
Random Fractals Coming from Statistical Physics

Gregory F. Lawler

Department of Mathematics
University of Chicago
5734 S. University Ave.

Chicago, IL 60637

lawler@math.uchicago.edu

February 2, 2012



CRITICAL PHENOMENA IN STATISTICAL PHYSICS

I Study systems at or near parameters at which a phase
transition occurs

I Parameter β = C/T where T = temperature

I Large β (low temperature) — long range correlation.

I Small β (high temperature) — short range correlation

I Critical value βc at which sharp transition occurs

I Belief: systems at criticality “in the scaling limit” exhibit
fractal-like behavior (power-law correlations) with nontrivial
“critical exponents”.

I The exponents depend on dimension.



TWO DIMENSIONS

I Belavin, Polyakov, Zamolodchikov (1984) — critical systems
in two dimensions in the scaling limit exhibit some kind of
“conformal invariance”.

I A number of theoretical physicists (Nienhuis, Cardy,
Duplantier, Saleur, ...) made predictions about critical
exponents using nonrigorous methods — conformal field
theory and Coulomb gas techniques.

I Exact rational values for critical exponents — predictions
strongly supported by numerical simulations

I While much of the mathematical framework of conformal field
theory was precise and rigorous (or rigorizable), the nature of
the limit and the relation of the field theory to the lattice
models was not well understood.



SELF-AVOIDING WALK (SAW)

I Model for polymer chains — polymers are formed by
monomers that are attached randomly except for a
self-avoidance constraint.

ω = [ω0, . . . , ωn], ωj ∈ Z2, |ω| = n

|ωj − ωj−1| = 1, j = 1, . . . , n

ωj 6= ωk , 0 ≤ j < k ≤ n.

I Critical exponent ν: a typical SAW has diameter about |ω|ν .

I If no self-avoidance constraint ν = 1/2; for 2-d SAW Flory
predicted ν = 3/4.
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Each SAW from z to w gets measure e−β|ω|. Partition function

Z = Z (N, β) =
∑

e−β|ω|.

β small — typical path is two-dimensional
β large — typical path is one-dimensional
βc — typical path is (1/ν)-dimensional



Choose β = βc ; let N →∞. Expect

Z (N, β) ∼ C (D; z ,w) N−2b,

divide by N−2b and hope to get a finite measure on curves
connecting boundary points of the square of total mass C (D; z ,w)
(can be made into probability measure by dividing by C (D; z ,w)).
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Similarly, if we fix D ⊂ C, we can consider walks restricted to the
domain D

z w

Predict that these probability measures are conformally invariant.



SIMPLE RANDOM WALK
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I Simple random walk — no self-avoidance constraint.
Criticality: each walk ω gets weight (1/4)|ω|.

I Scaling limit is Brownian motion which is conformally
invariant (Lévy).



LOOP-ERASED RANDOM WALK

Start with simple random walks and erase loops in chronological
order to get a path with no self-intersections.

Limit should be a measure on paths with no self-intersections.
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CRITICAL PERCOLATION

Color vertices of the triangular lattice in the upper half plane black
or white independently each with probability 1/2.

Put a boundary condition of black on negative real axis and white
on positive real axis. The percolation exploration process is the
boundary between black and white.



CARDY’S FORMULA

The probability of a black crossing at criticality (in the limit as
lattice space goes to zero) was predicted to be a conformal
invariant.
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Cardy used conformal field theory to predict the value. it is most
easily given for an equilateral triangle.



STRATEGY

I Make precise the conformal invariance assumption and other
properties expected of scaling limit.

I Find all possible limits satisfying these assumptions.

I For a given discrete process, identify which is the correct limit.

I Prove the discrete converges to continuous.

Nonrigorous approaches in mathematical physics using conformal
field theory had some of the properties of this strategy.



ASSUMPTIONS ON SCALING LIMIT

Finite measure µD(z ,w) and probability measure µ#D (z ,w) on
curves connecting boundary points of a domain D.

µD(z ,w) = C (D; z ,w)µ#D (z ,w).

f

f(w) f(z) 

z w

I Conformal invariance: If f is a conformal transformation

f ◦ µ#D (z ,w) = µ#f (D)(f (z), f (w)).

I Scaling rule

C (D; z ,w) = |f ′(z)|b |f ′(w)|b C (f (D); f (z), f (w)).

I For simply connected D, µ#H (0,∞) determines µ#D (z ,w)
(Riemann mapping theorem).



I Domain Markov property Given γ[0, t], the conditional
distribution on γ[t,∞) is the same as

µH\γ(0,t](γ(t),∞).

γ (t)

I Satisfied on discrete level by SAW, LERW, percolation
exploration, Ising exploration ... (but not by simple random
walk)



LOEWNER EQUATION IN UPPER HALF PLANE

I Let γ : (0,∞)→ H be a simple curve with γ(0+) = 0 and
γ(t)→∞ as t →∞.

I gt : H \ γ(0, t]→ H

Ut

g
t(t)

0

γ

I Can reparametrize (by capacity) so that

gt(z) = z +
2t

z
+ · · · , z →∞

I gt satisfies

∂tgt(z) =
2

gt(z)− Ut
, g0(z) = z .

Moreover, Ut = gt(γ(t)) is continuous.



(Schramm) Suppose γ is a random curve satisfying conformal
invariance and Domain Markov property. Then Ut must be a
random continuous curve satisfying

I For every s < t, Ut − Us is independent of Ur , 0 ≤ r ≤ s and
has the same distribution as Ut−s .

I c−1 Uc2t has the same distribution as Ut .

Therefore, Ut =
√
κBt where Bt is a standard (one-dimensional)

Brownian motion.

The (chordal) Schramm-Loewner evolution with parameter κ
(SLEκ) is the solution obtained by choosing Ut =

√
κBt .



(Rohde-Schramm) Solving the Loewner equation with a Brownian
input gives a random curve.

The qualitative behavior of the curves varies greatly with κ

I 0 < κ ≤ 4 — simple (non self intersecting) curve

I 4 < κ < 8 — self-intersections (but not crossing); not
plane-filling

I 8 ≤ κ <∞ — plane-filling

(Beffara) For κ < 8, the Hausdorff dimension of the paths is

1 +
κ

8
.



The fundamental tools for studying SLE are those of stochastic
calculus (Itô integral and formula, martingales, Girsanov
transformation)

For which κ does SLE have double points?
Equivalent to ask, for which κ does SLE hit the real line?
Let x > 0 and Xt = Xt(x) = gt(x)− Ut . Then SLE hits [x ,∞) if
and only if Xt reaches zero in finite time. Xt satisfies

dXt =
2

Xt
dt +

√
κ dBt .

Bessel equation. Well known that Xt reaches zero if and only if
κ > 4.



WHICH κ FOR WHICH MODEL?

How does the µD(z ,w) measure of a path change when we
perturb the boundary? (κ ≤ 4)
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dµD(z ,w)

dµD′(z ,w)
= 1{γ ⊂ D} exp

{c

2
Λ(D ′; γ,D ′ \ D)

}
Λ(D ′; γ,D ′ \ γ) is a conformal invariant given by the measure
(using a certain Brownian loop measure) of loops in D ′ that
intersect both D ′ \ D and γ.



I For SAW, perturbing the domain does not change the
measure. Expect c = 0.

I For LERW, shrinking the domain loses some simple random
walks whose loop-erasure is γ. Expect c < 0.

I c is the central charge which is the parameter used in
conformal field theory to distinguish models.

c =
(3κ− 8) (6− κ)

2κ
, κ =

(13− c)±
√

(13− c)2 − 144

3
.

Each c < 1 corresponds to two values κ, κ′ with κκ′ = 16.
c = 1 corresponds to the double root κ = κ′ = 4.



BROWNIAN PATHS

I The first major problem solved with SLE was the Brownian
intersection exponents. One example goes back to a
conjecture of Mandelbrot. Consider a “Brownian island”
formed by taking taking a Brownian motion (random walk),
conditioning to end at the same place it began, and filling in
the bounded holds. Mandelbrot noted that simulations of this
coastline indicated that it should have dimension 4/3.

I L. showed that the dimension could be calculated in terms of
a particular value of the intersection exponents.

I L, Schramm, and Werner showed how the locality property of
SLE6 could be used to calculate this exponent and verified
Mandelbort’s conjecture.





CRITICAL PERCOLATION

I Stas Smirnov proved that the scaling limit of critical
percolation on the triangular lattice satisfies Cardy’s formula.
Using this and the work of LSW he established that the
scaling limit of percolation is SLE6.

I κ = 6 is the only value of κ for which SLE satisfies the
locality property — something that would be expected of the
scaling limit of percolation. (Schramm had already identified
κ = 6 as the correct candidate for the scaling limit.)

I Smirnov’s proof is particular to the triangular lattice. It is an
open problem to establish this limit for other lattices, e.g.,
critical bond or site percolation in Z2



LOOP-ERASED RANDOM WALK

I LSW proved that the scaling limit of LERW is SLE2

(Schramm had already identified κ = 2 as the appropriate
candidate and the physics literature had c = −2.)

I In particular, the paths has dimension 5/4. Rick Kenyon had
previously used a relationship with domino tilings to prove a
discrete analogue of this statement.

I The LERW is closely related to the uniform spanning tree.
LSW shows that the scaling limit of the uniform spanning tree
is SLE8.

I One can obtain information about the loop-erased random
walk directly from the SLE2 result (Masson).



GAUSSIAN FREE FIELD

I Schramm and Sheffield have shown that the level lines of the
Gaussian free field correspond to κ = 4 (as does a similar
model called the harmonic explorer.) This is c = 1.

I Much exciting work is being done by Sheffield (including joint
work with others, Duplantier, Miller) on a mathematical
model of quantum gravity which can be thought of as a
model of random fractals in a random geometry. The random
geometry (metric) comes from the Gaussian free field.



ISING MODEL

I The Ising model is a model for ferromagnets.

I It is one of a large class of models called Potts models which
are related to random cluster models.

I The scaling limit of the interfaces for the Ising model should
satisfy conformal invariance and the domain Markov property
— hence SLEκ for some κ. In fact κ = 3, c = 1/2.

I Smirnov and collaborators have established the scaling limit
— exciting work in progress.



SELF-AVOIDING WALK

I The scaling limit for SAW should have c = 0 (restriction
property). Assuming that the limit is on simple curves
(κ ≤ 4), this gives κ = 8/3.

I SLE8/3 curves have dimension 4/3 which gives the prediction
ν = 3/4.

I Simulations (Tom Kennedy) strongly support the conjecture
that the limit is SLE8/3.

I It is still an open question to prove that the scaling limit of
SAW is SLE8/3. (In fact, almost nothing is known rigorously
about SAWs in two dimensions although Duminil-Copin and
Smirnov have proven Nienhuis’s predicition of the connective
constant on the honeycomb lattice.)



COMMENTS AND FUTURE DIRECTIONS

I Overall SLE has been well received by the theoretical physics
community even though most of the exponents predicted by
SLE had already been predicted (or at least conjectured) in
the physics community. There has already been some progress
and more will occur using SLE , the Brownian loop measure,
and other similar conformally invariant objects to construct
fields.



I SLE is simply connected domains is well understood because
conformal invariance and the Markov property determine the
process (up to one parameter). Simply connected domains
have the property that if one slits them from a boundary
point, the slit domain is conformally equivalent to the original
domain. This is not true for non-simply connected domains
and conformal invariance and domain Markov property do not
determine the measures.

I For these domains (as in the case of boundary perturbation) it
is useful to consider finite measures that are not probability
measures which are normalized limits of partition functions.
The effect on the probability measure is obtained using
Girsanov theorem.



I SLE decribes a path or interface by giving it a random
dynamics. However, the path is not formed according to these
dynamics — rather the description of the path using the
Loewner equation is only a way of collecting information
about conditional probabilities as we explore parts of the
path/domain.

I This is why some “obvious” results are difficult to prove.
Zhan (also Dubédat) has recently given a nice proof that
SLEκ(κ ≤ 4) from z to w in a domain D is the same as the
path from w to z . This is immediate on the lattice level for
most of the models we are considering but is not easy to proof
for SLE directly.



I The definition of SLE uses a particular parametrization using
a capacity. This is not the scaling limit of the natural
parametrization from the discrete models (e.g., for SAW the
parametrization that takes one time unit to traverse one
bond). The two parametrizations are singular with respect to
each other. It has now been established (L. joint with
Sheffield, Zhou, Rezaei) that there is a well-defined natural
length (a d-dimensional quantity) for SLE. It is still open to
establish that the discrete models with the natural
parametrization converges.

I This talk has focused on SLE . There are a lot of other
exciting aspects to studying conformally invariant systems in
two dimensions.



WHAT ABOUT THREE DIMENSIONS?

I The use of conformal invariance to study these systems is
essentially a two-dimensional phenomenon (although there are
some applications to four-dimensional questions). It seems
much harder to analyze the very important case of three
dimensions.

I SAW and LERW are expected to give interesting, nontrivial,
random fractal paths in three dimensions.

I Interfaces as in percolation or Ising model become random
surfaces rather than random curves.

I In two dimensions, critical exponents tend to take on rational
values. There is no reason to believe that this is true in three
dimensions.

I For example, for SAW, Flory conjectured that a typical SAW
of n steps in three dimensions would have diameter nν where
ν = 3/5. This is no longer believed to be the exact value.
Numerical simulations suggest ν = .588 · · ·


