Igusa integrals and volume asymptotics in analytic and adelic geometry

joint work with A. Chambert-Loir

Counting lattice points

Counting lattice points

Basic observation

\# of lattice points \sim volume + error term

Counting lattice points

Basic observation

\# of lattice points \sim volume + error term

Basic problems

- compute the volume

Counting lattice points

Basic observation

\# of lattice points \sim volume + error term

Basic problems

- compute the volume
- prove that the error term is smaller than the main term

Rational points on \mathbb{P}^{1}

$$
\mathbb{P}^{1}(\mathbb{Q})=\left\{\mathbf{x}=\left(x_{0}, x_{1}\right) \in\left(\mathbb{Z}^{2} \backslash 0\right) / \pm \mid \operatorname{gcd}\left(x_{0}, x_{1}\right)=1\right\}
$$

Rational points on \mathbb{P}^{1}

$$
\mathbb{P}^{1}(\mathbb{Q})=\left\{\mathbf{x}=\left(x_{0}, x_{1}\right) \in\left(\mathbb{Z}^{2} \backslash 0\right) / \pm \mid \operatorname{gcd}\left(x_{0}, x_{1}\right)=1\right\}
$$

Height function

$$
\begin{aligned}
H: \quad \mathbb{P}^{1}(\mathbb{Q}) & \rightarrow \mathbb{R}_{>0} \\
\mathbf{x} & \mapsto \sqrt{x_{0}^{2}+x_{1}^{2}}
\end{aligned}
$$

Rational points on \mathbb{P}^{1}

$$
\mathbb{P}^{1}(\mathbb{Q})=\left\{\mathbf{x}=\left(x_{0}, x_{1}\right) \in\left(\mathbb{Z}^{2} \backslash 0\right) / \pm \mid \operatorname{gcd}\left(x_{0}, x_{1}\right)=1\right\}
$$

Height function

$$
\begin{aligned}
H: \quad \mathbb{P}^{1}(\mathbb{Q}) & \rightarrow \mathbb{R}_{>0} \\
\mathbf{x} & \mapsto \sqrt{x_{0}^{2}+x_{1}^{2}}
\end{aligned}
$$

Counting function

$$
N(B):=\#\{\mathbf{x} \mid H(\mathbf{x}) \leq B\} \sim
$$

Rational points on \mathbb{P}^{1}

$$
\mathbb{P}^{1}(\mathbb{Q})=\left\{\mathbf{x}=\left(x_{0}, x_{1}\right) \in\left(\mathbb{Z}^{2} \backslash 0\right) / \pm \mid \operatorname{gcd}\left(x_{0}, x_{1}\right)=1\right\}
$$

Height function

$$
\begin{aligned}
H: \quad \mathbb{P}^{1}(\mathbb{Q}) & \rightarrow \mathbb{R}_{>0} \\
\mathbf{x} & \mapsto \sqrt{x_{0}^{2}+x_{1}^{2}}
\end{aligned}
$$

Counting function

$$
N(B):=\#\{\mathbf{x} \mid H(\mathbf{x}) \leq B\} \sim \quad \pi \cdot B^{2}, \quad B \rightarrow \infty
$$

Rational points on \mathbb{P}^{1}

$$
\mathbb{P}^{1}(\mathbb{Q})=\left\{\mathbf{x}=\left(x_{0}, x_{1}\right) \in\left(\mathbb{Z}^{2} \backslash 0\right) / \pm \mid \operatorname{gcd}\left(x_{0}, x_{1}\right)=1\right\}
$$

Height function

$$
\begin{aligned}
H: \quad \mathbb{P}^{1}(\mathbb{Q}) & \rightarrow \mathbb{R}_{>0} \\
\mathbf{x} & \mapsto \sqrt{x_{0}^{2}+x_{1}^{2}}
\end{aligned}
$$

Counting function

$$
N(B):=\#\{\mathbf{x} \mid H(\mathbf{x}) \leq B\} \sim \frac{1}{2} \cdot \frac{1}{\zeta(2)} \cdot \pi \cdot B^{2}, \quad B \rightarrow \infty
$$

Leading constant

$$
\frac{1}{\zeta(2)}=\prod_{p}\left(1+\frac{1}{p}\right) \cdot\left(1-\frac{1}{p}\right)
$$

Leading constant

$$
\frac{1}{\zeta(2)}=\prod_{p}\left(1+\frac{1}{p}\right) \cdot\left(1-\frac{1}{p}\right)=\prod_{p} \frac{\# \mathbb{P}^{1}\left(\mathbb{F}_{p}\right)}{p} \cdot\left(1-\frac{1}{p}\right)
$$

Leading constant

$$
\frac{1}{\zeta(2)}=\prod_{p}\left(1+\frac{1}{p}\right) \cdot\left(1-\frac{1}{p}\right)=\prod_{p} \frac{\# \mathbb{P}^{1}\left(\mathbb{F}_{p}\right)}{p} \cdot\left(1-\frac{1}{p}\right)
$$

We will interpret this as a volume with respect to a natural regularized measure on the adelic space $\mathbb{P}^{1}\left(\mathbb{A}_{\mathbb{Q}}^{\mathrm{fin}}\right)$.

Cubic forms

Points of height ≤ 1000 on the \mathbf{E}_{6} singular cubic surface $X \subset \mathbb{P}^{3}$

$$
x_{1} x_{2}^{2}+x_{2} x_{0}^{2}+x_{3}^{3}=0
$$

with $x_{0}, x_{2}>0$.

Counting points

Let $X^{\circ}:=X \backslash \mathfrak{l}$, the unique line on X given by $x_{2}=x_{3}=0$.

Derenthal (2005)

$$
N\left(X^{\circ}(\mathbb{Q}), B\right) \sim c \cdot B \log (B)^{6}, \quad B \rightarrow \infty
$$

Leading constant

$$
c=\alpha \cdot \beta \cdot \tau
$$

where

- $\alpha=\frac{1}{6220800}$
- $\beta=1$
- $\tau=\prod_{p} \tau_{p} \cdot \tau_{\infty}$ with

$$
\begin{gathered}
\tau_{p}=\frac{\left(p^{2}+7 p+1\right)}{p^{2}} \cdot\left(1-\frac{1}{p}\right)^{7}=\frac{\# X\left(\mathbb{F}_{p}\right)}{p^{2}} \cdot\left(1-\frac{1}{p}\right)^{7} \\
\tau_{\infty}=6 \int_{\left|t v^{3}\right| \leq 1,\left|t^{2}+u^{3}\right| \leq 1,0 \leq v \leq 1,\left|u v^{4}\right| \leq 1} \mathrm{~d} t \mathrm{~d} u \mathrm{~d} v
\end{gathered}
$$

Cubic forms

Points of height ≤ 50 on the Cayley cubic surface $\left(4 \mathbf{A}_{1}\right) X \subset \mathbb{P}^{3}$

$$
x_{0} x_{1} x_{2}+x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2} x_{3}=0
$$

Cubic forms

Points of height ≤ 50 on the Cayley cubic surface $\left(4 \mathbf{A}_{1}\right) X \subset \mathbb{P}^{3}$

$$
x_{0} x_{1} x_{2}+x_{0} x_{1} x_{3}+x_{0} x_{2} x_{3}+x_{1} x_{2} x_{3}=0
$$

Many recent results on asymptotics of points of bounded height on cubic surfaces and other Del Pezzo surfaces (Batyrev-Tschinkel, Browning, Derenthal, de la Breteche, Fouvry, Heath-Brown, Moroz, Salberger, Swinnerton-Dyer, ...)

The framework: Manin's conjecture

Manin (1989)

Let $X \subset \mathbb{P}^{n}$ be a smooth projective Fano variety over a number field F, in its anticanonical embedding.

The framework: Manin's conjecture

Manin (1989)

Let $X \subset \mathbb{P}^{n}$ be a smooth projective Fano variety over a number field F, in its anticanonical embedding. Then there exists a Zariski open subset $X^{\circ} \subset X$ such that

$$
N\left(X^{\circ}(F), B\right) \sim c \cdot B \log (B)^{b-1}, \quad B \rightarrow \infty
$$

where $b=\operatorname{rk} \operatorname{Pic}(X)$.

The framework: Manin's conjecture

Manin (1989)

Let $X \subset \mathbb{P}^{n}$ be a smooth projective Fano variety over a number field F, in its anticanonical embedding. Then there exists a Zariski open subset $X^{\circ} \subset X$ such that

$$
N\left(X^{\circ}(F), B\right) \sim c \cdot B \log (B)^{b-1}, \quad B \rightarrow \infty
$$

where $b=\operatorname{rkPic}(X)$.
We do not know, in general, whether or not $X(F)$ is Zariski dense, even after a finite extension of F. Potential density of rational points has been proved for some families of Fano varieties, but is still open, e.g., for the quintic hypersurface $X_{5} \subset \mathbb{P}^{5}$.

Algebraic groups

(G, ρ, V):

- G a (connected) linear algebraic group over F
- V a finite-dimensional F-vector space
- $\rho: G \rightarrow V$ an F-rational representation

Algebraic groups

(G, ρ, V):

- G a (connected) linear algebraic group over F
- V a finite-dimensional F-vector space
- $\rho: G \rightarrow V$ an F-rational representation

Example

There exists a Zariski open G-orbit in V, with complement $D \subset V$. Such triples (G, ρ, V) are called prehomogeneous vector spaces.

Algebraic flows

Data:

- G a linear algebraic group over F
- V a finite-dimensional vector space over F
- $\rho: \mathrm{G} \rightarrow \operatorname{End}(V)$ an algebraic representation
- fix $x \in V$ and consider the "flow" $\rho(\mathrm{G}) \cdot x$
- $H: V(F) \rightarrow \mathbb{R}_{>0}$ - height
- $\left\{\gamma \in \mathrm{G}\left(\mathfrak{o}_{F}\right) \mid H(\rho(\gamma) \cdot x) \leq B\right\}$

Algebraic flows

Data:

- G a linear algebraic group over F
- V a finite-dimensional vector space over F
- $\rho: \mathrm{G} \rightarrow \operatorname{End}(V)$ an algebraic representation
- fix $x \in V$ and consider the "flow" $\rho(\mathrm{G}) \cdot x$
- $H: V(F) \rightarrow \mathbb{R}_{>0}$ - height
- $\left\{\gamma \in \mathrm{G}\left(\mathfrak{o}_{F}\right) \mid H(\rho(\gamma) \cdot x) \leq B\right\}$

One can consider a similar setup for projective representations and rational points.

Algebraic flows

Data:

- G a linear algebraic group over F
- V a finite-dimensional vector space over F
- $\rho: \mathrm{G} \rightarrow \operatorname{End}(V)$ an algebraic representation
- fix $x \in V$ and consider the "flow" $\rho(\mathrm{G}) \cdot x$
- $H: V(F) \rightarrow \mathbb{R}_{>0}$ - height
- $\left\{\gamma \in \mathrm{G}\left(\mathfrak{o}_{F}\right) \mid H(\rho(\gamma) \cdot x) \leq B\right\}$

One can consider a similar setup for projective representations and rational points.

Arithmetic problem:

Count \mathfrak{o}_{F}-integral (or F-rational points) on G / H, where H is the stabilizer of x.

Some results

Rational points: (Franke-Manin-T.) G/P; (Strauch) twisted products of G/P; (Batyrev-T.) $X \supset \mathrm{~T}$; (Strauch-T.) $X \supset \mathrm{G} / \mathrm{U}$;
(Chambert-Loir-T.) $X \supset \mathbb{G}_{a}^{n}$; (Shalika-T.) $X \supset \mathrm{U}$ (bi-equivariant); (Shalika-Takloo-Bighash-T.) $X \supset$ G, De Concini-Procesi varieties

Some results

Rational points: (Franke-Manin-T.) G/P; (Strauch) twisted products of G/P; (Batyrev-T.) $X \supset \mathrm{~T}$; (Strauch-T.) $X \supset \mathrm{G} / \mathrm{U}$; (Chambert-Loir-T.) $X \supset \mathbb{G}_{a}^{n}$; (Shalika-T.) $X \supset \mathrm{U}$ (bi-equivariant); (Shalika-Takloo-Bighash-T.) $X \supset \mathrm{G}$, De Concini-Procesi varieties

In all cases, Manin's conjecture, and its refinements by Batyrev-Manin, Peyre, Batyrev-T. hold.

Integral points on G/H: Duke-Rudnick-Sarnak; Eskin-McMullen; Eskin-Mozes-Shah; Borovoi-Rudnick; Gorodnik, Maucourant, Oh, Shah, Nevo, Weiss

Comparison with volume asymptotics

In many, but not all, cases the number of rational / integral points (lattice points) is asymptotic to the volume of height balls.

Comparison with volume asymptotics

In many, but not all, cases the number of rational / integral points (lattice points) is asymptotic to the volume of height balls.

The difference can be a constant factor (weak/strong approximation issues), or even exponents.

Comparison with volume asymptotics

In many, but not all, cases the number of rational / integral points (lattice points) is asymptotic to the volume of height balls.

The difference can be a constant factor (weak/strong approximation issues), or even exponents.

Nevertheless, one has to address the following

Comparison with volume asymptotics

In many, but not all, cases the number of rational / integral points (lattice points) is asymptotic to the volume of height balls.

The difference can be a constant factor (weak/strong approximation issues), or even exponents.

Nevertheless, one has to address the following

Problem

Compute these volumes.

Example

Consider the set $V_{P}(\mathbb{Z})$ of integral 2×2-matrices M with characteristic polynomial

$$
P(X):=X^{2}+1 .
$$

Put

$$
\|M\|=\left\|\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right\|=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}
$$

The volume of the "height ball" is given by $c \cdot B$, where

$$
c=\zeta_{\mathbb{Q}(\sqrt{-1})}^{*}(1) \cdot \frac{\pi^{1 / 2}}{\Gamma(3 / 2)} \cdot \frac{\pi}{\Gamma(2 / 2) \zeta(2)}
$$

Example

Consider the set $V_{P}(\mathbb{Z})$ of integral 2×2-matrices M with characteristic polynomial

$$
P(X):=X^{2}+1
$$

Put

$$
\|M\|=\left\|\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right\|=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}
$$

The volume of the "height ball" is given by $c \cdot B$, where

$$
c=\zeta_{\mathbb{Q}(\sqrt{-1})}^{*}(1) \cdot \frac{\pi^{1 / 2}}{\Gamma(3 / 2)} \cdot \frac{\pi}{\Gamma(2 / 2) \zeta(2)}
$$

The number of integral matrices in the ball of radius B converges to the volume.

Matrices with fixed characteristic polynomial

Eskin-Moses-Shah (1996), Shah (2000)

For general

$$
V_{P}:=\left\{M \in \operatorname{Mat}_{n} \mid \operatorname{det}(X \cdot I d-M)=P(X)\right\}
$$

where P has n distinct roots, one has

$$
\#\left\{M \in V_{P}(\mathbb{Z}) \mid\|M\| \leq B\right\} \sim c_{P} \cdot B^{m}, \quad m=n(n-1) / 2
$$

where

$$
c_{P}=\frac{2^{r_{1}}(2 \pi)^{r_{2}} h R}{w \sqrt{D}} \cdot \frac{\pi^{m / 2} / \Gamma(1+(m / 2))}{\prod_{j=2}^{n} \pi^{-j / 2} \Gamma(j / 2) \zeta(j)}
$$

Volume asymptotics

Maucourant (2004)

Let G be a semi-simple (real) Lie group with trivial character, μ a Haar measure on G, V a finite-dimensional vector space over \mathbb{R}, and $\rho: G \rightarrow V$ a faithful representation. Let $\|\cdot\|$ be a norm on V. Then

$$
\operatorname{vol}(B)=\mu(\{g \in G \mid\|\rho(g)\| \leq B\}) \sim c \cdot B^{a} \log (B)^{b-1}, \quad B \rightarrow \infty
$$

where a, b are defined in terms of the relative root system of G and the weights of ρ, and $1 \leq b \leq \operatorname{rank}_{\mathbb{R}}(G)$.

Volume asymptotics

Maucourant (2004)

Let G be a semi-simple (real) Lie group with trivial character, μ a Haar measure on G, V a finite-dimensional vector space over \mathbb{R}, and $\rho: G \rightarrow V$ a faithful representation. Let $\|\cdot\|$ be a norm on V. Then

$$
\operatorname{vol}(B)=\mu(\{g \in G \mid\|\rho(g)\| \leq B\}) \sim c \cdot B^{a} \log (B)^{b-1}, \quad B \rightarrow \infty
$$

where a, b are defined in terms of the relative root system of G and the weights of ρ, and $1 \leq b \leq \operatorname{rank}_{\mathbb{R}}(G)$. Moreover,

$$
\operatorname{vol}(B)^{-1} \cdot \int_{\|\rho(g)\| \leq B} f(\rho(g)) \mathrm{d} \mu(g) \rightarrow \int_{\mathbb{P E n d}(V)} f(\rho(g)) \mathrm{d} \mu_{\infty}(g),
$$

where the limit measure μ_{∞} is supported on a G bi-invariant submanifold of $\mathbb{P E n d}(V)$.

Volume asymptotics

Maucourant (2004)

Let G be a semi-simple (real) Lie group with trivial character, μ a Haar measure on G, V a finite-dimensional vector space over \mathbb{R}, and $\rho: G \rightarrow V$ a faithful representation. Let $\|\cdot\|$ be a norm on V. Then

$$
\operatorname{vol}(B)=\mu(\{g \in G \mid\|\rho(g)\| \leq B\}) \sim c \cdot B^{a} \log (B)^{b-1}, \quad B \rightarrow \infty
$$

where a, b are defined in terms of the relative root system of G and the weights of ρ, and $1 \leq b \leq \operatorname{rank}_{\mathbb{R}}(G)$. Moreover,

$$
\operatorname{vol}(B)^{-1} \cdot \int_{\|\rho(g)\| \leq B} f(\rho(g)) \mathrm{d} \mu(g) \rightarrow \int_{\mathbb{P E n d}(V)} f(\rho(g)) \mathrm{d} \mu_{\infty}(g),
$$

where the limit measure μ_{∞} is supported on a G bi-invariant submanifold of $\mathbb{P E n d}(V)$.

The proof uses the $K \mathfrak{a}^{+} K$-decomposition and integration formula.

Difficulties

The computation of asymptotics of volumes of adelic "height balls" was an open problem, in many cases.

Goal

Develop a geometric framework which is

- applicable in the analytic and adelic setup,

Goal

Develop a geometric framework which is

- applicable in the analytic and adelic setup,
- applicable to cubic surfaces and algebraic groups,

Develop a geometric framework which is

- applicable in the analytic and adelic setup,
- applicable to cubic surfaces and algebraic groups,
- applicable in the study of rational and integral points.

Heights

- F / \mathbb{Q} number field
- $X=X_{F}$ projective algebraic variety over F
- $X(F)$ its F-rational points
- $\mathcal{L}=\left(L,\left(\|\cdot\|_{v}\right)\right)$ adelically metrized very ample line bundle
- $H_{\mathcal{L}}: X(F) \rightarrow \mathbb{R}_{>0}$ associated height, depends on the metrization (choice of norms)
- $H_{\mathcal{L}}$ is not invariant with respect to field extensions
- $H_{\mathcal{L}+\mathcal{L}^{\prime}}=H_{\mathcal{L}} \cdot H_{\mathcal{L}^{\prime}}$ (height formalism)

Tamagawa numbers / Peyre (1995)

Let X be a smooth projective Fano variety of dimension d over a number field F. Assume that $-K_{X}$ is equipped with an adelic metrization.

For $x \in X\left(F_{v}\right)$ choose local analytic coordinates x_{1}, \ldots, x_{d}, in a neighborhood U_{x}. In U_{x}, a section of the canonical line bundle has the form $\mathrm{s}:=\mathrm{d} x_{1} \wedge \ldots \wedge \mathrm{~d} x_{d}$. Put

$$
\omega_{\mathcal{K}_{X}, v}:=\|\mathrm{s}\|_{v} \mathrm{~d} x_{1} \cdots \mathrm{~d} x_{d},
$$

where $\mathrm{d} x_{1} \cdots \mathrm{~d} x_{d}$ is the standard normalized Haar measure on F_{v}^{d}. This local measure globalizes to $X\left(F_{v}\right)$.

Tamagawa numbers / Peyre (1995)

Let X be a smooth projective Fano variety of dimension d over a number field F. Assume that $-K_{X}$ is equipped with an adelic metrization.

For $x \in X\left(F_{v}\right)$ choose local analytic coordinates x_{1}, \ldots, x_{d}, in a neighborhood U_{x}. In U_{x}, a section of the canonical line bundle has the form $\mathrm{s}:=\mathrm{d} x_{1} \wedge \ldots \wedge \mathrm{~d} x_{d}$. Put

$$
\omega_{\mathcal{K}_{X}, v}:=\|\mathrm{s}\|_{v} \mathrm{~d} x_{1} \cdots \mathrm{~d} x_{d},
$$

where $\mathrm{d} x_{1} \cdots \mathrm{~d} x_{d}$ is the standard normalized Haar measure on F_{v}^{d}. This local measure globalizes to $X\left(F_{v}\right)$. For almost all v,

$$
\int_{X\left(F_{v}\right)} \omega_{\mathcal{K}_{X}, v}=\frac{X\left(\mathbb{F}_{q}\right)}{q^{d}}
$$

Tamagawa numbers / Peyre

Choose a finite set of places S, and put

$$
\omega_{\mathcal{K}_{X}}:=L_{S}^{*}(1, \operatorname{Pic}(\bar{X})) \cdot|\operatorname{disc}(F)|^{-1} \cdot \prod_{v} \lambda_{v} \omega_{\mathcal{K}_{X}, v}
$$

with $\lambda_{v}=L_{v}(1, \operatorname{Pic}(\bar{X}))^{-1}$ for $v \notin S$ and $\lambda_{v}=1$, otherwise. Put

$$
\tau\left(\mathcal{K}_{X}\right):=\int_{\overline{X(F)} \subset X\left(\mathbb{A}_{F}\right)} \omega_{\mathcal{K}_{X}} .
$$

Tamagawa numbers / Peyre

Choose a finite set of places S, and put

$$
\omega_{\mathcal{K}_{X}}:=L_{S}^{*}(1, \operatorname{Pic}(\bar{X})) \cdot|\operatorname{disc}(F)|^{-1} \cdot \prod_{v} \lambda_{v} \omega_{\mathcal{K}_{X}, v}
$$

with $\lambda_{v}=L_{v}(1, \operatorname{Pic}(\bar{X}))^{-1}$ for $v \notin S$ and $\lambda_{v}=1$, otherwise. Put

$$
\tau\left(\mathcal{K}_{X}\right):=\int_{\overline{X(F) \subset X\left(\mathbb{A}_{F}\right)}} \omega_{\mathcal{K}_{X}} .
$$

This constant appears in the contant $c=c\left(-\mathcal{K}_{X}\right)$ in Manin's conjecture above.

Tamagawa numbers / local theory

Let X be a smooth projective variety over a local field F, D an effective divisor on X, f_{D} the canonical section of $\mathcal{O}_{X}(D)$, and $U=X \backslash|D|$.

Tamagawa numbers / local theory

Let X be a smooth projective variety over a local field F, D an effective divisor on X, f_{D} the canonical section of $\mathcal{O}_{X}(D)$, and $U=X \backslash|D|$.

A form $\omega \in \Omega^{d}(U)$ defines a measure $|\omega|$ as before.

Tamagawa numbers / local theory

Let X be a smooth projective variety over a local field F, D an effective divisor on X, f_{D} the canonical section of $\mathcal{O}_{X}(D)$, and $U=X \backslash|D|$.

A form $\omega \in \Omega^{d}(U)$ defines a measure $|\omega|$ as before.
A metrization of the canonical line bundle K_{X} gives a global measure on $X(F)$

$$
\tau_{X}=|\omega| /\|\omega\|
$$

Tamagawa numbers / local theory

Let X be a smooth projective variety over a local field F, D an effective divisor on X, f_{D} the canonical section of $\mathcal{O}_{X}(D)$, and $U=X \backslash|D|$.

A form $\omega \in \Omega^{d}(U)$ defines a measure $|\omega|$ as before.
A metrization of the canonical line bundle K_{X} gives a global measure on $X(F)$

$$
\tau_{X}=|\omega| /\|\omega\|
$$

A metrization of $K_{X}(D)$ defines a measure on $U(F)$

$$
\tau_{(X, D)}=|\omega| /\left\|\omega f_{D}\right\|
$$

Example

When X is an equivariant compactification of an algebraic group G and ω a left-invariant differential form on G, we have $\operatorname{div}(\omega)=-D$, so that $K_{X}(D)$ is a trivial line bundle, equipped with a canonical metrization. We may assume that its section ωf_{D} has norm 1. Then

$$
\tau_{(X, D)}=|\omega| /\left\|\omega f_{D}\right\|=|\omega|
$$

is a Haar measure on $G(F)$.

Height balls

Let L be an effective divisor with support $|D|=X \backslash U$, equipped with a metrization. Then

$$
\left\{u \in U(F) \mid\left\|f_{L}(u)\right\| \geq 1 / B\right\}
$$

is a height ball, i.e., it is compact of finite measure $\operatorname{vol}(B)$.

Height balls

Let L be an effective divisor with support $|D|=X \backslash U$, equipped with a metrization. Then

$$
\left\{u \in U(F) \mid\left\|f_{L}(u)\right\| \geq 1 / B\right\}
$$

is a height ball, i.e., it is compact of finite measure $\operatorname{vol}(B)$.
To compute the volume, for $B \rightarrow \infty$, we use the Mellin transform

$$
Z(s):=\int_{0}^{\infty} t^{-s} \operatorname{dvol}(t)
$$

Height balls

Let L be an effective divisor with support $|D|=X \backslash U$, equipped with a metrization. Then

$$
\left\{u \in U(F) \mid\left\|f_{L}(u)\right\| \geq 1 / B\right\}
$$

is a height ball, i.e., it is compact of finite measure $\operatorname{vol}(B)$.
To compute the volume, for $B \rightarrow \infty$, we use the Mellin transform

$$
Z(s):=\int_{0}^{\infty} t^{-s} \mathrm{dvol}(t)=\int_{U(F)}\left\|f_{L}\right\|^{s} \tau_{(X, D)}
$$

combined with a Tauberian theorem.

Igusa zeta functions / local theory

Assume that over F

$$
|D|=\cup_{\alpha \in \mathcal{A}} D_{\alpha}
$$

where D_{α} are geometrically irreducible, smooth, and intersecting transversally.

Igusa zeta functions / local theory

Assume that over F

$$
|D|=\cup_{\alpha \in \mathcal{A}} D_{\alpha}
$$

where D_{α} are geometrically irreducible, smooth, and intersecting transversally. For $A \subset \mathcal{A}$ let

$$
D_{A}:=\cap_{\alpha \in A} D_{\alpha}, \quad D_{A}^{\circ}=D_{A} \backslash \cup_{A^{\prime} \supset A} D_{A^{\prime}}
$$

Igusa zeta functions / local theory

Assume that over F

$$
|D|=\cup_{\alpha \in \mathcal{A}} D_{\alpha}
$$

where D_{α} are geometrically irreducible, smooth, and intersecting transversally. For $A \subset \mathcal{A}$ let

$$
D_{A}:=\cap_{\alpha \in A} D_{\alpha}, \quad D_{A}^{\circ}=D_{A} \backslash \cup_{A^{\prime} \supset A} D_{A^{\prime}}
$$

By the transversality assumption, $D_{A} \subset X$ is smooth, of codimension \#A (or empty).

Igusa zeta functions / local theory

Assume that over F

$$
|D|=\cup_{\alpha \in \mathcal{A}} D_{\alpha}
$$

where D_{α} are geometrically irreducible, smooth, and intersecting transversally. For $A \subset \mathcal{A}$ let

$$
D_{A}:=\cap_{\alpha \in A} D_{\alpha}, \quad D_{A}^{\circ}=D_{A} \backslash \cup_{A^{\prime} \supset A} D_{A^{\prime}}
$$

By the transversality assumption, $D_{A} \subset X$ is smooth, of codimension \#A (or empty). Write

$$
D=\sum \rho_{\alpha} D_{\alpha}, \quad L=\sum \lambda_{\alpha} D_{\alpha}
$$

Local computations

The Mellin transform $Z(s)$ can be computed in charts, via partition of unity. In a neighborhood of $x \in D_{A}^{\circ}(F)$ it takes the form

$$
\int \prod_{\alpha}\left\|\mathrm{f}_{D_{\alpha}}\right\|(x)^{\lambda_{\alpha} s-\rho_{\alpha}} \mathrm{d} \tau_{X}(x)=\int \prod_{\alpha \in A}\left|x_{\alpha}\right|^{\lambda_{\alpha} s-\rho_{\alpha}} \phi(x ; y ; s) \prod_{\alpha} \mathrm{d} x_{\alpha} \mathrm{d} y
$$

Local computations

The Mellin transform $Z(s)$ can be computed in charts, via partition of unity. In a neighborhood of $x \in D_{A}^{\circ}(F)$ it takes the form

$$
\int \prod_{\alpha}\left\|\mathrm{f}_{D_{\alpha}}\right\|(x)^{\lambda_{\alpha} s-\rho_{\alpha}} \mathrm{d} \tau_{X}(x)=\int \prod_{\alpha \in A}\left|x_{\alpha}\right|^{\lambda_{\alpha} s-\rho_{\alpha}} \phi(x ; y ; s) \prod_{\alpha} \mathrm{d} x_{\alpha} \mathrm{d} y
$$

Essentially, this is a product of integrals of the form

$$
\int_{|x| \leq 1}|x|^{s-1} \mathrm{~d} x
$$

Igusa zeta functions / local theory

Analytic properties of $Z(s)$ are encoded in the combinatorics of the stratification $\left(D_{A}\right)$.

Igusa zeta functions / local theory

Analytic properties of $Z(s)$ are encoded in the combinatorics of the stratification $\left(D_{A}\right)$.
Abscissa of convergence $=\max _{\substack{D_{\alpha}(F) \neq \emptyset \\ \lambda_{\alpha}>0}} \frac{\rho_{\alpha}-1}{\lambda_{\alpha}} ;$

Igusa zeta functions / local theory

Analytic properties of $Z(s)$ are encoded in the combinatorics of the stratification $\left(D_{A}\right)$.
Abscissa of convergence $=\max _{\substack{D_{\alpha}(F) \neq \emptyset \\ \lambda_{\alpha}>0}} \frac{\rho_{\alpha}-1}{\lambda_{\alpha}} ;$
Order of pole $=$ number of α that achieve equality;

Igusa zeta functions / local theory

Analytic properties of $Z(s)$ are encoded in the combinatorics of the stratification $\left(D_{A}\right)$.
Abscissa of convergence $=\max _{\substack{D_{\alpha}(F) \neq \emptyset \\ \lambda_{\alpha}>0}} \frac{\rho_{\alpha}-1}{\lambda_{\alpha}} ;$
Order of pole $=$ number of α that achieve equality;
Leading coefficient $=$ sum of integrals over all D_{A} of minimal dimension where A consists only of such α s.

Global theory

Let X be a smooth projective variety over a number field F, D an effective divisor on $X, U=X \backslash|D|$.

Global theory

Let X be a smooth projective variety over a number field F, D an effective divisor on $X, U=X \backslash|D|$. Fix an adelic metric on $K_{X}(D)$; this defines measures $\tau_{(X, D), v}$ on $U\left(F_{v}\right)$ for all v.

Global theory

Let X be a smooth projective variety over a number field F, D an effective divisor on $X, U=X \backslash|D|$. Fix an adelic metric on $K_{X}(D)$; this defines measures $\tau_{(X, D), v}$ on $U\left(F_{v}\right)$ for all v. Assume that

$$
\mathrm{H}^{1}\left(X, \mathscr{O}_{X}\right)=H^{2}\left(X, \mathscr{O}_{X}\right)=0
$$

Let

$$
\operatorname{EP}(U)=\Gamma\left(U_{\overline{\mathbb{F}}}, \mathscr{O}_{X}^{*}\right) / \overline{\mathbb{F}}^{*}-\operatorname{Pic}\left(U_{\overline{\mathbb{F}}}\right) / \text { torsion }
$$

be the virtual Galois module.

Global theory

Let X be a smooth projective variety over a number field F, D an effective divisor on $X, U=X \backslash|D|$. Fix an adelic metric on $K_{X}(D)$; this defines measures $\tau_{(X, D), v}$ on $U\left(F_{v}\right)$ for all v. Assume that

$$
\mathrm{H}^{1}\left(X, \mathscr{O}_{X}\right)=H^{2}\left(X, \mathscr{O}_{X}\right)=0
$$

Let

$$
\operatorname{EP}(U)=\Gamma\left(U_{\overline{\mathbb{F}}}, \mathscr{O}_{X}^{*}\right) / \overline{\mathbb{F}}^{*}-\operatorname{Pic}\left(U_{\overline{\mathbb{F}}}\right) / \text { torsion }
$$

be the virtual Galois module. Put

$$
\lambda_{v}=L_{v}(1, \mathrm{EP}(U)), \quad v \nmid \infty, \quad \lambda_{v}=1, \quad v \mid \infty .
$$

We have a global measure on $U\left(\mathbb{A}_{F}\right)$ given by

$$
\tau_{(X, D)}=L^{*}(1, \mathrm{EP}(U))^{-1} \cdot \prod \lambda_{v} \tau_{(X, D), v}
$$

Height on the adelic space $U\left(A_{F}\right)$

Let $\mathcal{L}=\left(L,\left(\|\cdot\|_{V}\right)\right)$ be an adelically metrized effective divisor supported on $|D|$. This defines a height function on $U\left(\mathbb{A}_{F}\right)$

$$
H_{\mathcal{L}}\left(\left(x_{v}\right)\right)=\prod_{v}\left\|f_{L}\left(x_{v}\right)\right\|_{v}^{-1}
$$

Height on the adelic space $U\left(\mathbb{A}_{F}\right)$

Let $\mathcal{L}=\left(L,\left(\|\cdot\|_{V}\right)\right)$ be an adelically metrized effective divisor supported on $|D|$. This defines a height function on $U\left(\mathbb{A}_{F}\right)$

$$
H_{\mathcal{L}}\left(\left(x_{v}\right)\right)=\prod_{v}\left\|f_{L}\left(x_{v}\right)\right\|_{v}^{-1}
$$

To compute the volume of the height ball

$$
\operatorname{vol}(B):=\left\{x \in U\left(\mathbb{A}_{F}\right) \mid H_{\mathcal{L}}(x) \leq B\right\}
$$

for \mathcal{L} and $\tau_{(X, D)}$, we use the adelic Mellin transform:

$$
Z(s)=\int_{0}^{\infty} t^{-s} \mathrm{dvol}(t)=\int_{U\left(A_{F}\right)}^{H_{\mathcal{L}}(x)^{-s} \mathrm{~d} \tau_{(X, D)}(x)=\prod_{v} \int_{U\left(F_{v}\right)} \ldots}
$$

Denef's formula

Recall that

$$
D=\sum \rho_{\alpha} D_{\alpha}, \quad L=\sum \lambda_{\alpha} D_{\alpha}
$$

Choosing adelic metrics on $\mathscr{O}_{X}\left(D_{\alpha}\right)$ one has:

Denef's formula

Recall that

$$
D=\sum \rho_{\alpha} D_{\alpha}, \quad L=\sum \lambda_{\alpha} D_{\alpha}
$$

Choosing adelic metrics on $\mathscr{O}_{X}\left(D_{\alpha}\right)$ one has:

$$
Z_{v}(s)=\int_{X\left(F_{v}\right)} \prod_{\alpha}\left\|f_{D_{\alpha}}\right\|_{v}^{s \lambda_{\alpha}-\rho_{\alpha}} \mathrm{d} \tau_{X, v}(x)
$$

Denef's formula

Recall that

$$
D=\sum \rho_{\alpha} D_{\alpha}, \quad L=\sum \lambda_{\alpha} D_{\alpha}
$$

Choosing adelic metrics on $\mathscr{O}_{X}\left(D_{\alpha}\right)$ one has:

$$
Z_{v}(s)=\int_{X\left(F_{v}\right)} \prod_{\alpha}\left\|f_{D_{\alpha}}\right\|_{v}^{s \lambda_{\alpha}-\rho_{\alpha}} \mathrm{d} \tau_{X, v}(x)
$$

By the local analysis, this converges absolutely for

$$
\Re(s)>\max \left(\left(\rho_{\alpha}-1\right) / \lambda_{\alpha}\right) .
$$

Denef's formula

Recall that

$$
D=\sum \rho_{\alpha} D_{\alpha}, \quad L=\sum \lambda_{\alpha} D_{\alpha}
$$

Choosing adelic metrics on $\mathscr{O}_{X}\left(D_{\alpha}\right)$ one has:

$$
Z_{v}(s)=\int_{X\left(F_{v}\right)} \prod_{\alpha}\left\|f_{D_{\alpha}}\right\|_{v}^{s \lambda_{\alpha}-\rho_{\alpha}} \mathrm{d} \tau_{X, v}(x)
$$

By the local analysis, this converges absolutely for

$$
\Re(s)>\max \left(\left(\rho_{\alpha}-1\right) / \lambda_{\alpha}\right) .
$$

For almost all v and $\Re(s)>\left(\rho_{\alpha}-1\right) / \lambda_{\alpha}$, one has

$$
Z_{v}(s)=\sum_{A} \frac{\# D_{A}^{\circ}\left(\mathbb{F}_{q}\right)}{q^{\operatorname{dim} X}} \prod_{\alpha \in A} \frac{q-1}{q^{s \lambda_{\alpha}-\rho_{\alpha}+1}-1}
$$

Analyzing the Euler product

Let $a:=\max \left(\rho_{\alpha} / \lambda_{\alpha}\right)$ and let $A(L, D)$ be the set of α where equality is achieved; put $b=\# A(L, D)$.

Analyzing the Euler product

Let $a:=\max \left(\rho_{\alpha} / \lambda_{\alpha}\right)$ and let $A(L, D)$ be the set of α where equality is achieved; put $b=\# A(L, D)$. Let E be the divisor $a L-D$; it is effective with $|E| \subseteq|D|$. Then

Analyzing the Euler product

Let $a:=\max \left(\rho_{\alpha} / \lambda_{\alpha}\right)$ and let $A(L, D)$ be the set of α where equality is achieved; put $b=\# A(L, D)$. Let E be the divisor $a L-D$; it is effective with $|E| \subseteq|D|$. Then

$$
\lim _{s \rightarrow a} Z(s)(s-a)^{b} \prod_{\alpha \in A(L, D)} \lambda_{\alpha}=\int_{X\left(\mathbb{A}_{F}\right)} H_{E}(x)^{-1} \mathrm{~d} \tau_{X}(x)
$$

Analyzing the Euler product

Let $a:=\max \left(\rho_{\alpha} / \lambda_{\alpha}\right)$ and let $A(L, D)$ be the set of α where equality is achieved; put $b=\# A(L, D)$. Let E be the divisor $a L-D$; it is effective with $|E| \subseteq|D|$. Then

$$
\lim _{s \rightarrow a} Z(s)(s-a)^{b} \prod_{\alpha \in A(L, D)} \lambda_{\alpha}=\int_{X\left(\mathbb{A}_{F}\right)} H_{E}(x)^{-1} \mathrm{~d} \tau_{X}(x)
$$

A Tauberian theorem implies the volume asymptotics with respect to
\mathcal{L} and $\tau_{(X, D)}$, for $B \rightarrow \infty$, of the form

$$
B^{a} \log (B)^{b-1}\left(a(b-1)!\prod_{\alpha \in A(L, D)} \lambda_{\alpha}\right)^{-1} \int_{X\left(\mathbb{A}_{F}\right)} H_{E}(x)^{-1} \mathrm{~d} \tau_{X}(x)
$$

Integral points

- F number field, \mathfrak{O}_{F} ring of integers
- S finite set of places of $F, S \supset S_{\infty}$
- X smooth projective variety over $F, D \subset X$ subvariety
- $\mathcal{D} \subset \mathcal{X}$ models over $\operatorname{Spec}\left(\mathfrak{O}_{F}\right)$

A rational point $x \in X(F)$ gives rise to a section

$$
\sigma_{X}: \operatorname{Spec}\left(\mathfrak{O}_{F}\right) \rightarrow \mathcal{X}
$$

A (\mathcal{D}, S)-integral point on X is a rational point $x \in X(F)$ such that $\sigma_{x, v} \notin \mathcal{D}_{v}$ for all $v \notin S$.

A sample problem

Let X be a projective equivariant compatification of $G=\mathbb{G}_{a}^{n}$, and

$$
\cup_{\alpha \in \mathcal{A}} D_{\alpha}=X \backslash G
$$

the boundary divisor, whose irreducible components D_{α} are smooth and intersect transversally. Choose a subset $\mathcal{A}_{D} \subseteq \mathcal{A}$ and put $U=X \backslash \cup_{\alpha \in \mathcal{A}_{D}} D_{\alpha}$.

A sample problem

Let X be a projective equivariant compatification of $G=\mathbb{G}_{a}^{n}$, and

$$
\cup_{\alpha \in \mathcal{A}} D_{\alpha}=X \backslash G
$$

the boundary divisor, whose irreducible components D_{α} are smooth and intersect transversally. Choose a subset $\mathcal{A}_{D} \subseteq \mathcal{A}$ and put $U=X \backslash \cup_{\alpha \in \mathcal{A}_{D}} D_{\alpha}$. Then U is a (quasi-projective) equivariant compactification of G, and

$$
X \backslash U=D=\sum_{\alpha \in \mathcal{A}_{D}} D_{\alpha}
$$

A sample problem

Let X be a projective equivariant compatification of $G=\mathbb{G}_{a}^{n}$, and

$$
\cup_{\alpha \in \mathcal{A}} D_{\alpha}=X \backslash G
$$

the boundary divisor, whose irreducible components D_{α} are smooth and intersect transversally. Choose a subset $\mathcal{A}_{D} \subseteq \mathcal{A}$ and put $U=X \backslash \cup_{\alpha \in \mathcal{A}_{D}} D_{\alpha}$. Then U is a (quasi-projective) equivariant compactification of G, and

$$
X \backslash U=D=\sum_{\alpha \in \mathcal{A}_{D}} D_{\alpha} .
$$

Let \mathcal{L} be an adelically metrized line bundle on X.

Problem

Establish an asymptotic formula for

$$
N(B):=\#\left\{\gamma \in G(F) \cap U\left(\mathfrak{O}_{F, S}\right) \mid H_{\mathcal{L}}(\gamma) \leq B\right\}
$$

Techniques

Height pairing

$$
G\left(\mathbb{A}_{F}\right) \times \oplus_{\alpha} \mathbb{C} D_{\alpha} \rightarrow \mathbb{C}
$$

Techniques

Height pairing

$$
G\left(\mathbb{A}_{F}\right) \times \oplus_{\alpha} \mathbb{C} D_{\alpha} \rightarrow \mathbb{C}
$$

Height zeta function

$$
Z(g, \mathbf{s})=\sum_{\gamma \in G(F) \cap U\left(\mathfrak{D}_{F, s}\right)} H(\gamma g, \mathbf{s})^{-1}
$$

is holomorphic for $\Re(\mathbf{s}) \gg 0$ and all g.

Techniques

"Fourier" expansion - "Poisson formula"

$$
Z(g, \mathbf{s})=\sum_{\psi} \hat{H}(\mathrm{~s}, \psi)
$$

a sum over all (automorphic) characters of $G\left(\mathbb{A}_{F}\right) / G(F)$.

Techniques

"Fourier" expansion - "Poisson formula"

$$
Z(g, \mathbf{s})=\sum_{\psi} \hat{H}(s, \psi)
$$

a sum over all (automorphic) characters of $G\left(\mathbb{A}_{F}\right) / G(F)$.
Main term $=$ trivial character

$$
\int_{G\left(\mathbb{A}_{F}\right) \cap U\left(\mathfrak{D}_{F, S}\right)} H(g, \mathbf{s})^{-1}
$$

Techniques

"Fourier" expansion - "Poisson formula"

$$
Z(g, \mathbf{s})=\sum_{\psi} \hat{H}(s, \psi)
$$

a sum over all (automorphic) characters of $G\left(\mathbb{A}_{F}\right) / G(F)$.
Main term $=$ trivial character

$$
\int_{G\left(\mathbb{A}_{F}\right) \cap U\left(\mathfrak{D}_{F, S}\right)} H(g, \mathbf{s})^{-1},
$$

a volume integral computed above.

Asymptotics

For $L=-\left(K_{X}+D\right)$ we obtain

Chambert-Loir-T. (2009)

$$
\begin{gathered}
N(B) \sim c \cdot B \log (B)^{b-1} \\
b:=\operatorname{rk}(\operatorname{Pic}(U))+\sum_{v \in S}\left(1+\operatorname{dim} \mathcal{C}_{F_{v}}^{\mathrm{an}}(D)\right)
\end{gathered}
$$

the analytic Clemens complex of the stratification of D, and

Asymptotics

For $L=-\left(K_{X}+D\right)$ we obtain

Chambert-Loir-T. (2009)

$$
\begin{gathered}
N(B) \sim c \cdot B \log (B)^{b-1} \\
b:=\operatorname{rk}(\operatorname{Pic}(U))+\sum_{v \in S}\left(1+\operatorname{dim} \mathcal{C}_{F_{v}}^{\mathrm{an}}(D)\right),
\end{gathered}
$$

the analytic Clemens complex of the stratification of D, and

$$
c=\alpha \beta \tau
$$

- $\alpha \in \mathbb{Q}, \beta \in \mathbb{N}$;
- $\tau=\tau_{(X, D)}^{S}\left(U\left(\mathcal{O}_{S}\right)\right) \cdot \prod_{v \in S}\left(\sum_{\sigma \in \mathcal{C}_{\text {max }, F_{v}}^{\text {an }}\left(D_{v}\right)} \tau_{v}(\sigma)\right)$
- $\tau_{v}(\sigma)$ Tamagawa volume of σ, (adjunction!).

Contributions from nontrivial characters

$$
\hat{H}(\mathbf{s}, \psi)=\int_{G\left(A_{F}\right)} H(g, \mathbf{s})^{-1} \psi(g) \mathrm{d} g .
$$

Contributions from nontrivial characters

$$
\hat{H}(\mathbf{s}, \psi)=\int_{G\left(\Delta_{F}\right)} H(g, \mathbf{s})^{-1} \psi(g) \mathrm{d} g .
$$

For $D=\emptyset$, i.e., rational points on X, the nontrivial characters contribute a pole of smaller order, coming from the Euler product.

Contributions from nontrivial characters

$$
\hat{H}(\mathbf{s}, \psi)=\int_{G\left(A_{F}\right)} H(g, \mathbf{s})^{-1} \psi(g) \mathrm{d} g .
$$

For $D=\emptyset$, i.e., rational points on X, the nontrivial characters contribute a pole of smaller order, coming from the Euler product.

Only unramified ψ appear.

Contributions from nontrivial characters

$$
\hat{H}(\mathbf{s}, \psi)=\int_{G\left(A_{F}\right)} H(g, \mathbf{s})^{-1} \psi(g) \mathrm{d} g .
$$

For $D=\emptyset$, i.e., rational points on X, the nontrivial characters contribute a pole of smaller order, coming from the Euler product.

Only unramified ψ appear. Uniform bounds needed for summation over the lattice of these ψ are (relatively) easy to obtain.

Complications for integral points

Fourier transforms at $v \in S$ have poles interacting with the main term.

Complications for integral points

Fourier transforms at $v \in S$ have poles interacting with the main term. For example, for $D=X \backslash G$, there are no contributions to the pole from the adelic term.

Complications for integral points

Fourier transforms at $v \in S$ have poles interacting with the main term. For example, for $D=X \backslash G$, there are no contributions to the pole from the adelic term. We were lead to consider geometric oscillatory integrals. In local charts, these take the form

$$
\int_{\sigma} \prod_{\alpha}\left|x_{\alpha}\right|^{s_{\alpha}} \psi\left(u(\mathbf{x}) \mathbf{x}^{\lambda}\right) \phi(\mathbf{x}, \mathbf{s}, \psi) \mathrm{d} x
$$

where $\lambda=\left(\lambda_{\alpha}\right)$ and σ is a certain cone in F_{v}^{d}.

Complications for integral points

Fourier transforms at $v \in S$ have poles interacting with the main term.
For example, for $D=X \backslash G$, there are no contributions to the pole from the adelic term. We were lead to consider geometric oscillatory integrals. In local charts, these take the form

$$
\int_{\sigma} \prod_{\alpha}\left|x_{\alpha}\right|^{s_{\alpha}} \psi\left(u(\mathbf{x}) \mathbf{x}^{\lambda}\right) \phi(\mathbf{x}, \mathbf{s}, \psi) \mathrm{d} x
$$

where $\lambda=\left(\lambda_{\alpha}\right)$ and σ is a certain cone in F_{v}^{d}.
We proved uniform bounds on (meromorphic continuations) of these integrals, in all parameters (2009).

Complications for integral points

Fourier transforms at $v \in S$ have poles interacting with the main term. For example, for $D=X \backslash G$, there are no contributions to the pole from the adelic term. We were lead to consider geometric oscillatory integrals. In local charts, these take the form

$$
\int_{\sigma} \prod_{\alpha}\left|x_{\alpha}\right|^{s_{\alpha}} \psi\left(u(\mathbf{x}) \mathbf{x}^{\lambda}\right) \phi(\mathbf{x}, \mathbf{s}, \psi) \mathrm{d} x
$$

where $\lambda=\left(\lambda_{\alpha}\right)$ and σ is a certain cone in F_{v}^{d}.
We proved uniform bounds on (meromorphic continuations) of these integrals, in all parameters (2009).
Similar integrals appeared in the work of Cluckers (2010) on Analytic van der Corput Lemma....

Summary

- Geometric Igusa integrals (Mellin transforms) allow to compute volume asymptotics of all balls arising in analytic and adelic geometry, in particular, height balls.

Summary

- Geometric Igusa integrals (Mellin transforms) allow to compute volume asymptotics of all balls arising in analytic and adelic geometry, in particular, height balls.
- The spectral method to establish asymptotics for the number of integral points of bounded height leads to interesting v-adic oscillatory integrals. This should allow to establish asymptotics for $\mathfrak{O}_{F, S}$-integral points on general quasi-projective embeddings of algebraic groups.

Summary

- Geometric Igusa integrals (Mellin transforms) allow to compute volume asymptotics of all balls arising in analytic and adelic geometry, in particular, height balls.
- The spectral method to establish asymptotics for the number of integral points of bounded height leads to interesting v-adic oscillatory integrals. This should allow to establish asymptotics for $\mathfrak{O}_{F, S}$-integral points on general quasi-projective embeddings of algebraic groups.
- A framework to generalize Manin's conjectures to integral points.

