Large gaps in sets of primes and other sequences

Kevin Ford

University of Illinois at Urbana-Champaign

October, 2018

Large gaps between primes

$$G(x) := \max_{p_n \leqslant x} (p_n - p_{n-1}), \quad p_n \text{ is the } n^{th} \text{ prime.}$$

 $2, 3, 5, 7, \ldots, 109, 113, 127, 131, \ldots, 9547, 9551, 9587, 9601, \ldots$

Upper bound: $G(x) \ll x^{0.525}$ (Baker-Harman-Pintz, 2001).

Large gaps between primes

$$G(x) := \max_{p_n \leqslant x} (p_n - p_{n-1}), \quad p_n \text{ is the } n^{th} \text{ prime.}$$

 $2, 3, 5, 7, \ldots, 109, 113, 127, 131, \ldots, 9547, 9551, 9587, 9601, \ldots$

Upper bound: $G(x) \ll x^{0.525}$ (Baker-Harman-Pintz, 2001). **Rankin, 1938.** $G(x) \ge c(\log x) \frac{\log_2 x \log_4 x}{(\log_3 x)^2}, c = \frac{1}{3}.$

Improvements to the constant *c* until 1997 (Pintz, $c = 2e^{\gamma}$).

Large gaps between primes

 $G(x):=\max_{p_n\leqslant x}(p_n-p_{n-1}), \ \ p_n \text{ is the } n^{th} \text{ prime.}$

 $2, 3, 5, 7, \ldots, 109, 113, 127, 131, \ldots, 9547, 9551, 9587, 9601, \ldots$

Upper bound: $G(x) \ll x^{0.525}$ (Baker-Harman-Pintz, 2001). **Rankin, 1938**. $G(x) \ge c(\log x) \frac{\log_2 x \log_4 x}{(\log_3 x)^2}$, $c = \frac{1}{3}$.

Improvements to the constant *c* until 1997 (Pintz, $c = 2e^{\gamma}$).

Erdős Conjecture. (\$10,000) Rankin's bound is true, for *any* c > 0. **Solved:** Ford-Green-Konyagin-Tao and Maynard (arXiv,Aug-2014).

Theorem (Ford-Green-Konyagin-Maynard-Tao (2018)) For large x, $G(x) \gg \log x \frac{\log_2 x \log_4 x}{\log_3 x}$.

Conjectures

Cramér (1936):

 $\begin{array}{l} \displaystyle \underset{x\to\infty}{\lim\sup}\,\frac{G(x)}{\log^2 x}=1.\\ \displaystyle \\ \displaystyle \underset{\log p_n}{\frac{p_n-p_{n-1}}{\log p_n}} \text{ has approximate exponential distribution.} \end{array}$

Granville (1995):
$$\limsup_{x \to \infty} \frac{G(x)}{\log^2 x} \ge 2e^{-\gamma} = 1.1229...$$

Computational evidence, up to 10^{18}

Exponential distribuion of gaps

Prime gap statistics, $p_n < 4 \cdot 10^{18}$

Gallagher, 1976. Prime k-tuples conjecture \Rightarrow exponential prime gap distribution

Cramér's model defects: small gaps

Cramér's model produces a set $\mathscr{P} \in \mathbb{N}$ of "random primes":

$$\mathbb{P}(n\in\mathscr{P})=1/\log n\quad(n\geqslant 3).$$

Theorem. With probability 1, $\#\{n : n, n+1 \in \mathscr{P}\} = \infty$

This does not hold for real primes!

Cramér's model defects: small gaps

Cramér's model produces a set $\mathscr{P} \in \mathbb{N}$ of "random primes":

$$\mathbb{P}(n\in\mathscr{P})=1/\log n\quad(n\geqslant 3).$$

Theorem. With probability 1, $\#\{n : n, n+1 \in \mathscr{P}\} = \infty$

This does not hold for real primes!

Theorem. With probability 1,

$$\#\{n \leqslant x : n, n+2 \in \mathscr{P}\} \sim \frac{x}{\log^2 x}$$

Conjecture (Hardy-Littlewood, 1923).

$$\#\{n\leqslant x:n,n+2\text{ prime}\}\sim C\frac{x}{\log^2 x},$$
 where $C=2\prod_{p>2}(1-1/(p-1)^2)\approx 1.3203$

General Cramér type model

Theorem (classical, 1960s)

Choose N random points in [0, x]. With high probability, the max. gap is $\sim \frac{\log N}{N} x$.

Conjecture (Hardy-Littlewood;Bateman-Horn)

Let f_1, \ldots, f_k be distinct, irreducible polynomials $f_i : \mathbb{Z} \to \mathbb{Z}$ with pos. leading coeff., and $f_1 \cdots f_k$ has no fixed prime factor. Then

$$#\{n \leq x : f_1(n), \ldots, f_k(n) \text{ all prime}\} \sim C \frac{x}{(\log x)^k},$$

where $C = C(f_1, \ldots, f_k) > 0$ is constant.

General Cramér type model

Theorem (classical, 1960s)

Choose N random points in [0, x]. With high probability, the max. gap is $\sim \frac{\log N}{N} x$.

Conjecture (Hardy-Littlewood;Bateman-Horn)

Let f_1, \ldots, f_k be distinct, irreducible polynomials $f_i : \mathbb{Z} \to \mathbb{Z}$ with pos. leading coeff., and $f_1 \cdots f_k$ has no fixed prime factor. Then

$$#\{n \leq x : f_1(n), \dots, f_k(n) \text{ all prime}\} \sim C \frac{x}{(\log x)^k},$$

where $C = C(f_1, \ldots, f_k) > 0$ is constant.

For $\{n \leq x : f_1(n), \dots, f_k(n) \text{ all prime}\}$, the model prediction:

average gap $\sim \frac{(\log x)^k}{C}$, maximal gap $\sim \frac{(\log x)^{k+1}}{C}$.

Polynomial gaps

Bunyakovsky (1857) Conj: Infinitely many primes $p = n^2 + 1$. **Bateman-Horn Conj:** $\#\{n \le x : n^2 + 1 \text{ prime}\} \sim C \frac{x}{\log x}$. **Cramér type heuristic:** max. gap $\sim \frac{(\log x)^2}{C}$. **Sieve methods:** $\#\{n \le x : n^2 + 1 \text{ prime}\} \ll \frac{x}{\log x}$.

Polynomial gaps

Bunyakovsky (1857) Conj: Infinitely many primes $p = n^2 + 1$. **Bateman-Horn Conj:** $#\{n \le x : n^2 + 1 \text{ prime}\} \sim C \frac{x}{\log x}$. **Cramér type heuristic:** max. gap $\sim \frac{(\log x)^2}{C}$.

Sieve methods: $\#\{n \leq x : n^2 + 1 \text{ prime}\} \ll \frac{x}{\log x}$.

Question: Can one *prove* that large strings of consecutive composite values of $n^2 + 1$ exist? i.e., strings longer than $O(\log x)$ below x.

Problem: Methods for prime gaps G(x) do not work!

Polynomial gaps

Bunyakovsky (1857) Conj: Infinitely many primes $p = n^2 + 1$. **Bateman-Horn Conj:** $\#\{n \le x : n^2 + 1 \text{ prime}\} \sim C \frac{x}{\log x}$.

Cramér type heuristic: max. gap $\sim \frac{(\log x)^2}{C}$. **Sieve methods:** $\#\{n \leq x : n^2 + 1 \text{ prime}\} \ll \frac{x}{\log x}$.

Question: Can one *prove* that large strings of consecutive composite values of $n^2 + 1$ exist? i.e., strings longer than $O(\log x)$ below x.

Problem: Methods for prime gaps G(x) **do not work!**

Theorem (Ford-Konyagin-Maynard-Pomerance-Tao, 2018+)

Let $f : \mathbb{Z} \to \mathbb{Z}$ be a monic, irreducible polynomial with no fixed prime factor. Then there is a string of $\gg (\log x)(\log \log x)^c$ integers $n \leq x$ for which f(n) is composite. Here c depends only on f.

Proving large prime gaps: Jacobsthal's function

 $S_x = \{n \in \mathbb{Z} : (n, Q_x) = 1\}, \quad Q_x = \prod_{p \leq x} p.$ (i.e., sieve of Eratosthenes using primes $p \leq x$)

Main goal: Find J(x), the largest gap in S_x ; long string of consecutive integers all with a small prime factor.

Cor: $G(2Q_x) \ge J(x)$; essentially $G(X) \gtrsim J(\log X)$.

Proving large prime gaps: Jacobsthal's function

 $S_x = \{n \in \mathbb{Z} : (n, Q_x) = 1\}, \quad Q_x = \prod_{p \leq x} p.$ (i.e., sieve of Eratosthenes using primes $p \leq x$)

Main goal: Find J(x), the largest gap in S_x ; long string of consecutive integers all with a small prime factor.

Cor: $G(2Q_x) \ge J(x)$; essentially $G(X) \gtrsim J(\log X)$.

Bounding J(x):

- Average gap $Q_x/\phi(Q_x) \sim e^{\gamma} \log x$;
- (trivial) $J(x) \ge x 2$ since $[2, x] \cap S_x = \emptyset$;
- (FGKMT, 2018). $J(x) \gg x(\log x) \frac{\log_3 x}{\log_2 x}$.
- (Iwaniec, 1978). $J(x) \ll x^2 (\log x)^2$.

Conjecture (Maier-Pomerance, 1990). $J(x) = x(\log x)^{2+o(1)}$. Random Cramér type model: $J(x) \sim \frac{Q_x \log Q_x}{\phi(Q_x)} \sim e^{\gamma} x \log x$.

Least prime in an arithmetic progression

Let $p(k,l) = \min\{p \equiv l \pmod{k}, \text{ prime}\}, M(k) = \max_{(l,k)=1} p(k,l).$

Upper bounds

Linnik, 1944. $M(k) \ll k^L$. (Xylouris : L = 5.18). ERH: $L = 2 + \varepsilon$; Chowla conjecture: $L = 1 + \varepsilon$.

Lower bounds

Trivial: $M(k) \gg \phi(k) \log k$. **Prachar; Schinzel - 1961/62.** For infinitely many *k*,

$$M(k) \gg \phi(k) \log k \frac{\log_2 k \log_4 k}{(\log_3 k)^2}.$$
 (1)

Wagstaff (1978) - (1) holds for all prime k. **Pomerance (1980)** - (1) holds for almost all k, in fact all k with at most $(\log k)^{c/\log_3 k}$ prime factors.

Least prime in an arithmetic progression, II

Pomerance:
$$M(k) \gg \phi(k) \log k \frac{\log_2 k \log_4 k}{(\log_3 k)^2}$$
 for almost all k .

Lemma (Pomerance): Let j(m) be the maximal gap between numbers comprime to m. If $0 < m \le k/j(k)$ and (m, k) = 1 then M(k) > kj(m).

Take
$$m = \prod_{\substack{p \leq (1-\delta) \log k \\ p \nmid k}} p$$
 need a lower bound on $j(m)$.

Corollary (FGKMT, 2018). If *k* has no prime factor $\leq \log k$, then

$$M(k) \gg \phi(k) \log k \frac{\log_2 k \log_4 k}{\log_3 k}.$$
 (2)

Theorem (Junxian Li, Kyle Pratt and George Shakan, 2018)

Inequality (2) holds for almost all k; in fact, for all k with at most $\exp\{(1/2 - \varepsilon) \frac{\log_2 k \log_4 k}{\log_3 k}\}$ prime factors.

Least Prime in an A.P. – conjectures

Conjecture (folklore): $M(k) \ll k \log^{2+\varepsilon} k$.

Conjecture (Wagstaff, 1979): $M(k) \sim \phi(k) \log^2 k$ for "most k"

Conjecture (Li-Pratt-Shakan, 2018)

$$\liminf_{k \to \infty} \frac{M(k)}{\phi(k) \log^2 k} = 1, \qquad \limsup_{k \to \infty} \frac{M(k)}{\phi(k) \log^2 k} = 2.$$

Heuristic: coupon collectors problem.

Least prime in an AP: data

Conjecture (Li-Pratt-Shakan, 2018)

Covering the gap

Covering: J(x) is the largest y so that there are a_2, a_3, a_5, \ldots with

$$\{a_p \mod p : p \leqslant x\} \supseteq [0, y]$$

Proof: If [n, n + y] is a gap in S_x , y = J(x), define a_p for $p \leq x$ by $(-n \mod Q_x) = \bigcap_{p \leq x} (a_p \mod p).$

Goal: succeeed with *y* a bit larger than *x*.

Finding large gaps in \mathcal{S}_x

 $y = cx \frac{\log x \log_3 x}{(\log_2 x)^2}, z = x^{c \frac{\log_3 x}{\log_2 x}} \quad \text{Want } \{a_p \mod p : p \leqslant x\} \supseteq [0, y]$

Classical 3-stage-process (Westzynthius-Erdős-Rankin)

1 (Key!!) Take $a_p = 0$ for $p \in (z, \frac{x}{2}] \cap [2, \frac{2y}{x}]$. Left uncovered: *z*-smooth numbers (few for appropriate *z*) and primes; $\sim \frac{y}{\log y}$ numbers uncovered.

A typical choice of a_p leaves $\sim y \frac{\log z}{\log y}$ uncovered numbers

- **2** Greedy choice for a_p , $p \in (2y/x, z]$
- **3** (*trivial*) for $p \in (\frac{x}{2}, x]$, choose a_p to cover one uncovered element from step 2. Success if $\leq \pi(x) \pi(x/2) \sim \frac{x}{2 \log x}$ such elements.

New bounds on J(x) [FKMPT, 2018]

 $y = cx \frac{\log x \log_3 x}{\log_2 x}, z = x^{c \frac{\log_3 x}{\log_2 x}} \quad \text{Want} \{a_p \mod p : p \leqslant x\} \supseteq [0, y]$

- 1 $a_p = 0$ for $p \in (z, x/4] \cap [2, \log^{10} x]$. Uncovered: *z*-smooth numbers and primes;
- **2** Random, uniform choice of a_p , $\log^{10} x .$
- **3** Strategic choice of a_p , x/4 to cover*many*reminaing elements; some AP modulo*p*has many primes in <math>[0, y].
- (d) (trivial) Use single a_p for each x/2 to cover each remaining uncovered element.

Tools: Maynard sieve, efficient hypergraph covering

Analog of J(x) for polynomials

 $S_f(x) = \{n \in \mathbb{Z} : (f(n), Q_x) = 1\}, \quad Q_x = \prod_{p \leq x} p.$ **Gaps:** Let $J_f(x)$ be the largest gap in $S_f(x)$.

Analog of J(x) for polynomials

$$\mathcal{S}_f(x) = \{ n \in \mathbb{Z} : (f(n), Q_x) = 1 \}, \quad Q_x = \prod_{p \leq x} p.$$

Gaps: Let $J_f(x)$ be the largest gap in $\mathcal{S}_f(x)$.

Covering problem: Let $I_p = \{n \mod p : f(n) \equiv 0 \pmod{p}\}$. $J_f(x)$ is the largest y so that [0, y] is covered by

$$\{b_p + \nu_p \mod p : p \leqslant x, \nu_p \in I_p\}$$

for some residues $b_p \mod p$.

Analog of J(x) for polynomials

$$\mathcal{S}_f(x) = \{ n \in \mathbb{Z} : (f(n), Q_x) = 1 \}, \quad Q_x = \prod_{p \leq x} p.$$

Gaps: Let $J_f(x)$ be the largest gap in $S_f(x)$.

Covering problem: Let $I_p = \{n \mod p : f(n) \equiv 0 \pmod{p}\}$. $J_f(x)$ is the largest y so that [0, y] is covered by

$$\{b_p + \nu_p \mod p : p \leqslant x, \nu_p \in I_p\}$$

for some residues $b_p \mod p$.

Difficulty: For a set p of positive density, $I_p = \emptyset$ (unused primes). For $f(n) = n^2 + 1$, $I_p = \emptyset$ for $p \equiv 3 \pmod{4}$.

This means that Step 1 in the usual method for large prime gaps (the smooth number estimate) cannot be used. Without it, the other steps give only the trivial bound $J_f(x) \gg x$.

New estimate for $J_f(x)$

Theorem (FKMPT, 2018+)

Let $f : \mathbb{Z} \to \mathbb{Z}$ be a monic, irreducible polynomial with no fixed prime factor. Then $J_f(x) \gg x(\log x)^c$, where c depends on f.

New estimate for $J_f(x)$

Theorem (FKMPT, 2018+)

Let $f : \mathbb{Z} \to \mathbb{Z}$ be a monic, irreducible polynomial with no fixed prime factor. Then $J_f(x) \gg x(\log x)^c$, where c depends on f.

Corollary (FKMPT)

Let $f : \mathbb{Z} \to \mathbb{Z}$ be a non-constant polynomial. Then $\exists G_f \ge 2$ such that for any $k \ge G_f$ there are infinitely many integers $n \ge 0$ so that none of $f(n+1), \ldots, f(n+k)$ is coprime to all the others.

Previously, this was known only for degree ≤ 3 .

New estimate for $J_f(x)$

Theorem (FKMPT, 2018+)

Let $f : \mathbb{Z} \to \mathbb{Z}$ be a monic, irreducible polynomial with no fixed prime factor. Then $J_f(x) \gg x(\log x)^c$, where c depends on f.

Corollary (FKMPT)

Let $f : \mathbb{Z} \to \mathbb{Z}$ be a non-constant polynomial. Then $\exists G_f \ge 2$ such that for any $k \ge G_f$ there are infinitely many integers $n \ge 0$ so that none of $f(n + 1), \ldots, f(n + k)$ is coprime to all the others.

Previously, this was known only for degree ≤ 3 .

Proof of Corollary. WLOG $f \in \mathbb{Z}[x]$, irreducible. If $x \in \mathbb{N}$ is large, then $J_f(x) \ge 2x + 1$. Let k = 2x or k = 2x + 1. Then \mathbb{N} has infinitely many strings of k consecutive numbers, each having p|f(n) for some $p \le x$. But $p \le k/2$, so $p|f(n \pm p)$ also, and one of $n \pm p$ is in the same interval.

Conjectures for $J_f(x)$

Theorem (FKMPT, 2018+)

Let $f : \mathbb{Z} \to \mathbb{Z}$ be a monic, irreducible polynomial with no fixed prime factor. Then $J_f(x) \gg x(\log x)^c$, where c depends on f.

Conjecture: $J_f(x) = x(\log x)^{1+o(1)}$. (based on considering $S_f(x)$ as a random subset of $[1, Q_x]$)

Conjectures for $J_f(x)$

Theorem (FKMPT, 2018+)

Let $f : \mathbb{Z} \to \mathbb{Z}$ be a monic, irreducible polynomial with no fixed prime factor. Then $J_f(x) \gg x(\log x)^c$, where c depends on f.

Conjecture: $J_f(x) = x(\log x)^{1+o(1)}$. (based on considering $S_f(x)$ as a random subset of $[1, Q_x]$)

Recall:

Conjecture (Maier-Pomerance, 1990). $J(x) = x(\log x)^{2+o(1)}$.

Why the difference? The smooth number bound gives an "arithmetic boost" to J(x), but not to $J_f(x)$.

Method for showing that $J_f(x)$ is large, I

Main input: $|I_p|$ is 1 on average (Prime Ideal Theorem).

 $y = x(\log x)^c, z = x/(\log x)^{1/100}$

Want $\{b_p + \nu_p \mod p : p \leq x, \nu_p \in I_p\} \supseteq [0, y]$

- (Random) Pick b_p at random, $p \leq z$ (uniformly, independently)
- (Random-Greedy) For z p</sub> at random, but only from "rich" residue classes (those covering many uncovered numbers from Step 1. Dependent on Step 1, non-uniform.
- **3** (Trivial) Same as prime case. Use $b_p \mod p$ for $\frac{x}{2} to cover anything left over (<math>\gg \frac{x}{\log x}$ such primes).

Method for showing that $J_f(x)$ is large, II

$$y = x(\log x)^c$$
, $z = rac{x}{(\log x)^{1/100}}$

(Random) Pick b_p at random, p ≤ z (uniformly, independently)
(Random-Greedy) For z p</sub> from rich classes
Heuristic for Step 2:

• For fixed $q \in (z, x/2]$, let

 $S_1(r,q) = [0,y] \cap (r \mod q) \setminus \bigcup_{p \leqslant (y/q)^{100}} \bigcup_{\nu_p \in I_p} (b_p + \nu_p \mod p),$

 $S_2(r,q) = [0,y] \cap (r \mod q) \setminus \bigcup_{p \leqslant z} \bigcup_{\nu_p \in I_p} (b_p + \nu_p \mod p).$

There are many r for which $S_2(r,q) = S_1(r,q)$; ("rich" residue classes.)

- Sieving by primes $<(y/q)^{100}$ always leaves $\asymp \frac{y}{q\log(y/q)}$ elements.

Open Problems

I. Select a residue $a_p \in \mathbb{Z}/p\mathbb{Z}$ for each $p \leqslant x$, let

$$\mathcal{S} = [0,x] \setminus \bigcup_{p \leqslant x} (a_p \mod p).$$

 $S = \emptyset$ possible: $a_2 = 1$, $a_p = 0$ $(3 \le p \le \frac{x}{2})$, a_p for $\frac{x}{2} cover <math>\{1, 2, 2^2, \ldots\}$

Problem: What is the largest possible |S|?

- A random choice yields $|S| \sim e^{-\gamma} \frac{x}{\log x}$.
- Any choice leaves $|S| \ll \frac{x}{\log x}$ (sieve).

Open Problems

I. Select a residue $a_p \in \mathbb{Z}/p\mathbb{Z}$ for each $p \leqslant x$, let

$$\mathcal{S} = [0,x] \setminus \bigcup_{p \leqslant x} (a_p \mod p).$$

 $S = \emptyset$ possible: $a_2 = 1$, $a_p = 0$ $(3 \le p \le \frac{x}{2})$, a_p for $\frac{x}{2} cover <math>\{1, 2, 2^2, \ldots\}$

Problem: What is the largest possible |S|?

- A random choice yields $|S| \sim e^{-\gamma} \frac{x}{\log x}$.
- Any choice leaves $|S| \ll \frac{x}{\log x}$ (sieve).

II. For each prime $p \leq \sqrt{x}$, choose a residue $a_p \mod p$, and let

$$\mathcal{S} = [0,x] \setminus \bigcup_{p \leqslant \sqrt{x}} (a_p \mod p).$$

I. When $a_p = 0$ for all p, $|S| \sim x/\log x$. II. A random choice yields $|S| \sim x(2e^{-\gamma}/\log x)$. **Question**. Are these the extreme cases?