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The Goal of the Talk

Advertise the use of Self-Similar Groups in Dynamics and Spectral
Theory of Graphs.

Explain how renormalization appear in the association with self-similar
groups.

Present some results

Outline further research.
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The first Renormalization maps

N.Sibony 2008: “But this are very special maps.”

M. Lyubich 2019: “Intrinsically, they are too degenerate”.
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M. Lyubich 2019: “Intrinsically, they are too degenerate”.

F :

(
x
y

)
7→




2x2

4−y2

y + xy2

4−y2




G :

(
x
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)
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2(4−y2)
x2

−y + 4(4−y2)
x2
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The first Renormalization maps

N.Sibony 2008: “But this are very special maps.”

M. Lyubich 2019: “Intrinsically, they are too degenerate”.

F :

(
x
y

)
7→




2x2

4−y2

y + xy2

4−y2




G :

(
x
y

)
7→




2(4−y2)
x2

−y + 4(4−y2)
x2




Both maps come from the same group G = 〈a, b, c , d〉 called the First
G-group and we will call them respectively the “First” and the “Second”
map.
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The group G has intermediate growth between polynomial and
exponential and answered in 1984 the question of J. Milnor from 1967. It
is also the first example of amenable but not elementary amenable
group.
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The group G has intermediate growth between polynomial and
exponential and answered in 1984 the question of J. Milnor from 1967. It
is also the first example of amenable but not elementary amenable
group.

Both maps are “responsible” for the same spectrum (a joint spectrum of
a certain pencil of operators associated with G.

Rostislav Grigorchuk (TAMU) 5/30/2019 5 / 52



The Basilica map

B :

(
x
y

)
7→




−2 + x(x−2)
y2

2−x
y2




comes from the Basilica group B generated by automaton
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The Basilica map

B :

(
x
y

)
7→




−2 + x(x−2)
y2

2−x
y2




comes from the Basilica group B generated by automaton

B ≃ IMG (z2 − 1) – iterated monodromy group. B is the first example of
amenable but not subexponentially amenable group.
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The Lamplighter map

L :

(
x
y

)
7→




x2−y2−2
y−x

2
y−x
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The Lamplighter map

L :

(
x
y

)
7→




x2−y2−2
y−x

2
y−x




comes from the Lamplighter group L = Z/2Z ≀ Z = (⊕ZZ/2Z)⋊ Z

realized as a group generated by the automaton

a b1/0

1/1

0/1
0/0
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The Lamplighter map

L :

(
x
y

)
7→




x2−y2−2
y−x

2
y−x




comes from the Lamplighter group L = Z/2Z ≀ Z = (⊕ZZ/2Z)⋊ Z

realized as a group generated by the automaton

a b1/0

1/1

0/1
0/0

Observe
x ′ + y ′ = x + y

where (x ′, y ′) = F (x , y). Hence lines x + y = c are L-invariant.
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The Hanoi map

Introduced by Z. Šuńıc and Grigorchuk in 2007

H :

(
x
y

)
7→




x − 2(x2−x−y2)y2

(x−y−1)(x2+y−y2−1)

(x+y−1)y2

(x−y−1)(x2+y−y2−1)
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The Hanoi map

Introduced by Z. Šuńıc and Grigorchuk in 2007

H :

(
x
y

)
7→




x − 2(x2−x−y2)y2

(x−y−1)(x2+y−y2−1)

(x+y−1)y2

(x−y−1)(x2+y−y2−1)




comes from the Hanoi group H(3) associated with the Hanoi Towers
Game on three pegs and realized as a group generated by the automaton

a01

a02

a12

0

0

0 1

1

1

2

2

2
(01)

(02)

(12)

id
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More about the first two maps

The map ψ : C2 → C

ψ(x , y) =
4 + x2 − y2

4x

semi-conjugates the First map F to the Chebyshev map
α : C → C, α(z) = 2z2 − 1.
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The F -preimage of the “horizontal” hyperbola
Fθ = 4 + x2 − y2 − 4θx is the union Fθ1 ∪ Fθ2 of two hyperbolas,
where θ1, θ2 are preimages of θ under the Chebyshev map α.

For values of θ in the interfal [−1, 1] the parts of these hyperbolas fill
the domain Ω whose closure Ω̄ is bounded by the lines x ± y = ±2 .
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The map

ϕ(x , y) =
4− x2 + y2

4y

semi-conjugates F to the identity map id : C → C and the “vertical”
hyperbolas Hϕ = {(x , y) : 4− x2 + y2 − 4ϕy = 0} are F -invariant.
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The map

ϕ(x , y) =
4− x2 + y2

4y

semi-conjugates F to the identity map id : C → C and the “vertical”
hyperbolas Hϕ = {(x , y) : 4− x2 + y2 − 4ϕy = 0} are F -invariant.

The map π = (ϕ,ψ) : C2 → C
2 semi-conjugates F with id × α.
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This allows to understand the dynamics of F and also to prove

Theorem (Little L-G Equidistribution Theorem)

Let Γ and S be two irreducible algebraic curves in C
2 in coordinates (ϕ,ψ)

such that Γ is not a vertical hyperbola while S is not a horizontal
hyperbola. Then

1

2n
[(F n)∗Γ ∩ S ] → (degΓ) · (degS) · ωS ,

where ωS is the restriction of the 1-form ω = dψ

π
√

1−ψ2
to S.

Here [S ] is the counting measure.
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This allows to understand the dynamics of F and also to prove

Theorem (Little L-G Equidistribution Theorem)

Let Γ and S be two irreducible algebraic curves in C
2 in coordinates (ϕ,ψ)

such that Γ is not a vertical hyperbola while S is not a horizontal
hyperbola. Then

1

2n
[(F n)∗Γ ∩ S ] → (degΓ) · (degS) · ωS ,

where ωS is the restriction of the 1-form ω = dψ

π
√

1−ψ2
to S.

Here [S ] is the counting measure.

This is a starting point for the project initiated few years ago at the
Saas-Fee ski resort in Switzerland by Misha Lyubich and speaker, and now
accompany by Nguen-Bac Dong. More on this at the end of the talk.
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“Extended” version of the first map F

F̃ :




x
y
z
u
v




7→




z + y
x2(2yzv−u(y2+z2−u2+v2))

(y+z+u+v)(y+z−u−v)(y−z+u−v)(−y+z+u−v)
x2(2zuv−y(−y2+z2+u2+v2))

(y+z+u+v)(y+z−u−v)(y−z+u−v)(−y+z+u−v)
x2(2yuv−z(y2−z2+u2+v2))

(y+z+u+v)(y+z−u−v)(y−z+u−v)(−y+z+u−v)

u + v + x2(2yzu−v(y2+z2+u2−v2))
(y+z+u+v)(y+z−u−v)(y−z+u−v)(−y+z+u−v)
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“Extended” version of the second map G

G̃ :




x
y
z
u
v




7→




x2(y+z)
(u+v+y+z)(u+v−y−z)

u
y
z

v − x2(u+v)
(u+v+y+z)(u+v−y−z)
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“Extended” version of the second map G

G̃ :




x
y
z
u
v




7→




x2(y+z)
(u+v+y+z)(u+v−y−z)

u
y
z

v − x2(u+v)
(u+v+y+z)(u+v−y−z)




F̃ and G̃ viewed as the maps in R
5 have a common invariant set Ω̃. It is

known that sections of Ω̃ by generic lines are Cantor sets, while sections in
some specific directions are unions of two intervals. The set Ω̃ represents a
joint spectrum of a certain pencil of operators associated with G.
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Hierarchy of graphs

Γ = (V ,E ) – connected non oriented graph
V – vertices
E – edges.
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Hierarchy of graphs

Γ = (V ,E ) – connected non oriented graph
V – vertices
E – edges.

{locally finite} ⊃
{

bounded
degree

}
⊃ {regular} ⊃

{
vertex

transitive

}
⊃ {Cayley}

{regular} ⊃ {Schreier}
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Hierarchy of graphs

Γ = (V ,E ) – connected non oriented graph
V – vertices
E – edges.

{locally finite} ⊃
{

bounded
degree

}
⊃ {regular} ⊃

{
vertex

transitive

}
⊃ {Cayley}

{regular} ⊃ {Schreier}

Proposition

Each 2k-regular graph can be realized as a Schreier graph of a free group
Fk on k generators
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Graphs associated with groups

Cayley graph
G = 〈S〉 a group with generating set S  Γ = Γ(G ,S) – Cayley graph
V = G
E = {(x , sx) : x ∈ G , s ∈ S}
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Graphs associated with groups

Cayley graph
G = 〈S〉 a group with generating set S  Γ = Γ(G ,S) – Cayley graph
V = G
E = {(x , sx) : x ∈ G , s ∈ S}
Schreier graph
H a subgroup of G  Γ = Γ(G ,H,S) – Schreier graph
V = {gH : g ∈ G}
E = {(gH, sgH) : g ∈ G , s ∈ S}
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Graphs associated with groups

Cayley graph
G = 〈S〉 a group with generating set S  Γ = Γ(G ,S) – Cayley graph
V = G
E = {(x , sx) : x ∈ G , s ∈ S}
Schreier graph
H a subgroup of G  Γ = Γ(G ,H,S) – Schreier graph
V = {gH : g ∈ G}
E = {(gH, sgH) : g ∈ G , s ∈ S}
Cayley and Schreier graphs are d -regular, d = 2|S |. Schreier graphs are
generalization of the Cayley graphs and correspond to the case when
H = {e} is a trivial subgroup.
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Schreier graphs of group G
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Schreier graphs of group G

This and the next figure contain a hidden information, including the Gray
code.
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Schreier graph of Hanoi group H(3)

000 200 210 110 112 012 022 222

122212
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211
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a a a

a

a

a

a

a

a

a

b

b

b

b

b

b
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b

c

c

c

c

c

c

c

c

c

c

c

c

c
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a b

b

b

a
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c

b
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Markov operators

M – Markov operator. In the case of a d -regular graph

(Mf )(x) =
1

d

∑

y∼x

f (y)

where f ∈ l2(V ), and x ∼ y is the adjacency relation.
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Markov operators

M – Markov operator. In the case of a d -regular graph

(Mf )(x) =
1

d

∑

y∼x

f (y)

where f ∈ l2(V ), and x ∼ y is the adjacency relation.

M is self-adjoint and ‖M‖ ≤ 1 ⇒ spectrum sp(M) ⊂ [−1, 1]

Graph Γ is amenable if 1 ∈ sp(M)(⇔ ‖M‖ = 1)

The group is amenable if its Cayley graph is amenable.
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Markov operators

M – Markov operator. In the case of a d -regular graph

(Mf )(x) =
1

d

∑

y∼x

f (y)

where f ∈ l2(V ), and x ∼ y is the adjacency relation.

M is self-adjoint and ‖M‖ ≤ 1 ⇒ spectrum sp(M) ⊂ [−1, 1]

Graph Γ is amenable if 1 ∈ sp(M)(⇔ ‖M‖ = 1)

The group is amenable if its Cayley graph is amenable.

Definition

The spectrum of the marked group (G ,S) is defined as sp(Γ(G ,S))
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Weighted graphs

w : E → R – weight on edges
Mw – weighted “Markov” operator.
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Weighted graphs

w : E → R – weight on edges
Mw – weighted “Markov” operator.

Given symmetric probability distribution P on symmetrized set S ∪ S−1 of
generators one can consider the corresponding Markov operator MP on the
Cayley or on the Schreier graph.

(MP f )(g) =
1

|S |
∑

s∈S∪S−1

P(s)f (sg)
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Weighted graphs

w : E → R – weight on edges
Mw – weighted “Markov” operator.

Given symmetric probability distribution P on symmetrized set S ∪ S−1 of
generators one can consider the corresponding Markov operator MP on the
Cayley or on the Schreier graph.

(MP f )(g) =
1

|S |
∑

s∈S∪S−1

P(s)f (sg)

Isotropic case when P is a uniform distribution on S ∪ S−1 (simple
random walk case)

Anisotropic case – P is not uniform
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Basic questions about spectra of infinite graphs

Question

What could be the shape of the spectrum of a regular graph or a group?

In particular, can it be a Cantor set or at least have infinitely many gaps?
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Basic questions about spectra of infinite graphs

Question

What could be the shape of the spectrum of a regular graph or a group?

In particular, can it be a Cantor set or at least have infinitely many gaps?

Question

Can a torsion free group have a gap in the spectrum?

If YES then we get a counterexample to the Kadison-Kaplanski
Conjecture on idempotents.
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Define a spectral measure by µ(B) = 〈E (B)δe , δe〉 where B ⊂ R Borel
subsets, {E (B)} spectral projections associated with M, δe – delta
function at identity e ∈ G .
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Define a spectral measure by µ(B) = 〈E (B)δe , δe〉 where B ⊂ R Borel
subsets, {E (B)} spectral projections associated with M, δe – delta
function at identity e ∈ G .

Question

What can be said about µ? In particular what are the components of the
decomposition µ = µac + µcs + µpp?
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Some answers

Very little is known.

Spectra of perturbations of lattices Zd , d ≥ 1 (i.e. crristallographic
groups), very classical (Bloch-Floquet theory, Sunada,...)

Regular trees and their perturbations. In particular Cayley graphs of
free products of finite groups.

H. Kesten 1959, K. Aomoto, D. Cartwright, P. Soardi, Italian School:
A. Figa-Talamanca, M. Picardello, W. Woess, T. Steger, G. Kuhn,...

V. Malozemov and A. Teplyaev 1998, Graph of bounded degree and
Cantor spectrum associated with the Sierpinski gasket.

Theorem (L.Bartholdi, R.Grigorchuk 2000)

Spectrum of the Schreier graph can be a Cantor set or a union of a Cantor
set and a countable set of isolated points accumulating to it.
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J.-F. Quint, Analyse harmonique sur le graphe de Pascal 2006

Grigorchuk, Zuk 2002 (Lamplighter group)

Grigorchuk, Savchuk, Sunik 2005 (IMG (z2 + i))

Grigorchuk, Nekrashevych, Self-Similar groups, operator algebras and
Schur complement, 2007

Bajorin, Chen, Dagan, Emmons, Hussein, Khalil, Mody, Steinhurst,
Teplyaev, Vibration spectra of finitely ramified, symmetric fractals,
2008
and many more . . . .

Grigorchuk, Nekrahsevych, Sunic, 2015, survey.
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The spectrum of the Lamplighter group

Theorem (Grigorchuk, A.Zuk, 2001)

The spectrum of the Cayley graph could be a pure point spectrum.
Namely the Cayley graph Γ(L, {a, b}) where a, b are generators of the
lamplighter group L corresponding to the states of the Lamplighter
automaton has a pure point spectrum with the eigenvalues of the form
cos(p

q
π), 1 ≤ p < q, q = 2, 3, . . . , (p, q) = 1 which densely pack the

interval [−1, 1].
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The spectrum of the Lamplighter group

Theorem (Grigorchuk, A.Zuk, 2001)

The spectrum of the Cayley graph could be a pure point spectrum.
Namely the Cayley graph Γ(L, {a, b}) where a, b are generators of the
lamplighter group L corresponding to the states of the Lamplighter
automaton has a pure point spectrum with the eigenvalues of the form
cos(p

q
π), 1 ≤ p < q, q = 2, 3, . . . , (p, q) = 1 which densely pack the

interval [−1, 1].

This result was used by P.Linnel, T.Schick, A.Zuk and speaker to
construct a closed Riemannian manifold of dimension 7 with noninteger
L2-Betti number =1

3 thus answering the question of M.Atiyah and giving a
counterexample to the Strong Atiyah Conjecture
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The Lamplighter map is heavily involved in obtaining of the previous and
the next result
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The Lamplighter map is heavily involved in obtaining of the previous and
the next result
Let Mµ be the operator in l2(L) of convolution with the element
a + a−1 + b + b−1 + µc ∈ C[L] where c = b−1c .
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The Lamplighter map is heavily involved in obtaining of the previous and
the next result
Let Mµ be the operator in l2(L) of convolution with the element
a + a−1 + b + b−1 + µc ∈ C[L] where c = b−1c .

Theorem (B. Simanek – Grigorchuk)

For µ ∈ R, let Mµ be defined as above. For every µ ∈ R, the operator Mµ

has pure point spectrum. Moreover

(a) If |µ| ≤ 1, the eigenvalues of Mµ densely pack the interval
[−4− µ, 4− µ].

(b) If |µ| > 1, the eigenvalues of Mµ form a countable set that densely
packs the interval [−4− µ, 4− µ] and also has an accumulation point
µ+ 2/µ 6∈ [−4− µ, 4− µ].
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The Lamplighter map is heavily involved in obtaining of the previous and
the next result
Let Mµ be the operator in l2(L) of convolution with the element
a + a−1 + b + b−1 + µc ∈ C[L] where c = b−1c .

Theorem (B. Simanek – Grigorchuk)

For µ ∈ R, let Mµ be defined as above. For every µ ∈ R, the operator Mµ

has pure point spectrum. Moreover

(a) If |µ| ≤ 1, the eigenvalues of Mµ densely pack the interval
[−4− µ, 4− µ].

(b) If |µ| > 1, the eigenvalues of Mµ form a countable set that densely
packs the interval [−4− µ, 4− µ] and also has an accumulation point
µ+ 2/µ 6∈ [−4− µ, 4− µ].

Corollary

The spectrum of a Cayley graph can have infinitely many gaps.
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Theorem (B. Simanek–Grigorchuk)

The spectral measure νµ of the operator Mµ is discrete and is given by

νµ =
1

4
δµ +

∞∑

k=2


 1

2k+1

∑

{s:Gk(s,µ)=0}

δs


 ,

where

Gk(z , µ) = 2k
[
Uk

(−z − µ

4

)
+ µUk−1

(−z − µ

4

)]
,

and Uk is the degree k Chebyshev polynomial of the second kind.
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On the question “Can one hear the shape of a group?”

M.Kac 1966 “Can one hear the shape of a drum?”
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On the question “Can one hear the shape of a group?”

M.Kac 1966 “Can one hear the shape of a drum?”

Almost immediately John Milnor observed the existence of a pair of
16-dimensional tori that have the same eigenvalues but different shapes.
However, the problem in dimension 2 remained open until 1992, when
Carolyn Gordon, David Webb, and Scott Wolpert constructed, based on
the Sunada method, a pair of regions in the plane that have different
shapes but identical eigenvalues. The regions are concave polygons.
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On the question “Can one hear the shape of a group?”

M.Kac 1966 “Can one hear the shape of a drum?”

Almost immediately John Milnor observed the existence of a pair of
16-dimensional tori that have the same eigenvalues but different shapes.
However, the problem in dimension 2 remained open until 1992, when
Carolyn Gordon, David Webb, and Scott Wolpert constructed, based on
the Sunada method, a pair of regions in the plane that have different
shapes but identical eigenvalues. The regions are concave polygons.

Two papers with the same title “Can one hear the shape of a group?”:
A.Valette 1993 and K.Fujiwara 2016.
The question asks: “Does the spectrum of the Cayley graph determine it
up to isometry”?
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The answer is NO in a very strong sense.
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The answer is NO in a very strong sense.

Theorem (Artem Dudko–Grigorchuk 2018)

(i) Let Gω = 〈Sω〉, ω ∈ Ω = {0, 1, 2}N,Sω = {a, bωcω, dω} be a family of
groups of of intermediate growth between polynomial and exponential.
Then for each ω ∈ Ω the spectrum of the Cayley graph Γω = Γ(Gω,Sω) is
the union

Σ = [−1

2
, 0] ∪ [

1

2
, 1]
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The answer is NO in a very strong sense.

Theorem (Artem Dudko–Grigorchuk 2018)

(i) Let Gω = 〈Sω〉, ω ∈ Ω = {0, 1, 2}N,Sω = {a, bωcω, dω} be a family of
groups of of intermediate growth between polynomial and exponential.
Then for each ω ∈ Ω the spectrum of the Cayley graph Γω = Γ(Gω,Sω) is
the union

Σ = [−1

2
, 0] ∪ [

1

2
, 1]

(ii) Moreover, for each ω ∈ Ω that is not eventually constant sequence the
group Gω has uncountably many covering amenable groups G̃ = 〈S̃〉
generated by S̃ = {ã, b̃, c̃ , d̃} such that the map
ã → a, b̃ → bω, c̃ → cω, d̃ → dω} extends to a surjective homomorphism
G̃ ։ Gω and the spectrum of the Cayley graphs Γ(G̃ , S̃) is the same set
Σ = [−1

2 , 0] ∪ [12 , 1].
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The answer is NO in a very strong sense.

Theorem (Artem Dudko–Grigorchuk 2018)

(i) Let Gω = 〈Sω〉, ω ∈ Ω = {0, 1, 2}N,Sω = {a, bωcω, dω} be a family of
groups of of intermediate growth between polynomial and exponential.
Then for each ω ∈ Ω the spectrum of the Cayley graph Γω = Γ(Gω,Sω) is
the union

Σ = [−1

2
, 0] ∪ [

1

2
, 1]

(ii) Moreover, for each ω ∈ Ω that is not eventually constant sequence the
group Gω has uncountably many covering amenable groups G̃ = 〈S̃〉
generated by S̃ = {ã, b̃, c̃ , d̃} such that the map
ã → a, b̃ → bω, c̃ → cω, d̃ → dω} extends to a surjective homomorphism
G̃ ։ Gω and the spectrum of the Cayley graphs Γ(G̃ , S̃) is the same set
Σ = [−1

2 , 0] ∪ [12 , 1].

This result is generalized in various directions by T. Nagnibeda, A. Peres
and R. Grigorchuk (work in progress).
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Cayley graph of G
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The proof uses the Hulanicki theorem on characterization of
amenable groups in terms of the weak containment of trivial
representation into regular representation, and
A.Dudko-Grigorchuk Weak Hulanicki type theorem for covering
graphs. The above theorem is for the isotropic case.
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The proof uses the Hulanicki theorem on characterization of
amenable groups in terms of the weak containment of trivial
representation into regular representation, and
A.Dudko-Grigorchuk Weak Hulanicki type theorem for covering
graphs. The above theorem is for the isotropic case.

In the anisotropic case by the result of D. Lenz, T. Nagnibeda and
Grigorchuk we only know that sp(Mp) contains a Cantor subset which
is a spectrum of random Schrödinger operator whose potential is
ruled by the substitutional dynamical system generated by the
substitution

σ : a → aca, b → d , c → b, d → c
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Corollary

There are uncountably many groups with pairwise not quasi-isometric
Cayley graphs but with the same spectrum.

This is because the family Gω, ω ∈ Ω has uncountably many groups with
pairwise different rates of growth and rate of growth is a quasi-isometry
invariant.
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Corollary

There are uncountably many groups with pairwise not quasi-isometric
Cayley graphs but with the same spectrum.

This is because the family Gω, ω ∈ Ω has uncountably many groups with
pairwise different rates of growth and rate of growth is a quasi-isometry
invariant.

Question

Does the spectral measure µ determines Cayley graph up to isometry?

Remark

µ determines the spectrum of M, probabilities P
(n)
e,e of return, the Ihara

zeta function, . . . . Perhaps the answer could be affirmative.

Rostislav Grigorchuk (TAMU) 5/30/2019 32 / 52



Self-similar groups

Given invertible Mealy automaton A with the input and output alphabets
X and set of states Q one defines a group G = G (A) generated by initial
automata Aq, q ∈ Q (the operation is the composition of automata).
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Self-similar groups

Given invertible Mealy automaton A with the input and output alphabets
X and set of states Q one defines a group G = G (A) generated by initial
automata Aq, q ∈ Q (the operation is the composition of automata).

This group has a natural action on a d -regular rooted tree T = TX ,
d = |X | defined by the automaton diagram. Also G acts on the boundary
∂T by homeomorphisms (even by isometries for a natural ultrametric).
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Self-similar groups

Given invertible Mealy automaton A with the input and output alphabets
X and set of states Q one defines a group G = G (A) generated by initial
automata Aq, q ∈ Q (the operation is the composition of automata).

This group has a natural action on a d -regular rooted tree T = TX ,
d = |X | defined by the automaton diagram. Also G acts on the boundary
∂T by homeomorphisms (even by isometries for a natural ultrametric).

The set Q of states serves as a generating set.
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Action on T given by finite initial automaton

Definition (By Example)

S2 = {ε, σ} acts on X = {0, 1}.

a

b

id
1/1

1/1

0/0
0/0

1/0

0/1

A — noninitial automaton,
Aq — initial automaton, q ∈ {a, b, id}.

Aq acts on X ∗ (and on T )
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States:

Input:

Output:

a

b

id
1/1

1/1

0/0
0/0

1/0

0/1

0 0 0 0 1 0 1 1

1 0 1 0 0 0 1 1

↓

↓
a b a b a id id id
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Definition of automaton group

Given an automaton A every state q defines an automorphism Aq of X ∗
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Definition of automaton group

Given an automaton A every state q defines an automorphism Aq of X ∗

Definition

An automaton or self-similar group generated by automaton A is the
group

G (A) = 〈Aq | q is a state of A〉 < AutX ∗
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Definition of automaton group

Given an automaton A every state q defines an automorphism Aq of X ∗

Definition

An automaton or self-similar group generated by automaton A is the
group

G (A) = 〈Aq | q is a state of A〉 < AutX ∗

The examples of automaton groups:

Z = 〈odometer〉
D∞ = 〈a, t : a2 = t2 = 1〉 = infinite dihedral group = IMG(z2 − 2)

G = 〈a, b, c , d〉 the first group of intermediate growth

Basilica B, Hanoi H(3), IMG (z2 + i) and many more important groups.
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Random Schreier graphs

G y ∂T
Vn – nth level of the tree T
Γn – the graph of the action of G on Vn.
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Random Schreier graphs

G y ∂T
Vn – nth level of the tree T
Γn – the graph of the action of G on Vn.
Γx – the graph of the action on the orbit Gx , x ∈ ∂T .
Γx and Γn, n = 1, 2, . . . are Schreier graphs
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Random Schreier graphs

G y ∂T
Vn – nth level of the tree T
Γn – the graph of the action of G on Vn.
Γx – the graph of the action on the orbit Gx , x ∈ ∂T .
Γx and Γn, n = 1, 2, . . . are Schreier graphs

The family {Γx , x ∈ ∂T} is a random graph with respect to the uniform
Bernoulli measure ν = {1/d , . . . , 1/d}N on ∂T which is G -invariant.

Let x = {vn}∞n=1 where vn is vertex of level n on the path x ∈ ∂T .
We have

(Γ, x) = lim
n→∞

(Γn, vn)

(convergence of marked graphs).
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Density of states

Mn – Markov operator on Γn
µn – the counting (or cumulative) measure
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Density of states

Mn – Markov operator on Γn
µn – the counting (or cumulative) measure

µn =
1

dn

∑

λ∈sp(Mn)

δλ

(eigenvalues are presented in the sum according to the multiplicities).
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Theorem (Bartholdi-Grigorchuk 2000, extended version by
A. Dudko-Grigorchuk 2018)

a) The spectrum of graph Γx does not depend on the point x ∈ ∂T and in
amenable case coincide with the set

Σ = ∪nsp(Mn)
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Theorem (Bartholdi-Grigorchuk 2000, extended version by
A. Dudko-Grigorchuk 2018)

a) The spectrum of graph Γx does not depend on the point x ∈ ∂T and in
amenable case coincide with the set

Σ = ∪nsp(Mn)

b) There is a limit
µ∗ = lim

n→∞
µn

called a density of states (or KNS-spectral measure).
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Theorem (Bartholdi-Grigorchuk 2000, extended version by
A. Dudko-Grigorchuk 2018)

a) The spectrum of graph Γx does not depend on the point x ∈ ∂T and in
amenable case coincide with the set

Σ = ∪nsp(Mn)

b) There is a limit
µ∗ = lim

n→∞
µn

called a density of states (or KNS-spectral measure).

µ is the analogue of the density of states for the random
Schrödinger operator.

There is more relation of spectra of graphs with the random
Schrödinger operator via the works of B. Saimon, L. Grabowski and
B. Virag, D.Lenz, T. Nagnibeda and Grigorchuk, B. Simanek and
Grigorchuk.
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Schur Complement, Renormalization, and Self-Similar

Groups

H Hilbert space, H = H1 ⊕ H2

M ∈ B(H) – bounded operator
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Schur Complement, Renormalization, and Self-Similar

Groups

H Hilbert space, H = H1 ⊕ H2

M ∈ B(H) – bounded operator

M =

(
A B
C D

)

matrix representing M according to this decomposition.
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Schur Complement, Renormalization, and Self-Similar

Groups

H Hilbert space, H = H1 ⊕ H2

M ∈ B(H) – bounded operator

M =

(
A B
C D

)

matrix representing M according to this decomposition.

Definition

(i) Assume D ∈ B(H2) is invertible. Then the first Schur complement

S1(M) = A− BD−1C
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Schur Complement, Renormalization, and Self-Similar

Groups

H Hilbert space, H = H1 ⊕ H2

M ∈ B(H) – bounded operator

M =

(
A B
C D

)

matrix representing M according to this decomposition.

Definition

(i) Assume D ∈ B(H2) is invertible. Then the first Schur complement

S1(M) = A− BD−1C

(ii) Assume A ∈ B(H1) is invertible. Then the second Schur complement

S2(M) = D − CA−1B .
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Theorem

Suppose that D is invertible. Then M is invertible if and only if S1(M) is
invertible. Similarly, if A is invertible, then M is invertible if and only if
S2(M) is invertible.
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Theorem

Suppose that D is invertible. Then M is invertible if and only if S1(M) is
invertible. Similarly, if A is invertible, then M is invertible if and only if
S2(M) is invertible.
The inverse is

M−1 =

(
S−1
1 −S−1

1 BD−1

−D−1CS−1
1 D−1CS−1

1 BD−1 + D−1

)
, (1)

where S1 = S1(M).
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Theorem

Suppose that D is invertible. Then M is invertible if and only if S1(M) is
invertible. Similarly, if A is invertible, then M is invertible if and only if
S2(M) is invertible.
The inverse is

M−1 =

(
S−1
1 −S−1

1 BD−1

−D−1CS−1
1 D−1CS−1

1 BD−1 + D−1

)
, (1)

where S1 = S1(M).

Similarly one defines Schur maps Si(M), i = 1, . . . , d for the
decomposition H = H ⊕ H ⊕ · · · ⊕ H (d summands).
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Assume dimH = ∞. Any isomorphism

θ : H → H ⊕ H ⊕ · · · ⊕ H

(d ≥ 2 summands) is called d -similarity (d -similarities are in bijection with
∗-representations of the Cuntz C ∗-algebra Od ).
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Assume dimH = ∞. Any isomorphism

θ : H → H ⊕ H ⊕ · · · ⊕ H

(d ≥ 2 summands) is called d -similarity (d -similarities are in bijection with
∗-representations of the Cuntz C ∗-algebra Od ).

If M(z), z ∈ C
k ,M(z) ∈ B(H) is an operator valued function and we are

interested in a “joint spectrum” sp(M(z)) of M(z) i.e. in

sp(M(z)) = {z : M(z) is not invertible}

then it may happen that
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there are:
1) d -similarity H → H ⊕ H ⊕ · · · ⊕ H
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there are:
1) d -similarity H → H ⊕ H ⊕ · · · ⊕ H

2) a map F : Ck → Ck such that for some i , 1 ≤ i ≤ d

Si(M(z)) = M(F (z))
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there are:
1) d -similarity H → H ⊕ H ⊕ · · · ⊕ H

2) a map F : Ck → Ck such that for some i , 1 ≤ i ≤ d

Si(M(z)) = M(F (z))

In this case the spectral problem usually reduces to the finding of a
suitable F -invariant subset Ω ⊂ C

k .
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The map F is the

Renormalization Map associated with the given spectral problem.
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The map F is the

Renormalization Map associated with the given spectral problem.

The above approach is applicable in many cases related to self-similar
groups and their Schreier graphs, and in all tested cases F is a rational
map.

If d = 2 and F is semi-conjugate to a one-dimensional map f then joint
spectrum can be described completely.
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The example

Z.Sunic and Grigorchuk 2007

Example

Let H = H(3) be the Hanoi Towers group (on three pegs). It is a
self-similar group acting on X ∗ for X = {0, 1, 2} with generators a, b, c
satisfying the following matrix recursions

a =




0 1 0
1 0 0
0 0 a


 ,

b =




0 0 1
0 b 0
1 0 0


 ,

c =




c 0 0
0 0 1
0 1 0


 .
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Consider the two-parametric family matrices

∆(x , y) =




c − x y y
y b − x y
y y a− x


 =




c − x 0 0 y 0 0 y 0 0
0 −x 1 0 y 0 0 y 0
0 1 −x 0 0 y 0 0 y

y 0 0 −x 0 1 y 0 0
0 y 0 0 b − x 0 0 y 0
0 0 y 1 0 −x 0 0 y

y 0 0 y 0 0 −x 1 0
0 y 0 0 y 0 1 −x 0
0 0 y 0 0 y 0 0 a − x




.
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Permuting rows and columns and dividing them into blocks we get the
matrix




c − x 0 0 y 0 0 y 0 0
0 b − x 0 0 y 0 0 y 0
0 0 a − x 0 0 y 0 0 y

y 0 0 −x 0 1 y 0 0
0 y 0 0 −x 0 0 y 1
0 0 y 1 0 −x 0 0 y
y 0 0 y 0 0 −x 1 0
0 y 0 0 y 0 1 −x 0
0 0 y 0 1 y 0 0 −x




.
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Computation of Schur complement with respect to the given partition of
the matrix yields

Ŝ1(∆(x , y)) = ∆(x ′, y ′),

where

x ′ = x − 2(x2 − x − y2)y2

(x − y − 1)(x2 − 1 + y − y2)

and

y ′ =
(x + y − 1)y2

(x − y − 1)(x2 − 1 + y − y2)
.
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The map F : (x , y) 7→ (x ′, y ′) is semi-conjugate to the map
f : R −→ R : x 7→ x2 − x − 3,

R
2 F−→ R

2

ψ

y
yψ

R
f−→ R

,

ψ(x , y) =
x2 − 1− xy − 2y2

y
.

The spectrum of ∆(x , y) is the closure of the union⋃
θ∈

⋃
f −n(S)Hθ ∪ L0 ∪ L1 ∪ L2, where S = {−2, 0}, Hθ is the hyperbola

x2 − xy − 2y2 − θy = 1, and L0, L1, L2 are the lines given by the equations

x − 1− 2y = 0,

x + 1 + y = 0,

x − 1 + y = 0.
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Figure: Joint Spectrum of Schreier graphs of H(3)
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The “Saas-Fee Project” N-B. Dang, M. Lyubich, and

R. Grigorchuk

The project aims at a detailed dynamical exploration of the spectral
renormalization transformations arising in the theory of self-similar groups.
This involves:

Revealing algebro-geometric and dynamical nature of the integrability
(i.e. semi-conjugacy to lower dimensional maps, ...) observed for
some of these transformations.

Interpretation of suitable spectral sets and the correponding spectral
measures as slices of Julia sets and corresponding Green currents (for
multidimensional maps).

Characterizing the dichotomy “discrete vs continuous spec” in terms
of combinatorial and dynamical degrees.

Looking for a generalization of the Little L-G equidistribution theorem
that would serve for a broader class of self-similar groups.
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Thank you
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