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Examples of polynomial equations

Do there exist integers x , y , z such that

x3 + y3 + z3 = 29?

Yes: (x , y , z) = (3, 1, 1).
Yes: (x , y , z) = (−283059965,−2218888517, 2220422932).
Unknown.
(discovered in 1999 by E. Pine, K. Yarbrough, W. Tarrant,
and M. Beck, following an approach suggested by N. Elkies.)
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Examples of polynomial equations

Do there exist integers x , y , z such that

x3 + y3 + z3 = 29?

Yes: (x , y , z) = (3, 1, 1).

Yes: (x , y , z) = (−283059965,−2218888517, 2220422932).
Unknown.
(discovered in 1999 by E. Pine, K. Yarbrough, W. Tarrant,
and M. Beck, following an approach suggested by N. Elkies.)
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Examples of polynomial equations

Do there exist integers x , y , z such that

x3 + y3 + z3 = 30?

Yes: (x , y , z) = (3, 1, 1).
Yes: (x , y , z) = (−283059965,−2218888517, 2220422932).
Unknown.
(discovered in 1999 by E. Pine, K. Yarbrough, W. Tarrant,
and M. Beck, following an approach suggested by N. Elkies.)
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Examples of polynomial equations

Do there exist integers x , y , z such that

x3 + y3 + z3 = 30?

Yes: (x , y , z) = (3, 1, 1).

Yes: (x , y , z) = (−283059965,−2218888517, 2220422932).

Unknown.

(discovered in 1999 by E. Pine, K. Yarbrough, W. Tarrant,
and M. Beck, following an approach suggested by N. Elkies.)
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Examples of polynomial equations

Do there exist integers x , y , z such that

x3 + y3 + z3 = 33?

Yes: (x , y , z) = (3, 1, 1).
Yes: (x , y , z) = (−283059965,−2218888517, 2220422932).
Unknown.
(discovered in 1999 by E. Pine, K. Yarbrough, W. Tarrant,
and M. Beck, following an approach suggested by N. Elkies.)
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Examples of polynomial equations

Do there exist integers x , y , z such that

x3 + y3 + z3 = 33?

Yes: (x , y , z) = (3, 1, 1).
Yes: (x , y , z) = (−283059965,−2218888517, 2220422932).

Unknown.

(discovered in 1999 by E. Pine, K. Yarbrough, W. Tarrant,
and M. Beck, following an approach suggested by N. Elkies.)
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Hilbert’s tenth problem
David Hilbert, in the 10th of the list of 23 problems he
published after a famous lecture in 1900, asked his audience
to find a method that would answer all such questions.

Hilbert’s tenth problem (H10)

Find an algorithm that solves the following problem:

input: a multivariable polynomial f (x1, . . . , xn) with
integer coefficients

output: YES or NO, according to whether there exist
integers a1, a2, . . . , an such that
f (a1, . . . , an) = 0.

More generally, one could ask for an algorithm for solving a
system of polynomial equations, but this would be
equivalent, since

f1 = · · · = fm = 0 ⇐⇒ f 21 + · · ·+ f 2m = 0.
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Hilbert’s tenth problem

Hilbert’s tenth problem (H10)

Find a Turing machine that solves the following problem:

input: a multivariable polynomial f (x1, . . . , xn) with
integer coefficients

output: YES or NO, according to whether there exist
integers a1, a2, . . . , an such that
f (a1, . . . , an) = 0.

Theorem (Davis-Putnam-Robinson 1961 +
Matiyasevich 1970)

No such algorithm exists!

In fact they proved something stronger. . .
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Diophantine sets

Definition

A ⊆ Z is diophantine if there exists

p(t, ~x) ∈ Z[t, x1, . . . , xm]

such that

A = { a ∈ Z : p(a, ~x) = 0 has a solution ~x ∈ Zm}.

Example

The subset N := {0, 1, 2, . . . } of Z is diophantine,
since for a ∈ Z,

a ∈ N ⇐⇒ (∃x1, x2, x3, x4 ∈ Z) x21 + x22 + x23 + x24 − a = 0.
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Listable sets

Definition

A ⊆ Z is listable if there is a Turing machine
such that A is the set of integers that it prints out
when left running forever.

Example

The set of integers expressible as a sum of three cubes is
listable.

(Print out x3 + y3 + z3 for all |x |, |y |, |z | ≤ 10,
then print out x3 + y3 + z3 for |x |, |y |, |z | ≤ 100,
and so on.)



Undecidability in
number theory

Bjorn Poonen

H10

Polynomial equations

Hilbert’s 10th problem

Diophantine sets

Listable sets

DPRM theorem

Consequences of
DPRM

Prime-producing
polynomials

Riemann hypothesis

Related problems

H10 over Ok

H10 over Q
First-order sentences

Subrings of Q
Status of knowledge

Negative answer to H10

What Davis-Putnam-Robinson-Matiyasevich really proved is:

DPRM theorem: Diophantine ⇐⇒ listable

(They showed that the theory of diophantine equations is
rich enough to simulate any computer!)

The DPRM theorem implies a negative answer to H10:

The unsolvability of the Halting Problem provides a
listable set for which no algorithm can decide
membership.

So there exists a diophantine set for which no algorithm
can decide membership.

Thus H10 has a negative answer.
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More fun consequences of the DPRM theorem

“Diophantine ⇐⇒ listable” has applications beyond the
negative answer to H10:

Prime-producing polynomials

Diophantine statement of the Riemann hypothesis
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The set of primes equals the set of positive values assumed
by the 26-variable polynomial

(k + 2){1− ([wz + h + j − q]2

+[(gk + 2g + k + 1)(h + j) + h − z ]2

+[16(k + 1)3(k + 2)(n + 1)2 + 1− f 2]2

+[2n + p + q + z − e]2 + [e3(e + 2)(a + 1)2 + 1− o2]2

+[(a2 − 1)y2 + 1− x2]2 + [16r2y4(a2 − 1) + 1− u2]2

+[((a + u2(u2 − a))2 − 1)(n + 4dy)2 + 1− (x + cu)2]2

+[(a2 − 1)`2 + 1−m2]2

+[ai + k + 1− `− i ]2 + [n + `+ v − y ]2

+[p + `(a− n − 1) + b(2an + 2a− n2 − 2n − 2)−m]2

+[q + y(a− p − 1) + s(2ap + 2a− p2 − 2p − 2)− x ]2

+[z + p`(a− p) + t(2ap − p2 − 1)− pm]2)}

as the variables range over nonnegative integers
(J. Jones, D. Sato, H. Wada, D. Wiens).
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Riemann hypothesis
Define

ζ(s) :=
1

1s
+

1

2s
+

1

3s
+ · · · for Re(s) > 1,

and extend to a meromorphic function on C.

Riemann hypothesis

All zeros of ζ(s) except for −2,−4,−6, . . . satisfy
Re(s) = 1/2.

The DPRM theorem gives an explicit polynomial equation
that has a solution in integers if and only if the Riemann
hypothesis is false.

Construction of this polynomial equation.

One can write a computer program that, when left
running forever, will detect a counterexample to the
Riemann hypothesis if one exists.

Simulate this program with a diophantine equation.
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H10 over rings of integers
Given a number field k , its ring of integers is

Ok := {α ∈ k : f (α) = 0 for some monic f ∈ Z[x ]}.
Example

If k = Q(i) = {a + bi : a, b ∈ Q}, then Ok = Z[i ].

Conjecture

H10/Ok has a negative answer for every number field k.

Question

Why can’t we just replace Z by Ok in the proof of DPRM?

Answer:

For the Pell equation T : x2 − dy2 = 1 (where d ∈ Z>0

is a fixed non-square), rankT (Z) = 1.

For most number fields k , it is impossible to find tori T
such that the needed conditions on rankT (Ok) hold.

On the other hand, there exist other algebraic groups. . .
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H10 over rings of integers, continued

Conjecture: Shafarevich–Tate groups
of elliptic curves are finite.

⇓ Mazur–Rubin 2010

For every prime-degree Galois extension of number fields
L ⊇ K , there is an elliptic curve E/K with

rankE (L) = rankE (K ) > 0.

⇓ P., Shlapentokh 2003

For every number field k , H10/Ok has a negative answer.
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Hilbert’s tenth problem over Q

Question

Is there an algorithm to decide whether a multivariable
polynomial equation has a solution in rational numbers?

The answer is not known!

If Z is diophantine over Q, then the negative answer for
Z implies a negative answer for Q.

But there is a conjecture that implies that Z is not
diophantine over Q:

Conjecture (Mazur 1992)

For any polynomial equation f (x1, . . . , xn) = 0 with rational
coefficients, if S is the set of rational solutions, then the
closure of S in Rn has at most finitely many connected
components.
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First-order sentences

H10 is about truth of positive existential sentences

(∃x1∃x2 · · · ∃xn) p(x1, . . . , xn) = 0.

Harder problem: Find an algorithm to decide the truth
of arbitrary first-order sentences, in which any number
of bound quantifiers ∃ and ∀ are permitted, e.g.,

(∃x)(∀y)(∃z)(∃w) (x · z + 3 = y2) ∨ ¬(z = x + w).

If variables range over integers, this is undecidable
(since it is harder than the original H10).

But what if variables range over rational numbers?
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Theorem (Robinson 1949, P. 2007, Koenigsmann 2015)

The set Z equals the set of t ∈ Q such that

(∀a, b)(∃x1, x2, x3, x4, y2, y3, y4)

(a + x21 + x22 + x23 + x24 )(b + x21 + x22 + x23 + x24 )

·
[(
x21 − ax22 − bx23 + abx24 − 1

)2
+
(
(t − 2x1)2 − 4ay22 − 4by23 + 4aby24 − 4

)2]
= 0

is true, when the variables range over rational numbers.

Corollary (Robinson 1949)

There is no algorithm to decide the truth of a first-order
sentence over Q.

Building on these ideas, Koenigsmann recently proved also
that the complement Q− Z is diophantine over Q.
This was generalized to number fields by Jennifer Park.
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Subrings of Q
There are rings between Z and Q:

Example

Z[1/2] :=
{ a

2m
: a ∈ Z, m ≥ 0

}
Example

Z[1/2, 1/3] :=
{ a

2m3n
: a ∈ Z, m, n ≥ 0

}
In general, if S ⊆ P := {all primes}, one can define

Z[S−1] = the subring of Q generated by p−1 for all p ∈ S

=
{ a

d
: a ∈ Z, d is a product of powers of primes in S

}
Proposition

Every subring of Q is of the form Z[S−1] for a unique S.
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H10 over subrings of Q

Proposition

Every subring of Q is of the form Z[S−1] for a unique S.

Examples:

S = ∅, Z[S−1] = Z, answer is negative
S = P, Z[S−1] = Q, answer is unknown

How large can we make S (in the sense of density) and
still prove a negative answer for H10 over Z[S−1]?

For finite S , a negative answer follows from work of
Robinson, who used the Hasse-Minkowski theorem
(local-global principle) for quadratic forms.
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H10 over subrings of Q, continued

Theorem (P., 2003)

There exists a computable set of primes S ⊂ P of density 1
such that H10 over Z[S−1] has a negative answer.

The proof use properties of integral points on elliptic curves.
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Ring H10 1st order theory

C YES YES

R YES YES

Fq YES YES

p-adic fields YES YES

Fq((t)) ? ?

number field ? NO

Q ? NO

global function field NO NO

Fq(t) NO NO

C(t) ? ?

C(t1, . . . , tn), n ≥ 2 NO NO

R(t) NO NO

Ok ? NO

Z NO NO
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