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Large gaps between primes

G(x) := max
pn6x

(pn − pn−1), pn is the nth prime.

2, 3, 5, 7, . . . , 109, 113, 127, 131, . . . , 9547, 9551, 9587, 9601, . . .

Upper bound: G(x) � x0.525 (Baker-Harman-Pintz, 2001).

Rankin, 1938. G(x) > c(logx)
log2 x log4 x

(log3 x)
2

, c = 1
3 .

Improvements to the constant c until 1997 (Pintz, c = 2eγ).

Erdős Conjecture. ($10,000) Rankin’s bound is true, for any c > 0.
Solved: Ford-Green-Konyagin-Tao and Maynard (arXiv,Aug-2014).

Theorem (Ford-Green-Konyagin-Maynard-Tao (2018))

For large x, G(x) � logx
log2 x log4 x

log3 x
.
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Conjectures

Cramér (1936):

• lim sup
x→∞

G(x)

log2 x
= 1.

•
pn − pn−1

log pn
has approximate exponential distribution.

Granville (1995): lim sup
x→∞

G(x)

log2 x
> 2e−γ = 1.1229 . . .



Computational evidence, up to 1018



Exponential distribtion of gaps

Prime gap statistics, pn < 4 · 1018

Gallagher, 1976. Prime k−tuples conjecture⇒ exponential prime

gap distribution



Cramér’s model defects: small gaps

Cramér’s model produces a set P ∈ N of “random primes”:

P(n ∈ P) = 1/ logn (n > 3).

Theorem. With probability 1, #{n : n, n+ 1 ∈ P} = ∞

This does not hold for real primes!

Theorem. With probability 1,

#{n 6 x : n, n+ 2 ∈ P} ∼ x

log2 x
.

Conjecture (Hardy-Littlewood, 1923).

#{n 6 x : n, n+ 2 prime} ∼ C
x

log2 x
,

where C = 2
∏

p>2(1− 1/(p− 1)2) ≈ 1.3203
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General Cramér type model

Theorem (classical, 1960s)

Choose N random points in [0, x]. With high probability, the max.

gap is ∼ logN
N x.

Conjecture (Hardy-Littlewood;Bateman-Horn)

Let f1, . . . , fk be distinct, irreducible polynomials fi : Z → Z with

pos. leading coeff., and f1 · · · fk has no fixed prime factor. Then

#{n 6 x : f1(n), . . . , fk(n) all prime} ∼ C
x

(logx)k
,

where C = C(f1, . . . , fk) > 0 is constant.

For {n 6 x : f1(n), . . . , fk(n) all prime}, the model prediction:

average gap ∼ (log x)k

C , maximal gap ∼ (log x)k+1

C .
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Polynomial gaps

Bunyakovsky (1857) Conj: Infinitely many primes p = n2 + 1.

Bateman-Horn Conj: #{n 6 x : n2 + 1 prime} ∼ C x
log x .

Cramér type heuristic: max. gap ∼ (log x)2

C .

Sieve methods: #{n 6 x : n2 + 1 prime} � x
log x .

Question: Can one prove that large strings of consecutive composite

values of n2 + 1 exist? i.e., strings longer than O(logx) below x.

Problem: Methods for prime gaps G(x) do not work!

Theorem (Ford-Konyagin-Maynard-Pomerance-Tao, 2018+)

Let f : Z → Z be a monic,irreducible polynomial with no fixed prime

factor. Then there is a string of � (logx)(log logx)c integers n 6 x
for which f(n) is composite. Here c depends only on f .
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Proving large prime gaps: Jacobsthal’s function

Sx = {n ∈ Z : (n,Qx) = 1}, Qx =
∏

p6x p.
(i.e., sieve of Eratosthenes using primes p 6 x)

Main goal: Find J(x), the largest gap in Sx; long string of

consecutive integers all with a small prime factor.

Cor: G(2Qx) > J(x); essentially G(X) & J(logX).

Bounding J(x):

• Average gap Qx/φ(Qx) ∼ eγ logx;

• (trivial) J(x) > x− 2 since [2, x] ∩ Sx = ∅;
• (FGKMT, 2018). J(x) � x(logx)

log3 x
log2 x .

• (Iwaniec, 1978). J(x) � x2(logx)2.

Conjecture (Maier-Pomerance, 1990). J(x) = x(logx)2+o(1).

Random Cramér type model: J(x) ∼ Qx logQx

φ(Qx)
∼ eγx logx.
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Least prime in an arithmetic progression

Let p(k, l) = min{p ≡ l (mod k), prime},M(k) = max
(l,k)=1

p(k, l).

Upper bounds

Linnik, 1944. M(k) � kL. (Xylouris : L = 5.18).
ERH: L = 2 + ε; Chowla conjecture: L = 1 + ε.

Lower bounds

Trivial: M(k) � φ(k) log k.
Prachar; Schinzel - 1961/62. For infinitely many k,

M(k) � φ(k) log k
log2 k log4 k

(log3 k)
2

. (1)

Wagstaff (1978) - (1) holds for all prime k.
Pomerance (1980) - (1) holds for almost all k, in fact all k with at

most (log k)c/ log3 k prime factors.



Least prime in an arithmetic progression, II

Pomerance: M(k) � φ(k) log k
log2 k log4 k

(log3 k)
2

for almost all k.

Lemma (Pomerance): Let j(m) be the maximal gap between

numbers comprime tom. If 0 < m 6 k/j(k) and (m, k) = 1 then
M(k) > kj(m).

Takem =
∏

p6(1−δ) log k
p-k

p need a lower bound on j(m).

Corollary (FGKMT, 2018). If k has no prime factor 6 log k, then

M(k) � φ(k) log k
log2 k log4 k

log3 k
. (2)

Theorem (Junxian Li, Kyle Pratt and George Shakan, 2018)

Inequality (2) holds for almost all k; in fact, for all k with at most

exp{(1/2− ε)
log2 k log4 k

log3 k } prime factors.



Least Prime in an A.P. – conjectures

Conjecture (folklore): M(k) � k log2+ε k.

Conjecture (Wagstaff, 1979): M(k) ∼ φ(k) log2 k for “most k”

Conjecture (Li-Pratt-Shakan, 2018)

lim inf
k→∞

M(k)

φ(k) log2 k
= 1, lim sup

k→∞

M(k)

φ(k) log2 k
= 2.

Heuristic: coupon collectors problem.



Least prime in an AP: data

Conjecture (Li-Pratt-Shakan, 2018)

lim inf
k→∞

M(k)

φ(k) log2 k
= 1, lim sup

k→∞

M(k)

φ(k) log2 k
= 2.

1 2 3 4
0

1

2

3

4

Figure: Histogram for
M(k)

φ(k) log(φ(k)) log k for k 6 106



Covering the gap

Covering: J(x) is the largest y so that there are a2, a3, a5, . . . with

{ap mod p : p 6 x} ⊇ [0, y]

Proof: If [n, n+ y] is a gap in Sx, y = J(x), define ap for p 6 x by

(−n mod Qx) =
⋂
p6x

(ap mod p).

Goal: succeeed with y a bit larger than x.



Finding large gaps in Sx

Need
⋂
p6x

(ap mod p) ⊇ [0, y], with y a bit larger than x.

2 y2y/x z x/2 x

y = cx
log x log3 x
(log2 x)2

, z = x
c
log3 x
log2 x Want {apmod p : p 6 x} ⊇ [0, y]

Classical 3-stage-process (Westzynthius-Erdős-Rankin)

1 (Key!!) Take ap = 0 for p ∈ (z, x2 ] ∩ [2, 2yx ]. Left uncovered:
z-smooth numbers (few for appropriate z) and primes;

∼ y
log y numbers uncovered.

A typical choice of ap leaves ∼ y log z
log y uncovered numbers

2 Greedy choice for ap, p ∈ (2y/x, z]

3 (trivial) for p ∈ (x2 , x], choose ap to cover one uncovered
element from step 2. Success if 6 π(x)− π(x/2) ∼ x

2 log x such

elements.



New bounds on J(x) [FKMPT, 2018]

2 y(logx)10 z x

y = cx
log x log3 x

log2 x , z = x
c
log3 x
log2 x Want {apmod p : p 6 x} ⊇ [0, y]

1 ap = 0 for p ∈ (z, x/4] ∩ [2, log10 x]. Uncovered: z-smooth

numbers and primes;

2 Random, uniform choice of ap, log
10 x < p 6 z.

3 Strategic choice of ap, x/4 < p 6 x/2 to cover many reminaing

elements; some AP modulo p has many primes in [0, y].

4 (trivial) Use single ap for each x/2 < p 6 x to cover each

remaining uncovered element.

Tools: Maynard sieve, efficient hypergraph covering



Analog of J(x) for polynomials

Sf (x) = {n ∈ Z : (f(n), Qx) = 1}, Qx =
∏

p6x p.

Gaps: Let Jf (x) be the largest gap in Sf (x).

Covering problem: Let Ip = {n mod p : f(n) ≡ 0 (mod p)}.
Jf (x) is the largest y so that [0, y] is covered by

{bp + νp mod p : p 6 x, νp ∈ Ip}

for some residues bp mod p.

Difficulty: For a set p of positive density, Ip = ∅ (unused primes).

For f(n) = n2 + 1, Ip = ∅ for p ≡ 3 (mod 4).

This means that Step 1 in the usual method for large prime gaps

(the smooth number estimate) cannot be used. Without it, the

other steps give only the trivial bound Jf (x) � x.
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New estimate for Jf(x)

Theorem (FKMPT, 2018+)

Let f : Z → Z be a monic,irreducible polynomial with no fixed prime

factor. Then Jf (x) � x(logx)c, where c depends on f .

Corollary (FKMPT)

Let f : Z → Z be a non-constant polynomial. Then ∃ Gf > 2 such

that for any k > Gf there are infinitely many integers n > 0 so that

none of f(n+ 1), . . . , f(n+ k) is coprime to all the others.

Previously, this was known only for degree 6 3.

Proof of Corollary. WLOG f ∈ Z[x], irreducible. If x ∈ N is large,

then Jf (x) > 2x+ 1. Let k = 2x or k = 2x+ 1. Then N has

infinitely many strings of k consecutive numbers, each having p|f(n)
for some p 6 x. But p 6 k/2, so p|f(n± p) also, and one of n± p is
in the same interval.
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Conjectures for Jf(x)

Theorem (FKMPT, 2018+)

Let f : Z → Z be a monic,irreducible polynomial with no fixed prime

factor. Then Jf (x) � x(logx)c, where c depends on f .

Conjecture: Jf (x) = x(logx)1+o(1).

(based on considering Sf (x) as a random subset of [1, Qx])

Recall:

Conjecture (Maier-Pomerance, 1990). J(x) = x(logx)2+o(1).

Why the difference? The smooth number bound gives an “arithmetic

boost” to J(x), but not to Jf (x).
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Method for showing that Jf(x) is large, I

Main input: |Ip| is 1 on average (Prime Ideal Theorem).

2 yz x/2 x

y = x(logx)c, z = x/(logx)1/100

Want {bp + νpmod p : p 6 x, νp ∈ Ip} ⊇ [0, y]

1 (Random) Pick bp at random, p 6 z (uniformly, independently)

2 (Random-Greedy) For z < p 6 x
2 , choose bp at random, but only

from “rich” residue classes (those covering many uncovered

numbers from Step 1. Dependent on Step 1, non-uniform.

3 (Trivial) Same as prime case. Use bp mod p for
x
2 < p 6 x, |Ip| > 1 to cover anything left over (� x

log x such

primes).



Method for showing that Jf(x) is large, II

y = x(logx)c, z = x
(log x)1/100

1 (Random) Pick bp at random, p 6 z (uniformly, independently)

2 (Random-Greedy) For z < p 6 x
2 , take bp from rich classes

Heuristic for Step 2:

• For fixed q ∈ (z, x/2], let

S1(r, q) = [0, y] ∩ (r mod q) \
⋃

p6(y/q)100

⋃
νp∈Ip

(bp + νp mod p),

S2(r, q) = [0, y] ∩ (r mod q) \
⋃
p6z

⋃
νp∈Ip

(bp + νp mod p).

There are many r for which S2(r, q) = S1(r, q);
(“rich” residue classes.)

• Sieving by primes < (y/q)100 always leaves � y
q log(y/q)

elements.



Open Problems

I. Select a residue ap ∈ Z/pZ for each p 6 x, let

S = [0, x] \
⋃
p6x

(ap mod p).

S = ∅ possible: a2 = 1, ap = 0 (3 6 p 6 x
2 ), ap for

x
2 < p 6 x cover

{1, 2, 22, . . .}
Problem: What is the largest possible |S|?

• A random choice yields |S| ∼ e−γ x
log x .

• Any choice leaves |S| � x
log x (sieve).

II. For each prime p 6
√
x, choose a residue ap mod p, and let

S = [0, x] \
⋃

p6
√
x

(ap mod p).

I. When ap = 0 for all p, |S| ∼ x/ logx.
II. A random choice yields |S| ∼ x(2e−γ/ logx).
Question. Are these the extreme cases?
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