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The Julia set Jc = ∂{z | orb(z) is bounded} is either
connected, or a Cantor set
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The MLC-conjecture: the Mandelbrot set is locally connected
MLC iff ∃π : D1 →M continuous

pinched disk model:

π

collapse
leaves

1/3

2/3

2/7

5/7

1/7

6/7



Yoccoz: MLC holds at “non-∞ renormalizable” parameters
Cor: MLC iff canonical homeomorphisms are “expanding”; f.e.

Ms

R

M

R :Ms →M is canonical

if
⋂

n≥0 R−n(M) = {cs} is a singleton, then MLC holds at cs



Lyubich; Graczyk and Świątek: R-version of MLC:

R

Ms

R
M

⋂
n≥0 R−n(M) ∩ R = {cs} is a singleton ifMs ∩ R 6= ∅
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Kahn, Lyubich: ∀ε > 0, R :Ms →M are simultaneously
expanding ifMs are ε-away from the molecule (primitive case):

rotation
effects

Molecule



Thm (Lyubich and DD) R :Ms →M is expanding for some
satellite copiesMs on the molecule (first examples):

Ms

R

M

⋂
n≥0 R−n(M) = {cs} is a singleton – MLC at cs



R

c?

∃!c? ∈ R such that R(c?) = c?

R(c? + v) = c? + R′(c?)v + o(|v |1+ε)

Sullivan, McMullen, Lyubich: ∃R′(c?) > 1

Feigenbaum universality:



zooming in:

c?

R

R(c? + v) = c? + R′(c?)v + o(|v |1+ε)
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R

R

RR

R(c? + v) = c? + R′(c?)v + o(|v |1+ε)
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Renormalization of f

Rf

Rf is the first return map

R : {Maps}/∼ 99K {Maps}/∼



R

Canonical homeomorphism:



R
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a non-escaping set

fR(c)

R

quasi-conformal

conjugacy

(smooth a.e.)
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Decomposition R = holonomy ◦R

QL :=

affine
conjugacy

quadratic-like maps
(2 : 1 maps f : U → V with U b V )

R : QL 99K QL is analytic (iteration+restriction)
dim(QL) =∞, but qc-conjugate maps form leaves of

codim = 1 stable foliation
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Hyperbolicity of R : QL 99K QL

unstable
man-d

stable
man-d

fixed
QL map

.

{z2 + c}
R{z2 + c}

R = HOLONOMY ◦ R
R

R

R

R

R |unst
man-d : z → λz R : z → λz + o(|z|1+ε)

Sullivan, McMullen, Lyubich: hyperbolicity of R + holonomy
prove universality



Golden Siegel
parameter

self-similarity near
main cardioid
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5
2
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z
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qc conjugacy

Branner, Douady: ∃ partial surjective map



R

R

R

R

R

3-to-1 partial map
around the molecule



R

R

R

R

R

the molecule map
(3-to-1 continuous)



R

R

R

R

R

 g
g

g
g

g

The molecule map and its model – conjugate if MLC

g(z) = z(z + 1)2
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Renormalizable pacman

γ1

γ2 = f (γ1)

f



Renormalizable pacman:

γ1

γ2 = f (γ1)

f 2

(delete)

f



Pacman renormalization:

Rf

γ̂1



Renormalization of the Rabbit
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Renormalization of the Rabbit

α

γ1
= f{ γ0, γ−, γ+ }

f
2 : 1

γ0
γ+

γ−
α′

1

1

analytic operatorBranner – Douady
surgery



Thm (Lyubich, Selinger, and DD)
For periodic parameters we construct
a hyperbolic analytic pacman
renormalization operator R
with dim = 1 unstable man-d

R R

unstable
man-d

stable
man-d

periodic
pacman

{z2 + c}
Rp

Rp

Rp

Rp
.

Rem. Periodic points were
constructed in 1990s by
McMullen for a
“cylinder” renormalization
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for the cylinder renormalization
for high type parameters
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Lyubich and DD: there is a stable lamination
unstable
man-d
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R = HOLONOMY ◦ R
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Cor. Scaling: R2(c? + c) = c? + λc + o(|c|1+ε)

with λ > 1 for “certain” c

⋂
n≥0 R−n

s (M) = {cs} is a singleton – MLC at cs

Ms

≈ c 7→ λnc

Rs

M



Unified theory?

primitive renorm

pacman renorm

elephants

near-parabolic
renorm


