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G(w) == max(pn = pa-1), pnis the n'" prime.

2,3,5,7,...,109, 113,127,131, ...,9547, 9551, 9587, 9601, . . .

Upper bound: G(r) < 2%%%° (Baker-Harman-Pintz, 2001).



Large gaps between primes

G(z) = ;ni);(pn —Pn_1), Pn is the n” prime.

2,3,5,7,...,109, 113,127,131, ...,9547, 9551, 9587, 9601, . . .

Upper bound: G(r) < 2%%%° (Baker-Harman-Pintz, 2001).
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Rankin, 1938. G(x) > c(loga:)m, c=1.

Improvements to the constant c until 1997 (Pintz, ¢ = 2¢7).



Large gaps between primes

G(x) := max(p, — pn—1), Pn is the n'" prime.

Pn<T

2,3,5,7,...,109, 113,127,131, ...,9547, 9551, 9587, 9601, . . .

Upper bound: G(r) < 2%%%° (Baker-Harman-Pintz, 2001).
1 1
Rankin, 1938. G(z) > c(log x)m, c= %
Improvements to the constant ¢ until 1997 (Pintz, ¢ = 2¢7).
Erdés Conjecture. ($10,000) Rankin’s bound is true, for any ¢ > 0.
Solved: Ford-Green-Konyagin-Tao and Maynard (arXiv,Aug-2014).

Theorem (Ford-Green-Konyagin-Maynard-Tao (2018))
log, z log,

For large z, G(x) > log log, 7



Cramér (1936):
+ lim sup G(;g) =1L
T—00 10g x
o Do Pnolpag approximate exponential distribution.
log p

Granville (1995): lim sup lG(f) >2e 7 =1.1229...
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Exponential distribtion of gaps

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Prime gap: g

Prime gap statistics, p, < 4 - 10'®

Gallagher, 1976. Prime k—tuples conjecture =- exponential prime
gap distribution



Cramér’s model defects: small gaps

Cramér’s model produces a set & € N of “random primes”:

Pne &)=1/logn (n = 3).
Theorem. With probability 1, #{n : n,n+1 € Z} = o0

This does not hold for real primes!



Cramér’s model defects: small gaps

Cramér’s model produces a set & € N of “random primes”:
Pne &)=1/logn (n = 3).

Theorem. With probability 1, #{n : n,n+1 € Z} = o0

This does not hold for real primes!

Theorem. With probability 1,

#Hn<z:nn+2e P}~ °

log?z’
Conjecture (Hardy-Littlewood, 1923).

x

#{n <x:n,n+2prime} ~ C—s5—,
log” x

where C' = 2[] —1/(p—1)%) ~ 1.3203

p>2(



General Cramér type model

Theorem (classical, 1960s)
Choose N random points in [0, z|. With high probability, the max.

Conjecture (Hardy-Littlewood;Bateman-Horn)

Let f1,..., fx be distinct, irreducible polynomials f; : Z — Z with
pos. leading coeff., and f; - - - fx has no fixed prime factor. Then

#Hn<z: fi(n),..., fe(n) all prime} ~ 0(108@

where C' = C(fy,..., fx) > 0 is constant.



General Cramér type model

Theorem (classical, 1960s)
Choose N random points in [0, z|. With high probability, the max.

Conjecture (Hardy-Littlewood;Bateman-Horn)

Let f1,..., fx be distinct, irreducible polynomials f; : Z — Z with
pos. leading coeff., and f; - - - fx has no fixed prime factor. Then

#Hn<x: fi(n),..., fr(n) all prime} ~ C-——

(log z)k’
where C' = C(fy,..., fx) > 0 is constant.
For {n < z: fi(n),..., fx(n) all prime}, the model prediction:
average gap ~ (10g(71)*’ maximal gap ~ M



Polynomial gaps

Bunyakovsky (1857) Conj: Infinitely many primes p = n? + 1.
Bateman-Horn Conj: #{n < z : n? + 1 prime} ~ C-%

log z*
p el (log )2
Cramér type heuristic: max. gap ~ “—=—.

Sieve methods: #{n < z : n? + 1 prime} < gz



Polynomial gaps

Bunyakovsky (1857) Conj: Infinitely many primes p = n? + 1.
Bateman-Horn Conj: #{n < z : n? + 1 prime} ~ C-%
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Cramér type heuristic: max. gap ~ %.

Sieve methods: #{n < z : n? + 1 prime} < gz

Question: Can one prove that large strings of consecutive composite
values of n? 4 1 exist? i.e., strings longer than O(log ') below z.

Problem: Methods for prime gaps G(z) do not work!



Polynomial gaps

Bunyakovsky (1857) Conj: Infinitely many primes p = n? + 1.
Bateman-Horn Conj: #{n < z : n? + 1 prime} ~ C-%

log z*

2
Cramér type heuristic: max. gap ~ %.

Sieve methods: #{n < z : n? + 1 prime} < gz

Question: Can one prove that large strings of consecutive composite
values of n? 4 1 exist? i.e., strings longer than O(log ') below z.

Problem: Methods for prime gaps G(z) do not work!

Theorem (Ford-Konyagin-Maynard-Pomerance-Tao, 2018+)

Let f : Z — Z be a monic,irreducible polynomial with no fixed prime
factor. Then there is a string of > (log z)(loglog x) integers n < x
for which f(n) is composite. Here ¢ depends only on f.



Proving large prime gaps: Jacobsthal’s function
Se={nezZ:(n,Qz) =1}, Qu=Tl,p
(i.e., sieve of Eratosthenes using primes p < x)

Main goal: Find J(x), the largest gap in S, ; long string of
consecutive integers all with a small prime factor.

Cor: G(2Q);) > J(x); essentially G(X) 2 J(log X).



Proving large prime gaps: Jacobsthal’s function

SI = {'r], cZ: (71,Qw) = 1} Q.’L‘ - Hpgz b

(i.e., sieve of Eratosthenes using primes p < x)

Main goal: Find J(x), the largest gap in S, ; long string of
consecutive integers all with a small prime factor.
Cor: G(2Q);) > J(x); essentially G(X) 2 J(log X).
Bounding J(z):

* Average gap Q./¢(Qy) ~ €7 logz;

« (trivial) J(x) > x — 2since [2,2] NS, = 0;

* (FGKMT, 2018). J(x) > z(log )52

* (Iwaniec, 1978). J(z) < x?(log ).

Conjecture (Maier-Pomerance, 1990). J(z) = z(log z:)>*°(1),

Random Cramér type model: J(x) ~ %{?* ~ eTxlogx.



Least prime in an arithmetic progression

Let p(k,l) = min{p = (mod k), prime}, M (k) = (lmk?iclp(k, D).

Upper bounds

Linnik, 1944. M (k) < k*. (Xylouris : L = 5.18).
ERH: L =2+ ¢; Chowla conjecture: L =1 + €.

Lower bounds
Trivial: M (k) > ¢(k)logk.
Prachar; Schinzel - 1961/62. For infinitely many k,
log, klog, k
(logs k)?
Wagstaff (1978) - (1) holds for all prime &.

Pomerance (1980) - (1) holds for almost all k, in fact all £ with at
most (log k)¢/ 183 * prime factors.

M(k) > ¢(k)log k 1)



Least prime in an arithmetic progression, II

log, klog, k
(logs k)?
Lemma (Pomerance): Let j(m) be the maximal gap between

numbers comprime to m. If 0 < m < k/j(k) and (m, k) = 1 then
M(k) > kj(m).

Pomerance: M (k) > ¢(k)logk for almost all k.

Take m = H p  need a lower bound on j(m).

p<(1-0) log k
ptk

Corollary (FGKMT, 2018). If k£ has no prime factor < log k, then

log, klog, k

M) > (k) log k=5 2

(2)
Theorem (Junxian Li, Kyle Pratt and George Shakan, 2018)
Inequality (2) holds for almost all k; in fact, for all £ with at most

exp{(1/2 — e)%} prime factors.



Least Prime in an A.P. — conjectures

Conjecture (folklore): M (k) < klog*** k.
Conjecture (Wagstaff, 1979): M (k) ~ ¢(k) log? k for “most k”
Conjecture (Li-Pratt-Shakan, 2018)

lim inf 1)

— =1, lim sup M (k)
k—oo ¢(k)log” k

kono. G(K)log2k

Heuristic: coupon collectors problem.
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Figure: Histogram for et for k < 108



Covering: J(x) is the largest y so that there are a9, as, as, . .. with

{a, modp:p <z} D[0,y]

Proof: If [n,n + y|isa gap in S;, y = J(x), define a, for p < = by

(—n mod Q) = ﬂ(ap mod p).

pszT

Goal: succeeed with y a bit larger than x.



Finding large gaps in S,

Need ﬂ (ap mod p) D [0,y], with y a bit larger than .
P

| | | |
! ! !
2 2y/x z x/2 x Y

Yy = c:I;%, z=x"P2s  Want {a,mod p:p <z} 20,y
Classical 3-stage-process (Westzynthius-Erdés-Rankin)
O (Key!!) Takea, = 0forpc (z, 5] N[2, %} Left uncovered:
z—smooth numbers (few for appropriate z) and primes;
numbers uncovered.

logy

A typical choice of a, leaves ~ g

1
@® Greedy choice for a,, p € (2y/x, 4]

@ (trivial) for p € (§,x], choose a, to cover one uncovered
element from step 2. Success if < 7(x) — w(x/2) ~
elements.

2logx such



New bounds on J(z) [FKMPT, 2018]

| | | | |
| | | | |

_ . logxlogsx o 40103:73.:: " - .
y = cx g 2 = gy Want {ap mod p : p < JL} 2 [07 il/]

@ o, = 0 forp € (z,2/4] N [2,10og"’ z]. Uncovered: z-smooth
numbers and primes;

® Random, uniform choice of a,, log10 r<p<z.

@® Strategic choice of ap,, x/4 < p < x/2 to cover many reminaing
elements; some AP modulo p has many primes in [0, y].

O (trivial) Use single a), for each /2 < p < « to cover each
remaining uncovered element.

Tools: Maynard sieve, efficient hypergraph covering



Sp)={ne€Z:(f(n),Qz) =1}, Qu=Ilp,P-
Gaps: Let J¢(x) be the largest gap in Sy ().



Analog of J(z) for polynomials

Gaps: Let J¢(x) be the largest gap in S¢ ().

Covering problem: Let /, = {n mod p: f(n) =0 (mod p)}.
J¢(x) is the largest y so that [0, y] is covered by

{bp+1v, modp:p<uz,v,cl}

for some residues b, mod p.



Analog of J(z) for polynomials

Sf(x) = {n 6 Z : (f(rl’)?Ql’) = 1}7 QI - Hpgajp
Gaps: Let J¢(x) be the largest gap in S¢ ().
Covering problem: Let /, = {n mod p: f(n) =0 (mod p)}.
J¢(x) is the largest y so that [0, y] is covered by
{bp+1v, modp:p<uz,v,cl}

for some residues b, mod p.

Difficulty: For a set p of positive density, I, = () (unused primes).
For f(n) =n?+1,1, =0 forp =3 (mod 4).

This means that Step 1 in the usual method for large prime gaps
(the smooth number estimate) cannot be used. Without it, the
other steps give only the trivial bound J;(z) > x.



Let f : Z — 7 be a monic,irreducible polynomial with no fixed prime
factor. Then Jy(z) > x(log x), where ¢ depends on f.




New estimate for J;(z)

Theorem (FKMPT, 2018+)

Let f : Z — Z be a monic,irreducible polynomial with no fixed prime
factor. Then J¢(x) > x(log x)¢, where c depends on f.

Corollary (FKMPT)

Let f : Z — Z be a non-constant polynomial. Then 3 Gf 2 such
that for any k > Gf there are infinitely many integers n. > 0 so that
noneof f(n+1),..., f(n+ k) is coprime to all the others.

Previously, this was known only for degree < 3.



New estimate for J;(z)

Theorem (FKMPT, 2018+)

Let f : Z — Z be a monic,irreducible polynomial with no fixed prime
factor. Then J¢(x) > x(log x)¢, where c depends on f.

Corollary (FKMPT)

Let f : Z — Z be a non-constant polynomial. Then 3 Gy > 2 such
that for any k > Gy there are infinitely many integers n > 0 so that
noneof f(n+1),..., f(n+ k) is coprime to all the others.

Previously, this was known only for degree < 3.

Proof of Corollary. WLOG f € Z[z], irreducible. If x € N is large,
then Jy(x) > 22 + 1. Let k = 2z or k = 2z + 1. Then N has
infinitely many strings of k£ consecutive numbers, each having p|f(n)
for some p < z. But p < k/2, so p|f(n + p) also, and one of n + p is
in the same interval.



Let f : Z — 7 be a monic,irreducible polynomial with no fixed prime
factor. Then J¢(x) > x(log x)¢, where c depends on f.

Conjecture: J;(z) = z(logz)'+o(1),
(based on considering S () as a random subset of [1, Q,])



Conjectures for J(z)

Theorem (FKMPT, 2018+)

Let f : Z — Z be a monic,irreducible polynomial with no fixed prime
factor. Then J¢(x) > x(log x)¢, where c depends on f.

Conjecture: J;(z) = z(logz)! o),
(based on considering S () as a random subset of [1, Q,])

Recall:

Conjecture (Maier-Pomerance, 1990). .J () = z(log z)?(1),

Why the difference? The smooth number bound gives an “arithmetic
boost” to J(x), but not to J¢(x).



Method for showing that J;(x) is large, I

Main input: |I,| is 1 on average (Prime Ideal Theorem).

| | [
| | | |
2 z x/2 @ Yy

y = z(logz)¢, z = x/(log z)'/10

Want {b, + v,mod p: p < z,vp, € I} D [0,9]

® (Random) Pick b, at random, p < z (uniformly, independently)

® (Random-Greedy) For z < p < %, choose b, at random, but only
from “rich” residue classes (those covering many uncovered
numbers from Step 1. Dependent on Step 1, non-uniform.

@® (Trivial) Same as prime case. Use b, mod p for
5 < p < z,|Ip| > 1to cover anything left over (>
primes).

xT

Tog 7 such




Method for showing that J;(x) is large, II

y=uz(logz)’, z= (log 51/100
® (Random) Pick b, at random, p < z (uniformly, independently)
@® (Random-Greedy) For z < p < 7, take b, from rich classes
Heuristic for Step 2:
* For fixed g € (z,2/2], let

Si(rg) =[0.9]n(rmodg)\  J  |J (b +vp mod p),
p<(y/q)1%0 vpelp
Sa(r,q) =[0,y] N (r mod ¢)\ | J | (b + v mod p).
Pz vp€lp
There are many 7 for which Ss(r, q¢) = S1(r, q);
(“rich” residue classes.)

* Sieving by primes < (y/q)'%
elements.

Y

always leaves < 1.t 7



Open Problems

I. Select a residue a,, € Z/pZ for each p < z, let

S=1[0,2]\ | J(a, mod p).
psz
S = () possible: ag = 1,a, =0 (3 < p < %), ap for § < p < x cover
{1,2,22,..}
Problem: What is the largest possible |S|?
* A random choice yields [S] ~ e™7 2.
* Any choice leaves [S]| < 2= (sieve).




Open Problems

I. Select a residue a,, € Z/pZ for each p < z, let
S=1[0,2]\ | J(a, mod p).
psz

S = () possible: ag = 1,a, =0 (3 < p < %), ap for § < p < x cover
{1,2,22,..}
Problem: What is the largest possible |S |?

+ A random choice yields |S| ~ e

logac
* Any choice leaves [S]| < 2= (sieve).

II. For each prime p < \/z, choose a residue a,, mod p, and let

= [0, 2] \ U a, mod p).
P<VZT
I. When a), = 0 for all p, |S| ~ z/log .
II. A random choice yields |S| ~ z(2¢~7/log x).
Question. Are these the extreme cases?



