}} e^{\theta \mathcal{D}} \sum_{j} P_{j} \cdot\left[\partial_{j} T_{j}\right]\right)
$$

7. Quantum r. v. Applying final formula

Now using the facts that \mathcal{P} is a contraction in S_{p}, that our singular integral is bounded in $S_{p}, 1<p<\infty$, and that semigroup $e^{\theta \mathcal{D}}$ is bounded in S_{p} we get that

$$
\left\|\sum_{j} D_{j} \Delta^{-1 / 2} f_{j}\right\|_{p} \leq C p\left\|\sum_{j} P_{j} \cdot\left[\partial_{j} T_{j}\right]\right\|_{S^{p}} .
$$

Even though our problem is about scalar functions we used here 1) non-commutative model, 2) we used here Burkholder's and Bourgain's estimates of the boundedness of the Hilbert transform $\int_{-\pi / 2}^{\pi / 2} \frac{\operatorname{sgn}(\theta)}{t(\theta)} \star$ on X-valued $L^{p}(X)$ spaces. (Actually constant p here is due to Bourgain's $L_{p}\left(S_{p}\right)$ Hilbert transform estimate, it is a subtle place.)
We are almost done-unfortunately LHS is about functions, but RHS is about operators.
8. Quantum r. v. Towards non-commutative Khintchine inequality

Funny trick:

$$
\left\|\sum_{j} P_{j} \cdot\left[\partial_{j} T_{j}\right]\right\|_{S^{p}}=\left\|\sum_{j} \varepsilon_{j} P_{j} \cdot\left[\partial_{j} T_{j}\right]\right\|_{S^{p}}
$$

for any signs $\varepsilon_{j}= \pm 1$. This is because

$$
\left\|\sum_{j} P_{j} \cdot\left[\partial_{j} T_{j}\right]\right\|_{S^{p}}=\left\|Q_{i} \cdot \sum_{j} P_{j} \cdot\left[\partial_{j} T_{j}\right] \cdot Q_{i}\right\|_{S^{p}}
$$

and Q_{i} travels freely-and then anti-commutes with P_{i} and disappears.

9. Quantum r. v. Non-commutative Khintchine inequality

Now using non-commutative Khintchine inequality of Lust-Piquard we get for $p \geq 2$:

$$
\begin{gathered}
\left\|\sum_{j} D_{j} \Delta^{-1 / 2} f_{j}\right\|_{p} \leq C p\left\|\sum_{j} P_{j} \cdot\left[\partial_{j} T_{j}\right]\right\|_{S^{p}} \leq C p \mathbb{E}_{\varepsilon}\left\|\sum_{j} \varepsilon_{j} P_{j} \cdot\left[\partial_{j} T_{j}\right]\right\|_{S^{p}} \leq \\
C p^{3 / 2}\left(\left\|\left(\sum_{i}\left(\partial_{i} T_{i}\right)^{*}\left(\partial_{i} T_{i}\right)\right)^{1 / 2}\right\|_{S^{p}}+\right. \\
\left.\left\|\left(\sum_{i} P_{i}\left(\partial_{i} T_{i}\right)\left(\partial_{i} T_{i}\right)^{*} P_{i}\right)^{1 / 2}\right\|_{S^{p}}\right)
\end{gathered}
$$

The second term is equal to the first one, because $\partial_{i} T_{i}$ does not have Q_{i} in it, so P_{i} can be carried be through to make $P_{i}^{2}=I$. But if $T_{i}=T_{f_{i}}$ then

$$
\left\|\left(\sum_{i}\left(\partial_{i} T_{i}\right)^{*}\left(\partial_{i} T_{i}\right)\right)^{1 / 2}\right\|_{s^{p}}=\left\|\left(\sum_{i}\left|D_{i} f_{i}\right|^{2}\right)^{1 / 2}\right\|_{p}
$$

10. Quantum r. v. $L^{p}\left(L^{q}\right), 2 \leq q \leq p$, on Hamming cube

Nothing should depend on n, N below. Consider the space (algebra) of matrices M, where M is block diagonal with n blocks each $N \times N$. Call blocks m_{1}, \ldots, m_{n}.
Consider the following norm on M (it is a norm):
$\|M\|_{S^{p}\left(\ell^{q}\right)}:=\left\|\left[\left(m_{1} * m_{1}\right)^{q / 2}+\ldots+\left(m_{n} * m_{n}\right)^{q / 2}\right]^{1 / q}\right\|_{S_{p}}$.
Now what about NCK (non-commutative Khintchine) in this norm? Namely, let $p \geq 2$. Let M_{1}, \ldots, M_{k} be a collection of such block diagonal matrices.
Then $M_{i} * M_{i}$ are also block diagonal, $\sum_{i} M_{i} * M_{i}$ is also such and [$\left.\sum_{i} M_{i} * M_{i}\right]^{1 / 2}$ is also a block diagonal matrix as above.
So we can ask the question: consider $p \geq 2$ and consider $\mathbb{E}_{\varepsilon}\left\|\varepsilon_{1} M_{1}+\ldots+\varepsilon_{k} M_{k}\right\|_{S_{p}\left(\ell^{q}\right)}$. Is it bounded (independent of n, N, k) by $C_{p, q}\left(\left\|\left[\sum_{i} M_{i} * M_{i}\right]^{1 / 2}\right\|_{S_{p}(\ell q)}+\left\|\left[\sum_{i} M_{i} M_{i} *\right]^{1 / 2}\right\|_{S_{p}(\ell q)}\right)$? We know that this is true in the regime $2 \leq q \leq p$, and in the regime $p \leq q \leq 2$. We are most interested in the regime $2 \leq p \leq q$, where we do not know the answer.

A. Margulis sharp threshold theorem on Erdös-Rényi graphs and L^{1}-Poincaré type inequalities

Poincaré inequalities on Hamming cube: analysis, combinatorics, probability

B. Hamming cube

Consider the Hamming cube $\{-1,1\}^{n}$ of an arbitrary dimension $n \geq 1$. For any $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ define the discrete gradient

$$
|\nabla f|^{2}(x)=\sum_{y \sim x}\left(\frac{f(x)-f(y)}{2}\right)^{2}
$$

where the summation is over all neighbor vertices of x in $\{-1,1\}^{n}$. Set

$$
\mathbb{E} f=\frac{1}{2^{n}} \sum_{x \in\{-1,1\}^{n}} f(x)
$$

C. Discrete surface measure

Let $f=\mathbf{1}_{A}$. Then
$\left|\nabla \mathbf{1}_{A}\right|^{2}(x):=w_{A}(x):=$ number of neighbors of x of opposite color.
Consider also

$$
h_{A}(x):=w_{A}(x) \mathbf{1}_{A}(x)
$$

We are interested in estimates of

$$
\int \sqrt{w_{A}(x)} d \mu(x), \quad \int \sqrt{h_{A}(x)} d \mu(x)
$$

from below (μ can be $\mu_{p}, 0<p<1$) by p and $\mu(A)$ but not on n. Why? Why this is even possible? Why square root?

D. Without square root: isoperimetry for boundary edges

This is the portion of boundary edges of a subset A of a Hamming cube:

$$
\int w_{A}(x) d \mu(x)
$$

Given $t=\mu(A)$ what is the minimal number of boundary edges and what are extremal sets? Harper: The edge-extremal sets are given by the first points in the lexicographical order of Hamming cube. In particular, when $t=2^{-k}$, these are sub-cubes:
$A=\left\{(1, \ldots, 1) \times\{-1,1\}^{n-k}\right\}$. For $t=\frac{1}{2}$ these are exactly faces of the cube. For such sets

$$
\int w_{A}(x) d \mu(x)=2 t \log \frac{1}{t}, \quad t=\mu(A)
$$

which is very far from the estimate, as

$$
\int \sqrt{w_{A}(x)} d \mu(x) \geq I(t) \asymp t \sqrt{\log \frac{1}{t}}, t \approx 0 .
$$

By Cauchy inequality

$$
\int w_{A}(x) d \mu(x) \geq \frac{\left(\int \sqrt{w_{A}(x)} d \mu(x)\right)^{2}}{\mu(\partial A)} \geq c \frac{t^{2} \log \frac{1}{t},}{t} \quad \text { if } t=\mu(A)
$$

so it follows from

$$
\int \sqrt{w_{A}(x)} d \mu(x) \geq c t \sqrt{\log \frac{1}{t}}
$$

$$
\int_{\partial_{A}} \sqrt{w_{A}} d \mu_{P} \geq I\left(\mu_{P}(A)\right),
$$

$I(t):=\Phi^{\prime}\left(\Phi^{-1}(t)\right), \Phi(x):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-u^{2} / 2} d u$.
But $\sqrt{w_{A}}$ is essentially $\left|\nabla \mathbf{1}_{A}\right|$. What if we want to have functional inequality of the type above? One such thing exists as Bobkov inequality for any $f, 0 \leq f \leq 1$, on Hamming cube:

$$
\int \sqrt{|\nabla f|^{2}+I^{2}(f)} d \mu \geq I\left(\int f d \mu\right) .
$$

In fact, this is discrete generalization of Bobkov's gaussian inequality. When $\mu(A)=1 / 2$, we get L^{1}-Poincaré inequality for characteristic functions on Hamming cube:

$$
\begin{aligned}
& \mathbb{E}\left|\mathbf{1}_{A}-1 / 2\right|=1 / 2=\sqrt{\frac{\pi}{2}} \cdot \frac{1}{\sqrt{2 \pi}}=\sqrt{\frac{\pi}{2}} \mathbb{E}\left|\nabla \mathbf{1}_{A}\right|=\sqrt{\frac{\pi}{2}} \mathbb{E} \sqrt{w_{A}} . \\
& \operatorname{PDE} M_{x x} M_{y y}-M_{x y}^{2}+\frac{M_{y} M_{y y}}{y}=0, M(x, y)=-\sqrt{y^{2}+I^{2}(x)} .
\end{aligned}
$$

G. Margulis' estimate and Talagrand's estimate

Margulis normalized the integral $\int w_{A}(x) d \mu(x)$, he considered
$\mu(\partial A) \int_{\partial A} w_{A}(x) d \mu(x) \geq$ and $\mu_{p}\left(\partial_{+} A\right) \int_{\partial_{+} A} h_{A} d \mu_{p} \geq c(p, \mu(A))$.
By Schwarz inequality this is bounded $\geq \int_{\partial A} \sqrt{w_{A}} d \mu$, $\geq \int_{\partial_{+} A} \sqrt{h_{A}} d \mu$. And Talagrand made the above Margulis estimates more precise by introducing square root:

$$
\int_{\partial_{+} A} \sqrt{h_{A}} d \mu \geq c_{P} \mu_{\rho}(A)\left(1-\mu_{\rho}(A)\right) \sqrt{\log \left(\frac{1}{\mu_{p}(A)\left(1-\mu_{p}(A)\right)}\right)}
$$

The "surface measures" 1) $\int_{\partial A} \sqrt{W_{A}} d \mu$, 2) $\int_{\partial_{+} A} \sqrt{h_{A}} d \mu$ turned out to be the desired discrete analogs of the gaussian perimeter $\gamma_{n}^{+}(\partial A)$.

H. Margulis-Russo lemma and its consequences

For monotone subsets A of Hamming cube

$$
\frac{d}{d p} \mu_{p}(A)=\frac{1}{p} \int h_{A} d \mu_{p}
$$

Suppose $h_{A}(x) \geq k, x \in \partial_{+} A$. Then Talagrand's estimate gives:

$$
\begin{aligned}
& \frac{d}{d p} \mu_{\rho}(A) \geq \frac{\sqrt{k}}{p} \int \sqrt{h_{A}} d \mu_{p} \geq \frac{\sqrt{k}}{p} \mu_{p}(A)\left(1-\mu_{p}(A)\right) . \\
& \int_{p_{1}}^{p_{2}} \frac{d}{d p} \log \frac{\mu_{p}(A)}{1-\mu_{p}(A)} \geq \int_{p_{1}}^{p_{2}} \frac{\sqrt{k}}{p} d p \geq \sqrt{k}\left(p_{2}-p_{1}\right) .
\end{aligned}
$$

If $p_{1}<p_{2}$ and $\mu_{p_{1}}(A)=\varepsilon=0.1, \mu_{p_{2}}(A)=1-\varepsilon=0.9$, then
$\sqrt{k}\left(p_{2}-p_{1}\right) \leq 2 \log \frac{1-\varepsilon}{\varepsilon}=2 \log 9$.

I. Sharp threshold and application to networks

$$
\sqrt{k}\left(p_{2}-p_{1}\right) \leq 2 \log \frac{1-\varepsilon}{\varepsilon}=2 \log 9 .
$$

This means that on interval of p^{\prime} of size $\asymp \frac{1}{\sqrt{k}}$ the probability of A ($=\mu_{p}(A)$) changes from 0.9 to 0.1 -very sharp change if k is big. This is called sharp threshold theorem of Margulis. Let G be a fixed connected graph with very large n number of edges. Let us delete edges independently with probability p. This Erdös-Renyi random graphs are in one to one correspondence with vertices of Hamming cube ($\{-1,1\}^{n}, \mu_{\rho}$), where 1 on i-th place of vertex means that i-th edge is deleted. Let G has connectivity $k-G$ rests connected if less than k edges are deleted. Let A be vertices corresponding to disconnected graphs. It is obviously monotone.
Exercise: If $x \in \partial_{+} A$ then it has at least k connected neighbors, that is $h_{A}(x) \geq k$.

|1. Sharp threshold and application to networks

$$
\sqrt{k}\left(p_{2}-p_{1}\right) \leq 2 \log \frac{1-\varepsilon}{\varepsilon}=2 \log 9 .
$$

This means that on interval of p^{\prime} of size $\asymp \frac{1}{\sqrt{k}}$ the probability of A $\left(=\mu_{p}(A)\right)$ changes from 0.9 to 0.1 -very sharp change if k is big. This is called sharp threshold theorem of Margulis. Let G be a fixed connected graph with very large n number of edges. Let us delete edges independently with probability p. This Erdös-Renyi random graphs are in one to one correspondence with vertices of Hamming cube ($\{-1,1\}^{n}, \mu_{\rho}$), where 1 on i-th place of vertex means that i-th edge is deleted. Let G has connectivity $k-G$ rests connected if less than k edges are deleted. Let A be vertices corresponding to disconnected graphs. It is obviously monotone.
Exercise: If $x \in \partial_{+} A$ then it has at least k connected neighbors, that is $h_{A}(x) \geq k$.

I2. Sharp threshold and application to networks

Conclusion: if connectivity a priori is k then on an interval of "rupture" probability $\approx k^{-1 / 2}$ the network goes from large probability of being disrupted to small probability.

J. Coming back to Poincaré inequalities on Hamming cube

$$
\int\left|f-\int f d \mu\right|^{q} d \mu \leq C_{q} \int|\nabla f|^{q} d \mu, \quad 1 \leq q<\infty .
$$

New notation

$$
\mathbb{E}|f-\mathbb{E} f|^{q} \leq C_{q} \mathbb{E}|\nabla f|^{q} .
$$

The sharp constant is known only for $q=2: C_{2}=1$. Extremal functions are characteristic functions of the faces.

Theorem (Ivanisvili-Volberg)

For $1<q \leq 2$, any $n \geq 1$ and any $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ we obtain $\left(\mathbb{E}|f|^{q}-|\mathbb{E} f|^{q}\right) \leq C_{q}^{q}\|\nabla f\|_{q}^{q}$, where $C(q)^{-1}$ is the smallest positive zero of the confluent hypergeometric function ${ }_{1} F_{1}\left(q / 2(1-q), 1 / 2, x^{2} / 2\right)$.

Approach is based on a certain duality between the classical square function estimates on Euclidean space and the gradient estimates on the Hamming cube. Constant $C(2)=1, C(1+)=0$. The latter is not What is known about $\begin{gathered}\text { Alexander Volberg } \\ \text { A solution of Enflo's problem }\end{gathered}$

K. Cheeger's inequality and Ben Efraim-Lust-Piquard

On gaussian space

$$
\int\left|f-\int f d \gamma_{n}\right| d \gamma_{n} \leq \sqrt{\frac{\pi}{2}} \int|\nabla f| d \mu, \quad 1 \leq q<\infty
$$

and the constant is sharp. Proved by Cheeger and then by Maurey-Pisier and differently by Ledoux. On Hamming cube Ben Efraim-Lust-Piquard proved

$$
\mathbb{E}|f-\mathbb{E} f| \leq \frac{\pi}{2} \mathbb{E}|\nabla f|
$$

The method of the proof was absolutely vertiginous and I got hooked.
The idea was to embed this commutative problem about functions to non-commutative problem about operators.

L. Lust-Piquard's idea of $\mathbb{E}|f-\mathbb{E} f| \leq \frac{\pi}{2} \mathbb{E}|\nabla f|$

$\{-1,1\}^{n}$ is Hamming cube of dimension n. Pauli matrices

$$
Q=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad P=\left[\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right] \quad U=i Q P=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Then Q is the matrix of mult. by x_{1} in $L^{2}(\{-1,1\})$ in basis $\left\{\mathbf{1}, \mathbf{x}_{\mathbf{1}}\right\}$. Alg. spanned by Q is isom. $L^{\infty}(\{-1,1\})$-mult. oper. on $L^{2}(\{-1,1\})$, and \mathcal{M}_{2} is non-comm. alg. spanned by P, Q. $\mathcal{M}_{2^{n}}=\mathcal{M}_{2} \otimes \ldots \mathcal{M}_{2^{-}}$alg. of all $2^{n} \times 2^{n}$ matrices. $M_{2^{n}}$ is commutative sub. alg. generated by $Q_{j}:=I \otimes \ldots Q \otimes \ldots l$, which are oper. of mult. on x_{j} in $L^{2}\left(\{-1,1\}^{n}\right)$. $\mathcal{E}_{n}: \mathcal{M}_{2^{n}} \rightarrow M_{2^{n}}$ ($\operatorname{trace}\left(Q_{A} \mathcal{E}_{n}(S)\right)=\operatorname{trace}\left(Q_{A} S\right)$). Consider multipl. oper. M_{f} on $L^{2}\left(\{-1,1\}^{n}\right) . R_{\theta}:=\left[\begin{array}{cc}1 & 0 \\ 0 & e^{i \theta}\end{array}\right], \mathcal{R}_{\theta}:=R_{\theta}^{\otimes n}$.

Theorem

Then $\cos ^{\Delta} \theta(f)=\mathcal{E}_{n}\left(\mathcal{R}_{\theta}^{*} M_{f} \mathcal{R}_{\theta}\right)=\mathcal{E}_{n}\left(e^{\theta \mathcal{D}} M_{f}\right)$, \mathcal{D} generator of semi-group flow $T \rightarrow \mathcal{R}_{\theta}^{*} T \mathcal{R}_{\theta}$ on matrices.

K1. Lust-Piquard's idea of $\mathbb{E}|f-\mathbb{E} f| \leq \frac{\pi}{2} \mathbb{E}|\nabla f|$

Theorem

Let f be a scalar function on Hamming cube, M_{f} is a multiplication on f operator. Then $(\cos \theta)^{\Delta}(f)=\mathcal{E}_{n}\left(\mathcal{R}_{\theta}^{*} T \mathcal{R}_{\theta}\right)=\mathcal{E}_{n}\left(e^{\theta \mathcal{D}} M_{f}\right), \mathcal{D}$ generator of semi-group flow $T \rightarrow \mathcal{R}_{\theta}^{*} T \mathcal{R}_{\theta}$ on matrices.

Theorem

$L^{\infty}\left(\{-1,1\}^{n}\right)=M_{2^{n}} \subset \mathcal{M}_{2^{n}}$ extends to isometry $L^{1}\left(\{-1,1\}^{n}\right) \rightarrow \sigma_{1}\left(\mathcal{M}_{2^{n}}, 2^{-n}\right.$ trace) (trace class operators).

Theorem

Projection $\mathcal{E}_{n}: \mathcal{M}_{2^{n}} \rightarrow M_{2^{n}}$ is contraction in σ_{1} (trace) norm.
Theorem (Ben Efraim-Lust-Piquard)
$\left\|\int_{0}^{\pi / 2} \varphi(\theta) \frac{d}{d \theta}(\cos \theta)^{\Delta} f d \theta\right\|_{L^{1}} \leq\|\nabla f\|_{L^{1}} \int_{0}^{\pi / 2}|\varphi(\theta)|$.

For any function on discrete cube $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ Poincaré inequality is

$$
\operatorname{Var}(f):=\mathbb{E}|f-\mathbb{E} f|^{2} \leq \mathbb{E}\|D f\|^{2}, \quad D f=\left(D_{1} f, \ldots, D_{n} f\right)
$$

For linear functions it is very good, for Boolean functions $\left(f:\{-1,1\}^{n} \rightarrow\{-1,1\}\right.$ or $\left.f:\{-1,1\}^{n} \rightarrow\{0,1\}\right)$ it is quite bad. For Boolean functions $\operatorname{lnf}_{i} f:=$
$\mathbb{E}\left|D_{i} f\right|=\mathbb{E}\left|D_{i} f\right|^{2}=\operatorname{Pr}\left(\right.$ of $x \in\{-1,1\}^{n}$ such that the flip of x_{i} changes $\left.f\right)$
So if $f(x)=\operatorname{maj}_{n}(x)=21_{\sum x_{j} \geq n / 2}-1$ we can see $\operatorname{Inf}_{i} f \asymp n^{-1 / 2}$, $\mathbb{E}\|D f\|^{2}=\sum \operatorname{lnf} f \asymp n^{1 / 2}$ but $\operatorname{Var}(f)=1$. Very much off.

T2. Better Poincaré inequality for booleans

KKL (Kahn-Kalai-Linial, 1988) and Funny corollaries,

$$
\operatorname{Var}(f) \log \frac{1}{\max _{i} \ln f_{i} f} \leq C \mathbb{E}\|D f\|^{2}
$$

Corollary

Let f be Boolean. Then $\max _{i} \operatorname{Inf} f \geq c \frac{\log n}{n} \operatorname{Var}(f)$.

$$
\operatorname{Var}(f) \leq \mathbb{E}\|D f\|^{2}=\sum_{i=1}^{n} \operatorname{In} f_{i} f \Rightarrow \max _{i} \operatorname{In} f_{i} f \geq \frac{1}{n} \operatorname{Var}(f) .
$$

Corollary

Let f be Boolean and monotone (voting function). Let $\mathbb{E} f \geq-0.99$. Then candidate 1 can bribe selected o(n) (actually $\left.O\left(\frac{n}{\log n}\right)\right)$ votes in such a way that $\mathbb{E} f_{\text {bribed }} \geq 0.99$.

Here $f_{\text {bribed }}$ means that there exists $J \subset\{1,2, \ldots, n\}, J \left\lvert\, \leq C \frac{n}{\log n}\right.$, $\bar{J}:=\{1,2, \ldots, n\} \backslash J$, such that $f_{\text {bribed }}=f_{\bar{J}(1, \ldots, 1) \text { on } J}$.

T3. Another better Poincaré inequality

Theorem (Falik-Samorodnitsky, Rossignol, 2005)

Any function $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$

$$
\operatorname{Var}(f) \log \frac{\operatorname{Var}(f)}{\sum_{i=1}^{n}\left(\mathbb{E}\left|D_{i} f\right|\right)^{2}} \leq C \mathbb{E}\|D f\|^{2}
$$

Heat semigroup, $P_{t} f=\sum_{S \subset\{1, \ldots, n\}} e^{-t|S|} \hat{f}(S) x^{s}$, we get

$$
\frac{d}{d t} \operatorname{Var}\left(P_{t} f\right)=-\mathbb{E}\left\|D P_{t} f\right\|^{2} \leq-\frac{1}{c} \operatorname{Var}\left(P_{t} f\right) \log \frac{\operatorname{Var}\left(P_{t} f\right)}{\sum\left(\mathbb{E}\left|D_{i} P_{t} f\right|\right)^{2}},
$$

We integrate inequality (deleting $P_{t} f$ in denominator): $t \leq 1$

$$
\operatorname{Var}\left(P_{t} f\right) \leq \operatorname{Var}(f)\left(\frac{\sum\left(\mathbb{E}\left|D_{i} P_{t} f\right|\right)^{2}}{\operatorname{Var}(f)}\right)^{c t}
$$

Any f !

T4. Keller-Kindler theorem

Theorem (Keller-Kindler, 2012)
Any function Boolean $f:\{-1,1\}^{n} \rightarrow\{0,1\}$

$$
\operatorname{Var}\left(P_{t} f\right) \leq C \operatorname{Var}(f)\left(\sum\left(\mathbb{E}\left|D_{i} P_{t} f\right|\right)^{2}\right)^{c t}
$$

Proof.

We saw that for any real $f, \operatorname{Var}\left(P_{t} f\right) \leq \operatorname{Var}(f)\left(\frac{\sum\left(\mathbb{E}\left|D_{i} P_{t} f\right|\right)^{2}}{\operatorname{Var}(f)}\right)^{c t}$. If $\operatorname{Var}(f) \geq\left(\sum\left(\mathbb{E}\left|D_{i} P_{t} f\right|\right)^{2}\right)^{1 / 2}$, we are immediately done.
If $\operatorname{Var}(f) \leq\left(\sum\left(\mathbb{E}\left|D_{i} P_{t} f\right|\right)^{2}\right)^{1 / 2}$ we use that for Boolean f by hypercontractivity,
$\operatorname{Var}\left(P_{t} f\right) \leq \operatorname{Var}(f) \operatorname{Var}(f)^{c t} \leq \operatorname{Var}(f)\left(\sum\left(\mathbb{E}\left|D_{i} P_{t} f\right|\right)^{2}\right)^{c t / 2}$ and we are also done.

T5. Ultimate better Poincaré inequality for boolean f. Talagrand's conjecture 1997

Theorem (Eldan-Gross, solution of Talagrand's conjecture, 2020)
Let f be boolean. Then

$$
\operatorname{Var}(f) \sqrt{\log \frac{e}{\sum_{i=1}^{n}\left(\mathbb{E}\left|D_{i} f\right|\right)^{2}}} \leq C \mathbb{E}\|D f\| .
$$

Compare with $\mathrm{F}-\mathrm{S}, \mathrm{R}$ and it is not a square root:

$$
\operatorname{Var}(f) \log \frac{\operatorname{Var}(f)}{\sum_{i=1}^{n}\left(\mathbb{E}\left|D_{i} f\right|\right)^{2}} \leq C \mathbb{E}\|D f\|^{2} .
$$

Talagrand himself proved that there exists $a \in(0,1 / 2]$ such that

$$
\operatorname{Var}(f)\left(\log \frac{e}{\sum_{i=1}^{n}\left(\mathbb{E}\left|D_{i} f\right|\right)^{2}}\right)^{a}\left(\log \frac{e}{\operatorname{Var}(f)}\right)^{\frac{1}{2}-a} \leq C \mathbb{E}\|D f\| .
$$

1) From Keller-Kindler theorem above it follows immediately that for Boolean f

$$
t \geq t_{*}:=1 / \log \frac{c}{\sum\left(\mathbb{E}\left|D_{i} f\right|\right)^{2}} \Rightarrow \operatorname{Var}\left(P_{t} f\right) \leq \frac{1}{2} \operatorname{Var}(f)
$$

2) For $f:\{-1,1\}^{n} \rightarrow\{0,1\}, \mathbb{E}|f-\mathbb{E} f|=2(\operatorname{Var}(f)-\operatorname{Var}(\mathbb{E} f))$. Similarly, $\mathbb{E}\left|f-P_{t} f\right|=2\left(\operatorname{Var}(f)-\operatorname{Var}\left(P_{t} f\right)\right)$. Hence,

$$
\operatorname{Var}(f)=\frac{1}{2} \mathbb{E}\left|f-P_{t} f\right|+\operatorname{Var}\left(P_{t} f\right)
$$

3) $\mathbb{E}\left|f-P_{t} f\right|=\int_{0}^{t} \frac{e^{-s}}{\sqrt{1-e^{-2 s}}} \mathbb{E}_{\varepsilon, \xi}\left|\sum_{i=1}^{n} \delta_{i}(t) D_{i} f(\varepsilon)\right| d s$. Our formula. So $\mathbb{E}\left|f-P_{t} f\right| \leq C \int_{0}^{t} \frac{1}{\sqrt{s}} \mathbb{E}_{\varepsilon}\|D f(\varepsilon)\| d s=C \sqrt{t} \mathbb{E}\|D f\|$.
4) And here is the proof of Talagrand's conjecture, combine 2) then 3) then 1) and get

$$
t=t_{*} \Rightarrow \operatorname{Var}(f) \leq C \sqrt{\frac{1}{\log \frac{c}{\sum\left(\mathbb{E}\left|D_{i} f\right|\right)^{2}}}} \mathbb{E}\|D f\|+\frac{1}{2} \operatorname{Var}(f)
$$

