Chinese dragons and mating trees

Jason Miller and Scott Sheffield
Massachusetts Institute of Technology

October, 2014

Overview

Part I: Cast of Characters

1. Fractals from complex dynamics: background, motivation, Julia sets, matings
2. Canonical random trees: Brownian motion, continuum random tree
3. Canonical random surfaces: quantum gravity, planar maps, string theory
4. Canonical random paths: walks, interfaces, Schramm-Loewner evolution
5. Canonical random growth: Eden model, DLA, DBM

Part II: Drama

1. Welding random surfaces: a calculus of random surfaces and SLE seams
2. Mating random trees: tree plus tree (conformally mated) equals surface plus path
3. Random growth on random surfaces: dendrites, dragons, surprising tractability

References:

1. Conformal weldings of random surfaces: SLE and the quantum gravity zipper (2010)
2. Imaginary Geometry I-IV (Miller, S., 2012-2013)
3. Quantum Loewner Evolution (Miller, S. 2013)
4. Liouville quantum gravity as a mating of trees (Duplantier, Miller, S. 2014)

FRACTALS FROM COMPLEX DYNAMICS

- Julia sets (Julia, 1918), popularized in 1980's

Published 1989, by Roger T. Stevens

FRACTALS FROM COMPLEX DYNAMICS

- Julia sets (Julia, 1918), popularized in 1980's
- Consider map $\phi(z)=z^{2}$.

Published 1989, by Roger T. Stevens

FRACTALS FROM COMPLEX DYNAMICS

- Julia sets (Julia, 1918), popularized in 1980's
- Consider map $\phi(z)=z^{2}$.
- Maps $\mathbf{C} \backslash \bar{D}$ conformally to self (2 to 1) where D is unit disc. Repeated iteration takes points in $\mathbf{C} \backslash \bar{D}$ to ∞, leaves others bounded.

Published 1989, by Roger T. Stevens

FRACTALS FROM COMPLEX DYNAMICS

- Julia sets (Julia, 1918), popularized in 1980's
- Consider map $\phi(z)=z^{2}$.
- Maps $\mathbf{C} \backslash \bar{D}$ conformally to self (2 to 1) where D is unit disc. Repeated iteration takes points in $\mathbf{C} \backslash \bar{D}$ to ∞, leaves others bounded.
- If K is another compact set with connected hull, can construct a similar (2 to 1) conformal map ϕ_{K} from $\mathbf{C} \backslash \bar{K}$ to itself.

FRACTALS FROM COMPLEX DYNAMICS

- Julia sets (Julia, 1918), popularized in 1980's
- Consider map $\phi(z)=z^{2}$.
- Maps $\mathbf{C} \backslash \bar{D}$ conformally to self (2 to 1) where D is unit disc. Repeated iteration takes points in $\mathbf{C} \backslash \bar{D}$ to ∞, leaves others bounded.
- If K is another compact set with connected hull, can construct a similar (2 to 1) conformal map ϕ_{K} from $\mathbf{C} \backslash \bar{K}$ to itself.
- Might expect more intricate sets K to yield more intricate maps. But suppose we take $\phi_{K}(z)=z^{2}+c$ and let K be set of points remaining bounded under repeated iteration.

FRACTALS FROM COMPLEX DYNAMICS

- Julia sets (Julia, 1918), popularized in 1980's
- Consider map $\phi(z)=z^{2}$.
- Maps $\mathbf{C} \backslash \bar{D}$ conformally to self (2 to 1) where D is unit disc. Repeated iteration takes points in $\mathbf{C} \backslash \bar{D}$ to ∞, leaves others bounded.
- If K is another compact set with connected hull, can construct a similar (2 to 1) conformal map ϕ_{K} from $\mathbf{C} \backslash \bar{K}$ to itself.
- Might expect more intricate sets K to yield more intricate maps. But suppose we take $\phi_{K}(z)=z^{2}+c$ and let K be set of points remaining bounded under repeated iteration.
- Look at Julia set images, Arnaud Chéritat's "mating" animations.

FRACTALS FROM COMPLEX DYNAMICS

- Julia sets (Julia, 1918), popularized in 1980's
- Consider map $\phi(z)=z^{2}$.
- Maps $\mathbf{C} \backslash \bar{D}$ conformally to self (2 to 1) where D is unit disc. Repeated iteration takes points in $\mathbf{C} \backslash \bar{D}$ to ∞, leaves others bounded.
- If K is another compact set with connected hull, can construct a similar (2 to 1) conformal $\operatorname{map} \phi_{K}$ from $\mathbf{C} \backslash \bar{K}$ to itself.
- Might expect more intricate sets K to yield more intricate maps. But suppose we take $\phi_{K}(z)=z^{2}+c$ and let K be set of points remaining bounded under repeated iteration.
- Look at Julia set images, Arnaud Chéritat's "mating" animations.
- Popular lexicon: chaos, butterly effect, fractal, self-similar.

FRACTALS FROM COMPLEX DYNAMICS

- Julia sets (Julia, 1918), popularized in 1980's
- Consider map $\phi(z)=z^{2}$.
- Maps $\mathbf{C} \backslash \bar{D}$ conformally to self (2 to 1) where D is unit disc. Repeated iteration takes points in $\mathbf{C} \backslash \bar{D}$ to ∞, leaves others bounded.
- If K is another compact set with connected hull, can construct a similar (2 to 1) conformal $\operatorname{map} \phi_{K}$ from $\mathbf{C} \backslash \bar{K}$ to itself.
- Might expect more intricate sets K to yield more intricate maps. But suppose we take $\phi_{K}(z)=z^{2}+c$ and let K be set of points remaining bounded under repeated iteration.
- Look at Julia set images, Arnaud Chéritat's "mating" animations.
- Popular lexicon: chaos, butterly effect, fractal, self-similar.
- What about random fractals, only self similar in law?

RANDOM TREES

- This is the easiest random fractal to explain.

RANDOM TREES

- This is the easiest random fractal to explain.
- Aldous (1993) constructs continuum random tree (CRT) from a Brownian excursion. To produce tree, start with graph of Brownian excursion and then identify points connected by horizontal line segment that lies below graph except at endpoints. Result is a random matric space.

RANDOM TREES

- This is the easiest random fractal to explain.
- Aldous (1993) constructs continuum random tree (CRT) from a Brownian excursion. To produce tree, start with graph of Brownian excursion and then identify points connected by horizontal line segment that lies below graph except at endpoints. Result is a random matric space.
- Discrete analog: Consider a tree embedded in the plane with n edges and a distinguished root. As one traces the outer boundary of the tree clockwise, distance from root performs a simple walk on \mathbf{Z}_{+}with $2 n$ steps, starting and ending at 0 .

RANDOM TREES

- This is the easiest random fractal to explain.
- Aldous (1993) constructs continuum random tree (CRT) from a Brownian excursion. To produce tree, start with graph of Brownian excursion and then identify points connected by horizontal line segment that lies below graph except at endpoints. Result is a random matric space.
- Discrete analog: Consider a tree embedded in the plane with n edges and a distinguished root. As one traces the outer boundary of the tree clockwise, distance from root performs a simple walk on \mathbf{Z}_{+}with $2 n$ steps, starting and ending at 0 .
- Simple bijection rooted planar trees and walks of this type.

RANDOM PATHS

Given a simply connected planar domain D with boundary points a and b and a parameter $\kappa \in[0, \infty)$, the Schramm-Loewner evolution $\operatorname{SLE}_{\kappa}$ is a random non-self-crossing path in \bar{D} from a to b.

The parameter κ roughly indicates how "windy" the path is. Would like to argue that SLE is in some sense the "canonical" random non-self-crossing path. What symmetries characterize SLE?

Conformal Markov property of SLE

If ϕ conformally maps D to \tilde{D} and η is an $\operatorname{SLE}_{\kappa}$ from a to b in D, then $\phi \circ \eta$ is an SLE_{κ} from $\phi(a)$ to $\phi(b)$ in \tilde{D}.

Markov Property

Given η up to a stopping time $t \ldots$

law of remainder is SLE in $D \backslash \eta[0, t]$ from $\eta(t)$ to b.

Chordal Schramm-Loewner evolution (SLE)

- THEOREM [Oded Schramm]: Conformal invariance and the Markov property completely determine the law of SLE, up to a single parameter which we denote by $\kappa \geq 0$.

Chordal Schramm-Loewner evolution (SLE)

- THEOREM [Oded Schramm]: Conformal invariance and the Markov property completely determine the law of SLE, up to a single parameter which we denote by $\kappa \geq 0$.
- Explicit construction: An SLE path γ from 0 to ∞ in the complex upper half plane \mathbf{H} can be defined in an interesting way: given path γ one can construct conformal maps $g_{t}: \mathbf{H} \backslash \gamma([0, t]) \rightarrow \mathbf{H}$ (normalized to look like identity near infinity, i.e., $\left.\lim _{z \rightarrow \infty} g_{t}(z)-z=0\right)$. In $S_{L E}$, one defines g_{t} via an ODE (which makes sense for each fixed z):

$$
\partial_{t} g_{t}(z)=\frac{2}{g_{t}(z)-W_{t}}, \quad g_{0}(z)=z,
$$

where $W_{t}=\sqrt{\kappa} B_{t}=L A W B_{\kappa t}$ and B_{t} is ordinary Brownian motion.

SLE phases [Rohde, Schramm]

$\kappa \leq 4$

$\kappa \in(4,8)$

$\kappa \geq 8$

Radial Schramm-Loewner evolution (SLE)

- Radial SLE: $\partial_{t} g_{t}(z)=g_{t}(z) \frac{\xi_{t}+g_{t}(z)}{\xi_{t}-g_{t}(z)}$ where $\xi_{t}=e^{i \sqrt{\kappa} B_{t}}$.

Radial Schramm-Loewner evolution (SLE)

- Radial SLE: $\partial_{t} g_{t}(z)=g_{t}(z) \frac{\xi_{t}+g_{t}(z)}{\xi_{t}-g_{t}(z)}$ where $\xi_{t}=e^{i \sqrt{\kappa} B_{t}}$.
- Radial measure-driven Loewner evolution: $\partial_{t} g_{t}(z)=\int g_{t}(z) \frac{x+g_{t}(z)}{x-g_{t}(z)} d m_{t}(x)$ where, for each g, m_{t} is a measure on the complex unit circle.

RANDOM SURFACES

Start out with a sheet of paper

RANDOM SURFACES

Get out pen and ruler

RANDOM SURFACES

Measure and mark squares squares of equal size

RANDOM SURFACES

Get out scissors

RANDOM SURFACES

Cut into squares

RANDOM SURFACES

Get out bottle of glue

RANDOM SURFACES

Attach squares along boundaries with glue to form a surface "without holes."

$$
4 \leqslant
$$

What is the structure of a typical quadrangulation when the number of faces is large?

Random quadrangulation with 25,000 faces

(Simulation due to J.F. Marckert)

Background

1. First studied by Tutte in 1960s while working on the four color theorem.

(Simulation due to J.F. Marckert)

Background

(Simulation due to J.F. Marckert)

1. First studied by Tutte in 1960s while working on the four color theorem.
2. Many variants (triangulations, quadrangulations, etc.) Some come equipped with extra statistical physics structure (a distinguished spanning tree, a general distinguished edge subset, a "spin" function on vertices, etc.)

Background

(Simulation due to J.F. Marckert)

1. First studied by Tutte in 1960s while working on the four color theorem.
2. Many variants (triangulations, quadrangulations, etc.) Some come equipped with extra statistical physics structure (a distinguished spanning tree, a general distinguished edge subset, a "spin" function on vertices, etc.)
3. Can be interpreted as Riemannian manifolds with conical singularities.

Background

(Simulation due to J.F. Marckert)

1. First studied by Tutte in 1960s while working on the four color theorem.
2. Many variants (triangulations, quadrangulations, etc.) Some come equipped with extra statistical physics structure (a distinguished spanning tree, a general distinguished edge subset, a "spin" function on vertices, etc.)
3. Can be interpreted as Riemannian manifolds with conical singularities.
4. Converges in law in Gromov-Hausdorff sense to random metric space called Brownian map, homeomorphic to the 2-sphere, Hausdorff dimension 4 (established in several works by subsets of Chaissang, Schaefer, Le Gall, Paulin, Miermont)

Background

(Simulation due to J.F. Marckert)

1. First studied by Tutte in 1960s while working on the four color theorem.
2. Many variants (triangulations, quadrangulations, etc.) Some come equipped with extra statistical physics structure (a distinguished spanning tree, a general distinguished edge subset, a "spin" function on vertices, etc.)
3. Can be interpreted as Riemannian manifolds with conical singularities.
4. Converges in law in Gromov-Hausdorff sense to random metric space called Brownian map, homeomorphic to the 2-sphere, Hausdorff dimension 4 (established in several works by subsets of Chaissang, Schaefer, Le Gall, Paulin, Miermont)
5. Important tool: Bijections encoding surface via pair of trees.

Random quadrangulation

Red tree

Red and blue trees

Red and blue trees alone do not determine the map structure

Random quadrangulation with red and blue trees

Path snaking between the trees. Encodes the trees and how they are glued together.

How was the graph embedded into \mathbf{R}^{2} ?

Can subivide each quadrilateral to obtain a triangulation without multiple edges.

Circle pack the resulting triangulation.

Packed with Stephenson's CirclePack.

Circle pack the resulting triangulation.

Packed with Stephenson's CirclePack.

Circle pack the resulting triangulation.

Packed with Stephenson's CirclePack.

What is the "limit" of this embedding? Circle packings are related to conformal maps.

Packed with Stephenson's CirclePack.

Picking a surface at random in the continuum

Uniformization theorem: every simply connected Riemannian surface can be conformally mapped to either the unit disk, the plane, or the sphere \mathbf{S}^{2} in \mathbf{R}^{3}

Picking a surface at random in the continuum

Uniformization theorem: every simply connected Riemannian surface can be conformally mapped to either the unit disk, the plane, or the sphere \mathbf{S}^{2} in \mathbf{R}^{3}

Isothermal coordinates: Metric for the surface takes the form $e^{\rho(z)} d z$ for some smooth function ρ where $d z$ is the Euclidean metric. (See David Gu's gallery.)

Picking a surface at random in the continuum

Uniformization theorem: every simply connected Riemannian surface can be conformally mapped to either the unit disk, the plane, or the sphere \mathbf{S}^{2} in \mathbf{R}^{3}

Isothermal coordinates: Metric for the surface takes the form $e^{\rho(z)} d z$ for some smooth function ρ where $d z$ is the Euclidean metric. (See David Gu's gallery.) \Rightarrow Can parameterize the space of surfaces with smooth functions.

- If $\rho=0$, get the same surface
- If $\Delta \rho=0$, i.e. if ρ is harmonic, the surface described is flat

Picking a surface at random in the continuum

Uniformization theorem: every simply connected Riemannian surface can be conformally mapped to either the unit disk, the plane, or the sphere \mathbf{S}^{2} in \mathbf{R}^{3}

Isothermal coordinates: Metric for the surface takes the form $e^{\rho(z)} d z$ for some smooth function ρ where $d z$ is the Euclidean metric. (See David Gu's gallery.) \Rightarrow Can parameterize the space of surfaces with smooth functions.

- If $\rho=0$, get the same surface
- If $\Delta \rho=0$, i.e. if ρ is harmonic, the surface described is flat

Question: Which measure on ρ ? If we want our surface to be a perturbation of a flat metric, natural to choose ρ as the canonical perturbation of a harmonic function.

The Gaussian free field

- The discrete Gaussian free field (DGFF) is a Gaussian random surface model.

The Gaussian free field

- The discrete Gaussian free field (DGFF) is a Gaussian random surface model.
- Measure on functions $h: D \rightarrow \mathbf{R}$ for $D \subseteq \mathbf{Z}^{2}$ and $\left.h\right|_{\partial D}=\psi$ with density respect to Lebesgue measure on $\mathbf{R}^{|D|}$:

$$
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \sum_{x \sim y}(h(x)-h(y))^{2}\right)
$$

The Gaussian free field

- The discrete Gaussian free field (DGFF) is a Gaussian random surface model.
- Measure on functions $h: D \rightarrow \mathbf{R}$ for $D \subseteq \mathbf{Z}^{2}$ and $\left.h\right|_{\partial D}=\psi$ with density respect to Lebesgue measure on $\mathbf{R}^{|D|}$:

$$
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \sum_{x \sim y}(h(x)-h(y))^{2}\right)
$$

- Natural perturbation of a harmonic function

The Gaussian free field

- The discrete Gaussian free field (DGFF) is a Gaussian random surface model.
- Measure on functions $h: D \rightarrow \mathbf{R}$ for $D \subseteq \mathbf{Z}^{2}$ and $\left.h\right|_{\partial D}=\psi$ with density respect to Lebesgue measure on $\mathbf{R}^{|D|}$:

$$
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \sum_{x \sim y}(h(x)-h(y))^{2}\right)
$$

- Natural perturbation of a harmonic function
- Fine mesh limit: converges to the continuum GFF, i.e. the standard Gaussian wrt the Dirichlet inner product

$$
(f, g)_{\nabla}=\frac{1}{2 \pi} \int \nabla f(x) \cdot \nabla g(x) d x
$$

The Gaussian free field

- The discrete Gaussian free field (DGFF) is a Gaussian random surface model.
- Measure on functions $h: D \rightarrow \mathbf{R}$ for $D \subseteq \mathbf{Z}^{2}$ and $\left.h\right|_{\partial D}=\psi$ with density respect to Lebesgue measure on $\mathbf{R}^{|D|}$:

$$
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2} \sum_{x \sim y}(h(x)-h(y))^{2}\right)
$$

- Natural perturbation of a harmonic function
- Fine mesh limit: converges to the continuum GFF, i.e. the standard Gaussian wrt the Dirichlet inner product

$$
(f, g)_{\nabla}=\frac{1}{2 \pi} \int \nabla f(x) \cdot \nabla g(x) d x
$$

- Continuum GFF not a function - only a generalized function

Liouville quantum gravity

$$
\gamma=0.5
$$

- Liouville quantum gravity: $e^{\gamma h(z)} d z$ where h is a GFF and $\gamma \in[0,2)$

(Number of subdivisions)

Liouville quantum gravity

$$
\gamma=0.5
$$

- Liouville quantum gravity: $e^{\gamma h(z)} d z$ where h is a GFF and $\gamma \in[0,2)$
- Introduced by Polyakov in the 1980s

(Number of subdivisions)

Liouville quantum gravity

$$
\gamma=0.5
$$

- Liouville quantum gravity: $e^{\gamma h(z)} d z$ where h is a GFF and $\gamma \in[0,2)$
- Introduced by Polyakov in the 1980s
- Does not make literal sense since h takes values in the space of distributions

(Number of subdivisions)

Liouville quantum gravity

$$
\gamma=0.5
$$

- Liouville quantum gravity: $e^{\gamma h(z)} d z$ where h is a GFF and $\gamma \in[0,2)$
- Introduced by Polyakov in the 1980s
- Does not make literal sense since h takes values in the space of distributions
- Can be made sense of as a random area measure using a regularization procedure
- Can compute areas of regions and lengths of curves

(Number of subdivisions)

Liouville quantum gravity

$$
\gamma=1.0
$$

- Liouville quantum gravity: $e^{\gamma h(z)} d z$ where h is a GFF and $\gamma \in[0,2)$
- Introduced by Polyakov in the 1980s
- Does not make literal sense since h takes values in the space of distributions
- Can be made sense of as a random area measure using a regularization procedure
- Can compute areas of regions and lengths of curves

(Number of subdivisions)

Liouville quantum gravity

- Liouville quantum gravity: $e^{\gamma h(z)} d z$ where h is a GFF and $\gamma \in[0,2)$
- Introduced by Polyakov in the 1980s
- Does not make literal sense since h takes values in the space of distributions
- Can be made sense of as a random area measure using a regularization procedure
- Can compute areas of regions and lengths of curves

(Number of subdivisions)

Liouville quantum gravity

$$
\gamma=2.0
$$

- Liouville quantum gravity: $e^{\gamma h(z)} d z$ where h is a GFF and $\gamma \in[0,2)$
- Introduced by Polyakov in the 1980s
- Does not make literal sense since h takes values in the space of distributions
- Can be made sense of as a random area measure using a regularization procedure
- Can compute areas of regions and lengths of curves

(Number of subdivisions)

Continuum space-filling path

Space-filling SLE SL $_{6}$ on a LQG surface. Random path which encodes the limit of a RPM.

RANDOM GROWTH

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights

RANDOM GROWTH

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights

RANDOM GROWTH

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)

RANDOM GROWTH

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
$-\mathrm{On} \mathbf{Z}^{2}$?

RANDOM GROWTH

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
$-\mathrm{On} \mathbf{Z}^{2}$?
- Question: Large scale behavior of shape of ball wrt perturbed metric?

RANDOM GROWTH

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
$-\mathrm{On} \mathbf{Z}^{2}$?
- Question: Large scale behavior of shape of ball wrt perturbed metric?

RANDOM GROWTH

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
$-\mathrm{On} \mathbf{Z}^{2}$?
- Question: Large scale behavior of shape of ball wrt perturbed metric?
- Cox and Durrett (1981) showed that the macroscopic shape is convex

RANDOM GROWTH

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
$-\mathrm{On} \mathbf{Z}^{2}$?
- Question: Large scale behavior of shape of ball wrt perturbed metric?
- Cox and Durrett (1981) showed that the macroscopic shape is convex
- Computer simulations show that it is not a Euclidean disk

RANDOM GROWTH

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
$-\mathrm{On} \mathbf{Z}^{2}$?
- Question: Large scale behavior of shape of ball wrt perturbed metric?
- Cox and Durrett (1981) showed that the macroscopic shape is convex
- Computer simulations show that it is not a Euclidean disk
- \mathbf{Z}^{2} is not isotropic enough

RANDOM GROWTH

- Associate with a graph (V, E) i.i.d. $\exp (1)$ edge weights
- Introduced by Eden (1961) and Hammersley and Welsh (1965)
$-\mathrm{On} \mathbf{Z}^{2}$?
- Question: Large scale behavior of shape of ball wrt perturbed metric?
- Cox and Durrett (1981) showed that the macroscopic shape is convex
- Computer simulations show that it is not a Euclidean disk
- \mathbf{Z}^{2} is not isotropic enough
- Vahidi-Asl and Weirmann (1990) showed that the rescaled ball converges to a disk if
 \mathbf{Z}^{2} is replaced by the Voronoi tesselation associated with a Poisson process

Markovian formulation

Eden exploration

Sample the cluster C_{n+1} from C_{n} by selecting an edge uniformly at random on ∂C_{n}, and then adding the vertex which is attached to it. VARIANT: Choose locations from harmonic measure (DLA) or harmonic measure to η power (η-DBM).

Markovian formulation

Eden exploration

Sample the cluster C_{n+1} from C_{n} by selecting an edge uniformly at random on ∂C_{n}, and then adding the vertex which is attached to it. VARIANT: Choose locations from harmonic measure (DLA) or harmonic measure to η power (η-DBM).

Markovian formulation

Eden exploration

Sample the cluster C_{n+1} from C_{n} by selecting an edge uniformly at random on ∂C_{n}, and then adding the vertex which is attached to it. VARIANT: Choose locations from harmonic measure (DLA) or harmonic measure to η power (η-DBM).

Markovian formulation

Eden exploration

Sample the cluster C_{n+1} from C_{n} by selecting an edge uniformly at random on ∂C_{n}, and then adding the vertex which is attached to it. VARIANT: Choose locations from harmonic measure (DLA) or harmonic measure to η power (η-DBM).

Markovian formulation

Eden exploration

Sample the cluster C_{n+1} from C_{n} by selecting an edge uniformly at random on ∂C_{n}, and then adding the vertex which is attached to it. VARIANT: Choose locations from harmonic measure (DLA) or harmonic measure to η power (η-DBM).

Markovian formulation

Eden exploration

Sample the cluster C_{n+1} from C_{n} by selecting an edge uniformly at random on ∂C_{n}, and then adding the vertex which is attached to it. VARIANT: Choose locations from harmonic measure (DLA) or harmonic measure to η power (η-DBM).

Markovian formulation

Eden exploration

Sample the cluster C_{n+1} from C_{n} by selecting an edge uniformly at random on ∂C_{n}, and then adding the vertex which is attached to it. VARIANT: Choose locations from harmonic measure (DLA) or harmonic measure to η power (η-DBM).

Markovian formulation

Eden exploration

Sample the cluster C_{n+1} from C_{n} by selecting an edge uniformly at random on ∂C_{n}, and then adding the vertex which is attached to it. VARIANT: Choose locations from harmonic measure (DLA) or harmonic measure to η power (η-DBM).

Markovian formulation

Eden exploration

Sample the cluster C_{n+1} from C_{n} by selecting an edge uniformly at random on ∂C_{n}, and then adding the vertex which is attached to it. VARIANT: Choose locations from harmonic measure (DLA) or harmonic measure to η power (η-DBM).

Markovian formulation

Eden exploration

Sample the cluster C_{n+1} from C_{n} by selecting an edge uniformly at random on ∂C_{n}, and then adding the vertex which is attached to it. VARIANT: Choose locations from harmonic measure (DLA) or harmonic measure to η power (η-DBM).

Markovian formulation

Eden exploration

Sample the cluster C_{n+1} from C_{n} by selecting an edge uniformly at random on ∂C_{n}, and then adding the vertex which is attached to it. VARIANT: Choose locations from harmonic measure (DLA) or harmonic measure to η power (η-DBM).

Markovian formulation

Eden exploration

Sample the cluster C_{n+1} from C_{n} by selecting an edge uniformly at random on ∂C_{n}, and then adding the vertex which is attached to it. VARIANT: Choose locations from harmonic measure (DLA) or harmonic measure to η power (η-DBM).

Markovian formulation

Eden exploration

Sample the cluster C_{n+1} from C_{n} by selecting an edge uniformly at random on ∂C_{n}, and then adding the vertex which is attached to it. VARIANT: Choose locations from harmonic measure (DLA) or harmonic measure to η power (η-DBM).

Euclidean Diffusion Limited Aggregation (DLA) introduced by Witten-Sander 1981.

DLA in nature: "A DLA cluster grown from a copper sulfate solution in an electrodeposition cell" (from Wikipedia)

DLA in nature: Magnese oxide patterns on the surface of a rock. (Halsey, Physics Today 2000)

DLA in nature: Magnese oxide patterns on the surface of a rock.

DLA in art: "High-voltage dielectric breakdown within a block of plexiglas" (from Wikipedia)

DLA in physics

Introduced by Witten and Sander in 1981 as a model for crystal growth. (Mineral deposits, Hele-Shaw flow, electrodeposition, lichen growth, lightning paths, coral, etc.)

An active area of research in physics for the last 33 years:

Diffusion-limited aggregation

polytechnique.fr [PDF]
TA Witten, LM Sander - Physical Review B, 1983 - APS
Diffusion-limited aggregation (DLA) is an idealization of the process by which matter irreversibly combines to formdust, soot, dendrites, and other random objects in the case where the rate-limiting step is diffusion of matter to the aggregate. We study the process ... Cited by 1472 Related articles All 7 versions Cite Save

Diffusion-limited aggregation, a kinetic critical phenomenon

TA Witten Jr, LM Sander - Physical review letters, 1981 - APS
A model for random aggregatesis studied by computer simulation. The model is applicable to a metal-particle aggregation process whose correlations have been measured previously. Density correlations within the model aggregates fall off with distance with a fractional ...
Cited by 4469 Related articles All 6 versions Cite Save
Formation of fractal clusters and networks by irreversible diffusion-limited aggregation
P Meakin - Physical Review Letters, 1983 - APS
In addition to the simulations used to obtain the results shown in Figs. 1 and 2, simulations have also been carried out at a lower concentration (5000 particles on a 400×400 lattice or $\mathrm{p}=0.031-25$). From seven such simulations 1 find that $\mathrm{n}=0.516+0.029$ " 1 \& x \& 25 lattice...
Cited by 1436 Related articles All 3 versions Cite Save

DLA in math?

DLA in math?

Not a lot of progress. (A related process called internal DLA is mathematically much more well understood.)

DLA in math?

Not a lot of progress. (A related process called internal DLA is mathematically much more well understood.)

Open questions

DLA in math?

Not a lot of progress. (A related process called internal DLA is mathematically much more well understood.)

Open questions

- Does DLA have a "scaling limit"?

DLA in math?

Not a lot of progress. (A related process called internal DLA is mathematically much more well understood.)

Open questions

- Does DLA have a "scaling limit"?
- Is the shape random at large scales?

DLA in math?

Not a lot of progress. (A related process called internal DLA is mathematically much more well understood.)

Open questions

- Does DLA have a "scaling limit"?
- Is the shape random at large scales?
- Does the macroscopic shape look like a tree?

DLA in math?

Not a lot of progress. (A related process called internal DLA is mathematically much more well understood.)

Open questions

- Does DLA have a "scaling limit"?
- Is the shape random at large scales?
- Does the macroscopic shape look like a tree?
- What is its asymptotic dimension? Simulation prediction: ≈ 1.71 on \mathbf{Z}^{2}

DLA in math?

Not a lot of progress. (A related process called internal DLA is mathematically much more well understood.)

Open questions

- Does DLA have a "scaling limit"?
- Is the shape random at large scales?
- Does the macroscopic shape look like a tree?
- What is its asymptotic dimension? Simulation prediction: ≈ 1.71 on \mathbf{Z}^{2}

Schramm 2006 ICM proceedings:
Given that the fractals produced by DLA are not conformally invariant, it is not too surprising that it is hard to faithfully model DLA using conformal maps. Harry Kesten [44] proved that the diameter of the planar DLA cluster after n steps grows asymptotically no faster than $n^{2 / 3}$, and this appears to be essentially the only theorem concerning two-dimensional DLA, though several very simplified variants of DLA have been successfully analysed.

DLA in math?

Not a lot of progress. (A related process called internal DLA is mathematically much more well understood.)

Open questions

- Does DLA have a "scaling limit"?
- Is the shape random at large scales?
- Does the macroscopic shape look like a tree?
- What is its asymptotic dimension? Simulation prediction: ≈ 1.71 on \mathbf{Z}^{2}

Schramm 2006 ICM proceedings:
Given that the fractals produced by DLA are not conformally invariant, it is not too surprising that it is hard to faithfully model DLA using conformal maps. Harry Kesten [44] proved that the diameter of the planar DLA cluster after n steps grows asymptotically no faster than $n^{2 / 3}$, and this appears to be essentially the only theorem concerning two-dimensional DLA, though several very simplified variants of DLA have been successfully analysed.

What about DLA on random planar maps and Liouville quantum gravity surfaces?

Part II: DRAMA

WELDING RANDOM SURFACES

Can "weld" and "slice" special quantum surfaces called quantum wedges (with "weight" parameters indicating thickness) to obtain wedges (with other weights).

- Weight parameter $\boldsymbol{W}=\gamma\left(\gamma+\frac{2}{\gamma}-\alpha\right)$ is additive under the welding operation.
- Interface between welding of independent wedges $\mathcal{W}_{1}, \mathcal{W}_{2}$ of weight W_{1} and W_{2} is an $\operatorname{SLE}_{\kappa}\left(W_{1}-2 ; W_{2}-2\right)$ on combined surface.
- Glue canonical random surfaces, seam becomes canonical random path.

MATING RANDOM TREES

X, Y independent Brownian excursions on $[0,1]$. Pick $C>0$ large so that the graphs of X and $C-Y$ are disjoint.

t

MATING RANDOM TREES

X, Y independent Brownian excursions on $[0,1]$. Pick $C>0$ large so that the graphs of X and $C-Y$ are disjoint.

- Identify points on the graph of X if they are connected by a horizontal line which is below the graph; yields a continuum random tree (CRT)

MATING RANDOM TREES

X, Y independent Brownian excursions on $[0,1]$. Pick $C>0$ large so that the graphs of X and $C-Y$ are disjoint.

- Identify points on the graph of X if they are connected by a horizontal line which is below the graph; yields a continuum random tree (CRT)
- Same for $C-Y_{t}$ yields an independent CRT

MATING RANDOM TREES

X, Y independent Brownian excursions on $[0,1]$. Pick $C>0$ large so that the graphs of X and $C-Y$ are disjoint.

- Identify points on the graph of X if they are connected by a horizontal line which is below the graph; yields a continuum random tree (CRT)
- Same for $C-Y_{t}$ yields an independent CRT
- Glue the CRTs together by declaring points on the vertical lines to be equivalent

MATING RANDOM TREES

X, Y independent Brownian excursions on $[0,1]$. Pick $C>0$ large so that the graphs of X and $C-Y$ are disjoint.

- Identify points on the graph of X if they are connected by a horizontal line which is below the graph; yields a continuum random tree (CRT)
- Same for $C-Y_{t}$ yields an independent CRT
- Glue the CRTs together by declaring points on the vertical lines to be equivalent

Q: What is the resulting structure?

MATING RANDOM TREES

X, Y independent Brownian excursions on $[0,1]$. Pick $C>0$ large so that the graphs of X and $C-Y$ are disjoint.

- Identify points on the graph of X if they are connected by a horizontal line which is below the graph; yields a continuum random tree (CRT)
- Same for $C-Y_{t}$ yields an independent CRT
- Glue the CRTs together by declaring points on the vertical lines to be equivalent

Q: What is the resulting structure? A: Sphere with a space-filling path.

MATING RANDOM TREES

X, Y independent Brownian excursions on $[0,1]$. Pick $C>0$ large so that the graphs of X and $C-Y$ are disjoint.

- Identify points on the graph of X if they are connected by a horizontal line which is below the graph; yields a continuum random tree (CRT)
- Same for $C-Y_{t}$ yields an independent CRT
- Glue the CRTs together by declaring points on the vertical lines to be equivalent

Q: What is the resulting structure? A: Sphere with a space-filling path. A peanosphere.

How to check this?

Theorem (Moore 1925)
Let \cong be any topologically closed equivalence relation on the sphere \mathbf{S}^{2}. Assume that each equivalence class is connected and not equal to all of \mathbf{S}^{2}. Then the quotient space \mathbf{S}^{2} / \cong is homeomorphic to \mathbf{S}^{2} if and only if no equivalence class separates the sphere into two or more connected components.

- An equivalence relation is topologically closed iff for any two sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ with
- $x_{n} \cong y_{n}$ for all n
- $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$
- we have that $x \cong y$.

Constructing a sphere from a pair of trees

- X, Y ind. Brownian excursions on $[0,1]$
- Red/green lines give an \cong-relation on \mathbf{S}^{2}

Constructing a sphere from a pair of trees

- X, Y ind. Brownian excursions on $[0,1]$
- Red/green lines give an \cong-relation on \mathbf{S}^{2}
- Types of equivalence classes:

Constructing a sphere from a pair of trees

- X, Y ind. Brownian excursions on $[0,1]$
- Red/green lines give an \cong-relation on \mathbf{S}^{2}
- Types of equivalence classes:

1. Outer boundary of rectangle

Constructing a sphere from a pair of trees

- X, Y ind. Brownian excursions on $[0,1]$
- Red/green lines give an \cong-relation on \mathbf{S}^{2}
- Types of equivalence classes:

1. Outer boundary of rectangle
2. V line which does not share an endpoint with a H line

$$
\mathrm{H}=\text { horizontal, } \mathrm{V}=\text { vertical }
$$

Constructing a sphere from a pair of trees

- X, Y ind. Brownian excursions on $[0,1]$
- Red/green lines give an \cong-relation on \mathbf{S}^{2}
- Types of equivalence classes:

1. Outer boundary of rectangle
2. V line which does not share an endpoint with a H line
3. H line below X or above $C-Y$ with two V lines with common endpoint

$$
\mathbf{H}=\text { horizontal, } \mathbf{V}=\text { vertical }
$$

Constructing a sphere from a pair of trees

- X, Y ind. Brownian excursions on $[0,1]$
- Red/green lines give an \cong-relation on \mathbf{S}^{2}
- Types of equivalence classes:

1. Outer boundary of rectangle
2. V line which does not share an endpoint with a H line
3. H line below X or above $C-Y$ with two V lines with common endpoint
4. H line below X or above $C-Y$ with two V lines with common endpoint and a third V line hitting in the middle
$\mathrm{H}=$ horizontal, $\mathrm{V}=$ vertical

Constructing a sphere from a pair of trees

- X, Y ind. Brownian excursions on $[0,1]$
- Red/green lines give an \cong-relation on \mathbf{S}^{2}
- Types of equivalence classes:

1. Outer boundary of rectangle
2. V line which does not share an endpoint with a H line
3. H line below X or above $C-Y$ with two V lines with common endpoint
4. H line below X or above $C-Y$ with two V lines with common endpoint and a third V line hitting in the middle

- \cong is topologically closed and does not separate \mathbf{S}^{2} into two or more components, thus \mathbf{S}^{2} / \cong is homeomorphic to \mathbf{S}^{2}
$\mathrm{H}=$ horizontal, $\mathrm{V}=$ vertical

t

Constructing a sphere from a pair of trees

- X, Y ind. Brownian excursions on $[0,1]$
- Red/green lines give an \cong-relation on \mathbf{S}^{2}
- Types of equivalence classes:

1. Outer boundary of rectangle
2. V line which does not share an endpoint with a H line
3. H line below X or above $C-Y$ with two V lines with common endpoint
4. H line below X or above $C-Y$ with two V lines with common endpoint and a third V line hitting in the middle

- \cong is topologically closed and does not separate \mathbf{S}^{2} into two or more components, thus \mathbf{S}^{2} / \cong is homeomorphic to \mathbf{S}^{2}
$\mathrm{H}=$ horizontal, $\mathrm{V}=$ vertical

t
- Following the \mathbf{V} lines from left to right gives a space-filling path on \mathbf{S}^{2} / \cong

Constructing a sphere from a pair of trees

- X, Y ind. Brownian excursions on $[0,1]$
- Red/green lines give an \cong-relation on \mathbf{S}^{2}
- Types of equivalence classes:

1. Outer boundary of rectangle
2. V line which does not share an endpoint with a H line
3. H line below X or above $C-Y$ with two V lines with common endpoint
4. H line below X or above $C-Y$ with two V lines with common endpoint and a third V line hitting in the middle

- \cong is topologically closed and does not separate \mathbf{S}^{2} into two or more components,
 thus \mathbf{S}^{2} / \cong is homeomorphic to \mathbf{S}^{2}
$\mathrm{H}=$ horizontal, $\mathrm{V}=$ vertical
- Following the \mathbf{V} lines from left to right gives a space-filling path on \mathbf{S}^{2} / \cong

The sphere/space-filling path pair is a peanoshere

Constructing a sphere from a pair of trees

- X, Y ind. Brownian excursions on $[0,1]$
- Red/green lines give an \cong-relation on \mathbf{S}^{2}
- Types of equivalence classes:

1. Outer boundary of rectangle
2. V line which does not share an endpoint with a H line
3. H line below X or above $C-Y$ with two

V lines with common endpoint
4. H line below X or above $C-Y$ with two V lines with common endpoint and a third V line hitting in the middle

- \cong is topologically closed and does not separate \mathbf{S}^{2} into two or more components, thus \mathbf{S}^{2} / \cong is homeomorphic to \mathbf{S}^{2}

$$
\mathrm{H}=\text { horizontal, } \mathrm{V}=\text { vertical }
$$

- Following the \mathbf{V} lines from left to right gives a space-filling path on \mathbf{S}^{2} / \cong
The sphere/space-filling path pair is a peanoshere
Peanophere has canonical embedding in Euclidean sphere as LQG, space-filling SLE.

Gluing independent Lévy trees

Can view SLE $_{\kappa^{\prime}}$ process, $\kappa^{\prime} \in(4,8)$ as a gluing of two $\frac{\kappa^{\prime}}{4}$-stable Lévy trees.

Gluing independent Lévy trees

Can view SLE $_{\kappa^{\prime}}$ process, $\kappa^{\prime} \in(4,8)$ as a gluing of two $\frac{\kappa^{\prime}}{4}$-stable Lévy trees.

Gluing independent Lévy trees
Can view SLE $_{\kappa^{\prime}}$ process, $\kappa^{\prime} \in(4,8)$ as a gluing of two $\frac{\kappa^{\prime}}{4}$-stable Lévy trees.

Gluing independent Lévy trees

Can view SLE $_{\kappa^{\prime}}$ process, $\kappa^{\prime} \in(4,8)$ as a gluing of two $\frac{\kappa^{\prime}}{4}$-stable Lévy trees.

- The two trees of quantum disks almost surely determine both the $\mathrm{SLE}_{\kappa^{\prime}}$ and the LQG surface on which it is drawn

Gluing independent Lévy trees

Can view $\operatorname{SLE}_{\kappa^{\prime}}$ process, $\kappa^{\prime} \in(4,8)$ as a gluing of two $\frac{\kappa^{\prime}}{4}$-stable Lévy trees.

- The two trees of quantum disks almost surely determine both the $\mathrm{SLE}_{\kappa^{\prime}}$ and the LQG surface on which it is drawn
- Can convert questions about $\operatorname{SLE}_{\kappa^{\prime}}$ into questions about $\frac{\kappa^{\prime}}{4}$-stable processes.

Gluing independent Lévy trees

Can view SLE $_{\kappa^{\prime}}$ process, $\kappa^{\prime} \in(4,8)$ as a gluing of two $\frac{\kappa^{\prime}}{4}$-stable Lévy trees.

- The two trees of quantum disks almost surely determine both the $\mathrm{SLE}_{\kappa^{\prime}}$ and the LQG surface on which it is drawn
- Can convert questions about SLE $_{\kappa^{\prime}}$ into questions about $\frac{\kappa^{\prime}}{4}$-stable processes.
- Scaling limit of "exploration path" on random planar map should be SLE_{6} on a $\sqrt{8 / 3}-L Q G$. Using welding machinery, we can understand well the "bubbles" cut out by such an exploration process. We can understand conditional law of unexplored region given what we have seen.

RANDOM GROWTH ON RANDOM SURFACES

- Can we make sense of η-DBM on a γ-LQG? We have shown how to tile an LQG surface with diadic squares of "about the same size" so we could run a DLA on this set of squares and try to take a fine mesh limit.

RANDOM GROWTH ON RANDOM SURFACES

- Can we make sense of η-DBM on a γ-LQG? We have shown how to tile an LQG surface with diadic squares of "about the same size" so we could run a DLA on this set of squares and try to take a fine mesh limit.
- Or we could try η-DBM on corresponding RPM, which one would expect to behave similarly....

RANDOM GROWTH ON RANDOM SURFACES

- Can we make sense of η-DBM on a γ-LQG? We have shown how to tile an LQG surface with diadic squares of "about the same size" so we could run a DLA on this set of squares and try to take a fine mesh limit.
- Or we could try η-DBM on corresponding RPM, which one would expect to behave similarly....
- Question: Are there coral reefs, snowflakes, lichen, crystals, plants, lightning bolts, etc. whose growth rates are affected by a random medium (something like LQG)? The simulations look similar but have a bit more personality when γ is larger (as we will see). They look like Chinese dragons.

RANDOM GROWTH ON RANDOM SURFACES

- Can we make sense of η-DBM on a γ-LQG? We have shown how to tile an LQG surface with diadic squares of "about the same size" so we could run a DLA on this set of squares and try to take a fine mesh limit.
- Or we could try η-DBM on corresponding RPM, which one would expect to behave similarly....
- Question: Are there coral reefs, snowflakes, lichen, crystals, plants, lightning bolts, etc. whose growth rates are affected by a random medium (something like LQG)? The simulations look similar but have a bit more personality when γ is larger (as we will see). They look like Chinese dragons.
- We will ultimately want to construct a candidate for the scaling limit, which we will call (for reasons explained later) quantum Loewner evolution: QLE $\left(\gamma^{2}, \eta\right)$.

RANDOM GROWTH ON RANDOM SURFACES

- Can we make sense of η-DBM on a γ-LQG? We have shown how to tile an LQG surface with diadic squares of "about the same size" so we could run a DLA on this set of squares and try to take a fine mesh limit.
- Or we could try η-DBM on corresponding RPM, which one would expect to behave similarly....
- Question: Are there coral reefs, snowflakes, lichen, crystals, plants, lightning bolts, etc. whose growth rates are affected by a random medium (something like LQG)? The simulations look similar but have a bit more personality when γ is larger (as we will see). They look like Chinese dragons.
- We will ultimately want to construct a candidate for the scaling limit, which we will call (for reasons explained later) quantum Loewner evolution: $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$.
- But first let's look at some computer generated images (and some animations), starting with an Eden exploration.

Eden model on $\sqrt{8 / 3}-\mathrm{LQG}$

DLA on a $\sqrt{2}$-LQG

Eden model on planar map

- Random planar map, random vertex x. Perform FPP from x.

Eden model on planar map

- Random planar map, random vertex x. Perform FPP from x.

Eden model on planar map

- Random planar map, random vertex x. Perform FPP from x.

Eden model on planar map

- Random planar map, random vertex x. Perform FPP from x.

Eden model on planar map

- Random planar map, random vertex x. Perform FPP from x.

Eden model on planar map

- Random planar map, random vertex x. Perform FPP from x.

Eden model on planar map

- Random planar map, random vertex x. Perform FPP from x.

Eden model on planar map

- Random planar map, random vertex x. Perform FPP from x.

Eden model on planar map

- Random planar map, random vertex x. Perform FPP from x.

Eden model on planar map

- Random planar map, random vertex x. Perform FPP from x.

Eden model on planar map

- Random planar map, random vertex x. Perform FPP from x.

Eden model on planar map

- Random planar map, random vertex x. Perform FPP from x.

Important observations:

- Conditional law of map given ball at time n only depends on the boundary lengths of the outside components.

Eden model on planar map

- Random planar map, random vertex x. Perform FPP from x.

Important observations:

- Conditional law of map given ball at time n only depends on the boundary lengths of the outside components. Exploration respects the Markovian structure of the map.

Eden model on planar map

- Random planar map, random vertex x. Perform FPP from x.

Important observations:

- Conditional law of map given ball at time n only depends on the boundary lengths of the outside components. Exploration respects the Markovian structure of the map.
- If we work on an "infinite" planar map, the conditional law of the map in the unbounded component only depends on the boundary length

Eden model on planar map

- Random planar map, random vertex x. Perform FPP from x.

Important observations:

- Conditional law of map given ball at time n only depends on the boundary lengths of the outside components. Exploration respects the Markovian structure of the map.
- If we work on an "infinite" planar map, the conditional law of the map in the unbounded component only depends on the boundary length
Belief: Isotropic enough so that at large scales this is close to a ball in the graph metric

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- This exploration also respects the Markovian structure of the map.

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- This exploration also respects the Markovian structure of the map.
- If we work on an "infinite" planar map, the conditional law of the map in the unbounded component only depends on the boundary length.

First passage percolation on random planar maps III

Variant:

- Pick two edges on outer boundary of cluster
- Color vertices between edges blue and yellow
- Color vertices on rest of map blue or yellow with prob. $\frac{1}{2}$
- Explore percolation (blue/yellow) interface
- Forget colors
- Repeat

- This exploration also respects the Markovian structure of the map.
- If we work on an "infinite" planar map, the conditional law of the map in the unbounded component only depends on the boundary length.
- Expect that at large scales this growth process looks the same as FPP, hence the same as the graph metric ball

Continuum limit ansatz

- Sample a random planar map

Continuum limit ansatz

- Sample a random planar map and two edges uniformly at random

Continuum limit ansatz

- Sample a random planar map and two edges uniformly at random
- Color vertices blue/yellow with probability $1 / 2$

Continuum limit ansatz

- Sample a random planar map and two edges uniformly at random
- Color vertices blue/yellow with probability $1 / 2$ and draw percolation interface

Continuum limit ansatz

- Sample a random planar map and two edges uniformly at random
- Color vertices blue/yellow with probability $1 / 2$ and draw percolation interface
- Conformally map to the sphere

Continuum limit ansatz

- Sample a random planar map and two edges uniformly at random
- Color vertices blue/yellow with probability $1 / 2$ and draw percolation interface
- Conformally map to the sphere

Ansatz Image of random map converges to a $\sqrt{8 / 3}-\mathrm{LQG}$ surface and the image of the interface converges to an independent SLE $_{6}$.

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point x

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE_{6}

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE_{6}
- Resample the tip according to boundary length

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}-\mathrm{LQG}$ surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE_{6}
- Resample the tip according to boundary length
- Repeat

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}-\mathrm{LQG}$ surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE_{6}
- Resample the tip according to boundary length
- Repeat

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}-\mathrm{LQG}$ surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE_{6}
- Resample the tip according to boundary length
- Repeat

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}-\mathrm{LQG}$ surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE_{6}
- Resample the tip according to boundary length
- Repeat

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}-$ LQG surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE_{6}
- Resample the tip according to boundary length
- Repeat

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}-$ LQG surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE 6
- Resample the tip according to boundary length
- Repeat

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}$-LQG surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE_{6}
- Resample the tip according to boundary length
- Repeat
- Know the conditional law of the LQG surface at each stage, using exploration results

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}-\mathrm{LQG}$ surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE 6
- Resample the tip according to boundary length
- Repeat
- Know the conditional law of the LQG surface at each stage, using exploration results

$\operatorname{QLE}(8 / 3,0)$ is the limit as $\delta \rightarrow 0$ of this growth process. It is described in terms of a radial Loewner evolution which is driven by a measure valued diffusion.

Continuum analog of first passage percolation on LQG

- Start off with $\sqrt{8 / 3}-\mathrm{LQG}$ surface
- Fix $\delta>0$ small and a starting point x
- Draw δ units of SLE 6
- Resample the tip according to boundary length
- Repeat
- Know the conditional law of the LQG surface at each stage, using exploration results

$\operatorname{QLE}(8 / 3,0)$ is the limit as $\delta \rightarrow 0$ of this growth process. It is described in terms of a radial Loewner evolution which is driven by a measure valued diffusion.
$\mathrm{QLE}(8 / 3,0)$ is SLE_{6} with tip re-randomization. It can be understood as a "reshuffling" of the exploration procedure associated to the peanosphere.

What is $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$?

$\operatorname{QLE}(8 / 3,0)$ is a member of a two-parameter family of processes called $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$

- γ is the type of LQG surface on which the process grows
- η determines the manner in which it grows

What is $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$?

$\operatorname{QLE}(8 / 3,0)$ is a member of a two-parameter family of processes called $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$

- γ is the type of LQG surface on which the process grows
- η determines the manner in which it grows

Let $\mu_{\text {HARM }}$ (resp. $\mu_{\text {LEN }}$) be harmonic (resp. length) measure on a γ-LQG surface. The rate of growth (i.e., rate at which microscopic particles are added) is proportional to

$$
\left(\frac{d \mu_{\mathrm{HARM}}}{d \mu_{\mathrm{LEN}}}\right)^{\eta} d \mu_{\mathrm{LEN}}
$$

What is $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$?

$\operatorname{QLE}(8 / 3,0)$ is a member of a two-parameter family of processes called $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$

- γ is the type of LQG surface on which the process grows
- η determines the manner in which it grows

Let $\mu_{\text {HARM }}$ (resp. $\mu_{\text {LEN }}$) be harmonic (resp. length) measure on a γ-LQG surface. The rate of growth (i.e., rate at which microscopic particles are added) is proportional to

$$
\left(\frac{d \mu_{\mathrm{HARM}}}{d \mu_{\mathrm{LEN}}}\right)^{\eta} d \mu_{\mathrm{LEN}}
$$

- First passage percolation: $\eta=0$

What is $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$?

$\operatorname{QLE}(8 / 3,0)$ is a member of a two-parameter family of processes called $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$

- γ is the type of LQG surface on which the process grows
- η determines the manner in which it grows

Let $\mu_{\text {HARM }}\left(r e s p . ~ \mu_{\text {LEN }}\right)$ be harmonic (resp. length) measure on a γ-LQG surface. The rate of growth (i.e., rate at which microscopic particles are added) is proportional to

$$
\left(\frac{d \mu_{\mathrm{HARM}}}{d \mu_{\mathrm{LEN}}}\right)^{\eta} d \mu_{\mathrm{LEN}}
$$

- First passage percolation: $\eta=0$
- Diffusion limited aggregation: $\eta=1$

What is $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$?

$\operatorname{QLE}(8 / 3,0)$ is a member of a two-parameter family of processes called $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$

- γ is the type of LQG surface on which the process grows
- η determines the manner in which it grows

Let $\mu_{\text {HARM }}\left(r e s p . ~ \mu_{\text {LEN }}\right)$ be harmonic (resp. length) measure on a γ-LQG surface. The rate of growth (i.e., rate at which microscopic particles are added) is proportional to

$$
\left(\frac{d \mu_{\mathrm{HARM}}}{d \mu_{\mathrm{LEN}}}\right)^{\eta} d \mu_{\mathrm{LEN}}
$$

- First passage percolation: $\eta=0$
- Diffusion limited aggregation: $\eta=1$
- η-dieletric breakdown model: general values of η

Discrete approximation of $\operatorname{QLE}(8 / 3,0)$. Metric ball on a $\sqrt{8 / 3-L Q G}$

Discrete approximation of $\operatorname{QLE}(2,1)$. DLA on a $\sqrt{2}$-LQG

$\operatorname{QLE}\left(\gamma^{2}, \eta\right)$ processes we can construct

Each of the $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$ processes with $\left(\gamma^{2}, \eta\right)$ on the orange curves is built from an SLE $_{\kappa}$ process using tip re-randomization.

Results

What we can do:

- Existence of $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$ on the orange curves as a Markovian exploration of a γ-LQG surface.
- Derive an SPDE which the measure valued diffusion satisfies
- Continuity of the outer boundary of the growth at a given time

Results

What we can do:

- Existence of $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$ on the orange curves as a Markovian exploration of a γ-LQG surface.
- Derive an SPDE which the measure valued diffusion satisfies
- Continuity of the outer boundary of the growth at a given time

Work in progress:

- Results on phases for sample path behavior: which QLEs are trees, have holes, and fill space (joint also with Ewain Gwynne and Xin Sun)
- $\operatorname{QLE}(8 / 3,0)$ endows $\sqrt{8 / 3}-\mathrm{LQG}$ with a distance function
- This metric space is isometric to the Brownian map: LQG $=$ TBM

Results

What we can do:

- Existence of $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$ on the orange curves as a Markovian exploration of a γ-LQG surface.
- Derive an SPDE which the measure valued diffusion satisfies
- Continuity of the outer boundary of the growth at a given time

Work in progress:

- Results on phases for sample path behavior: which QLEs are trees, have holes, and fill space (joint also with Ewain Gwynne and Xin Sun)
- $\operatorname{QLE}(8 / 3,0)$ endows $\sqrt{8 / 3}-\mathrm{LQG}$ with a distance function
- This metric space is isometric to the Brownian map: LQG $=$ TBM

What we would like to do: construct and study $\operatorname{QLE}\left(\gamma^{2}, \eta\right)$ for $\left(\gamma^{2}, \eta\right)$ pairs off the orange curves

