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Diaconis-Fulton Addition

I Finite sets A,B ⊂ Zd .

I A∩B = {x1, . . . ,xk}.
I To form A+B, let C0 = A∪B and

Cj = Cj−1∪{yj}

where yj is the endpoint of a random walk started at xj and
stopped on exiting Cj−1.

I Define A+B = Ck .

I Abelian property: the law of A+B does not depend on the
ordering of x1, . . . ,xk .
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Internal DLA

I A1 = {o}, An = An−1 +{o}.

I Lawler, Bramson and Griffeath (1992) proved that the limiting
shape is a ball.

I More precisely, for any ε > 0, with probability one we have

Br(1−ε) ⊂ Abωd rdc ⊂ Br(1+ε)

for all sufficiently large r .

I Here Br = {x ∈ Zd : |x |< r}, and ωd is the volume of the
unit ball in Rd .

I Logarithmic error bounds recently proved by
Assaleh-Gaudilierre and by Jerison-Levine-Sheffield.
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The Rotor-Router Model

I Deterministic analogue of random walk.

I Each site x ∈ Z2 has a rotor pointing North, South, East or
West.
(Start all rotors pointing North, say.)

I A particle starts at the origin. At each site it comes to, it

1. Turns the rotor clockwise by 90 degrees;
2. Takes a step in direction of the rotor.
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Rotor-Router Aggregation (Proposed by Jim Propp)

I Sequence of lattice regions

A1 = {o}

An = An−1∪{xn},

where

◦ xn ∈ Z2 is the site at which rotor walk first leaves the region
An−1.

I Makes sense in Zd for any d .

I Choices of which particles to route in what order don’t affect
the final shape generated or the final rotor directions.
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Spherical Asymptotics

I Theorem (Levine-P.) Let An be the region of n particles
formed by rotor-router aggregation in Zd .

Then

Br−c log r ⊂ An ⊂ Br(1+c ′r−1/d log r),

where
I Bρ is the ball of radius ρ centered at the origin.
I n = ωd r

d , where ωd is the volume of the unit ball in Rd .
I c ,c ′ depend only on d .

I Corollary: Inradius/Outradius → 1 as n→ ∞.
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Divisible Sandpile

I Start with mass m at the origin.

I Each site keeps mass 1, divides excess mass equally among its
neighbors.

I As t→ ∞, get a limiting region Am of mass 1, fractional mass
on ∂Am, and zero outside.

I Theorem (Levine-P.): There are constants c and c ′

depending only on d , such that

Br−c ⊂ Am ⊂ Br+c ′

where m = ωd r
d .
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Questions

I As the lattice spacing goes to zero, is there a scaling limit?

I If so, can we describe the limiting shape?

I Is it the same for all three models?

I Not clear how to define dynamics in Rd .
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Odometer Function

I u(x) = total mass emitted from x .

I Discrete Laplacian:

∆u(x) =
1

2d ∑
y∼x

u(y)−u(x)

= mass received−mass emitted

=


−1 x ∈ A∩B
0 x ∈ A∪B−A∩B
1 x ∈ A⊕B−A∪B.
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Least Superharmonic Majorant

I Let
γ(x) =−|x |2− ∑

y∈A
g(x ,y)− ∑

y∈B
g(x ,y),

where g is the Green’s function for SRW in Zd , d ≥ 3.

I In dimension two, we use the negative of the potential kernel
in place of g .

I Let s(x) = inf{φ(x) | φ superharmonic, φ≥ γ}.
I Claim: odometer = s− γ.
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Proof of the claim

I Let m(x) = amount of mass present at x in the final state.

Then

∆u = m−1A−1B

≤ 1−1A−1B .

I Since
∆γ = 1A + 1B −1

the sum u+ γ is superharmonic, so u+ γ≥ s.

I Reverse inequality: s− γ−u is superharmonic on A⊕B and
nonnegative outside A⊕B, hence nonnegative inside as well.
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Defining the Scaling Limit

I A,B ⊂ Rd bounded open sets such that ∂A,∂B have measure
zero

I Let
D = A∪B ∪{s > γ}

where

γ(x) =−|x |2−
∫
A
g(x ,y)dy −

∫
B
g(x ,y)dy

and

s(x) = inf{φ(x)|φ is continuous, superharmonic, and φ≥ γ}

is the least superharmonic majorant of γ.

I Odometer: u = s− γ.
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The domain D = {s > γ} for two overlapping disks in R2.

The boundary ∂D is given by the algebraic curve(
x2 + y2

)2−2r2
(
x2 + y2

)
−2(x2−y2) = 0.
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Main Result

I Let A,B ⊂ Rd be bounded open sets with ∂A, ∂B having
measure zero.

I Lattice spacing δn ↓ 0.

I Write A:: = A∩δnZd .

I Theorem (Levine-P.) For any ε > 0, with probability one

D ::
ε ⊂ Dn,Rn, In ⊂ Dε::

for all sufficiently large n, where
I Dn, Rn, In are the Diaconis-Fulton sums of A:: and B :: in the

lattice δnZd , computed using divisible sandpile, rotor-router,
and internal DLA dynamics, respectively.

I D = A∪B ∪{s > γ}.
I Dε,D

ε are the inner and outer ε-neighborhoods of D.
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Multiple Point Sources

I Fix centers x1, . . . ,xk ∈ Rd and λ1, . . . ,λk > 0.

I Theorem (Levine-P.) For any ε > 0, with probability one

D ::
ε ⊂ Dn,Rn, In ⊂ Dε::

for all sufficiently large n, where
I Dn, Rn, In are the domains of occupied sites δnZd , if bλiδ

−d
n c

particles start at each site x ::i , computed using divisible
sandpile, rotor-router, and internal DLA dynamics, respectively.

I D is the continuum Diaconis-Fulton sum of the balls B(xi , ri ),
where λi = ωd r

d
i .

I Follows from the main result and the case of a single point
source.
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Steps of the Proof

convergence of densities

⇓
convergence of obstacles

⇓
convergence of odometer functions

⇓
convergence of domains.
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Adapting the Proof for Rotors

I Rotor-router odometer:

u(x) = total number of particles emitted from x .

I Instead of ∆u = 1, we only know −2≤∆u ≤ 4.

I Repeating the argument only gives

Bcr ⊂ An ⊂ Bc ′r .
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Smoothing

I To do better, let

v(x) =
1

4k2 ∑
y∈Sk (x)

u(y)

where Sk(x) is a box of side length 2k centered at x .

I Using ∆ = div grad, we get

∆v(x) =
1

4k2 ∑
(y ,z)∈∂Sk (x)

u(z)−u(y)

4

= 1 +O

(
1

k

)
if o /∈ Sk(x) and all sites in Sk(x) are occupied.

Yuval Peres (joint work with Lionel Levine) From Laplacian growth to competitive erosion



A Quadrature Identity

I If h is harmonic on δnZd , then

Mt = ∑
j

h(X j
t )

is a martingale for internal DLA, where (X j
t )t≥0 is the random

walk performed by the j-th particle.

I Optional stopping:

E ∑
x∈In

h(x) = EMT = M0 =
k

∑
i=1

bλiδ
−d
n ch(xi ).

I Therefore if In→D, we expect the limiting domain D ⊂Rd to
satisfy ∫

D
h(x)dx =

k

∑
i=1

λih(xi ).

for all harmonic functions h on D.
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Quadrature Domains

I Given x1, . . .xk ∈ Rd and λ1, . . . ,λk > 0.

I D ⊂ Rd is called a quadrature domain for the data (xi ,λi ) if

∫
D
h(x)dx ≤

k

∑
i=1

λih(xi ).

for all superharmonic functions h on D.
(Aharonov-Shapiro ’76, Gustafsson, Sakai, ...)

I The smash sum B1⊕ . . .⊕Bk is such a domain, where Bi is
the ball of volume λi centered at xi .

I The boundary of B1⊕ . . .⊕Bk lies on an algebraic curve of
degree 2k .
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∫∫
D
h(x ,y)dx dy = h(−1,0) +h(1,0)
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Further Directions and Open Problems: Rotor-Router

I How fast does

R(n) = max
k≤n

(outrad(Ak)− inrad(Ak))

really grow?
n R(n)
10 0.822
102 1.588
103 1.637
104 1.683
105 1.724
106 1.741

I Is the occupied region simply connected?
I Understand the patterns in the picture of rotor directions.
I Identify the limiting shape of the “broken rotor” models.
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z 7→ 1/z2
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Abelian sandpile, or chip-firing model:

I When 4 or more grains of sand accumulate at a site in Z2, it
topples, sending one grain to each neighbor.

I Choices of which sites to topple in what order don’t affect the
final sandpile shape.

I Comparing models:
I Start with n particles at the origin.
I If there are m particles at a site, send bm/4c to each neighbor.
I Sandpile: Leave the extra particles where they are.
I Rotor: Send extra particles according to the usual rotor rule.
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Bounds for the Abelian Sandpile

I Theorem (Levine-P.) Let Sn be the set of sites visited by the
abelian sandpile in Zd , starting from n particles at the origin
(and a hole of depth H everywhere else.)

Then(
Ball of volume

n−o(n)

2d −1 +H

)
⊂Sn⊂

(
Ball of volume

n+o(n)

d +H

)
.

I Improves the bounds of Le Borgne and Rossin, Fey and Redig.
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(Disk of area n/3)⊂ Sn ⊂ (Disk of area n/2)
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Further Directions and Open Problems: Sandpile

I Fix an integer h ∈ (−∞,2].

I Start every site in Z2 at height h.

I Let Sn,h be the set of visited sites for the abelian sandpile
started with n particles at the origin.

I Conjecture: As n→ ∞, the limiting shape Sn,h is well
approximated by a (12−4h)-gon.

I Fey and Redig (2007) Case h = 2: The shape of Sn,2 is a
square.

I In all other cases, even the existence of a limiting shape is
open.

I Even for h = 2, the rate of growth of the square was not
known; it was determined recently by Fey-Levine-P.(2009) to
have edge length of order

√
n.
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h = 2 h = 1 h = 0
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